
Proceedings of Recent Advances in Natural Language Processing, pages 109–116
Varna, Sep 4–6, 2023

https://doi.org/10.26615/978-954-452-092-2_012

A Review in Knowledge Extraction from Knowledge Bases
Fabio Yáñez-Romero

University Institute for Computer Research
University of Alicante

fabio.yanez@ua.es

Andres Montoyo, Rafael Muñoz, Yoan Gutiérrez, Armando Suárez
Department of Computing and Information Systems

University of Alicante
montoyo@dlsi.ua.es, rafael@dlsi.ua.es, ygutierrez@dlsi.ua.es, armando@dlsi.ua.es

Abstract

Generative language models achieve the state
of the art in many tasks within natural language
processing (NLP). Although these models cor-
rectly capture syntactic information, they fail
to interpret knowledge (semantics). Moreover,
the lack of interpretability of these models pro-
motes the use of other technologies as a re-
placement or complement to generative lan-
guage models. This is the case with research
focused on incorporating knowledge by resort-
ing to knowledge bases mainly in the form
of graphs. The generation of large knowl-
edge graphs is carried out with unsupervised or
semi-supervised techniques, which promotes
the validation of this knowledge with the same
type of techniques due to the size of the gener-
ated databases. In this review, we will explain
the different techniques used to test and infer
knowledge from graph structures with machine
learning algorithms. The motivation of validat-
ing and inferring knowledge is to use correct
knowledge in subsequent tasks with improved
embeddings.

1 Introduction

Knowledge bases (KB) are widely used for stor-
age information used in different machine learning
tasks. Knowledge bases are generally represented
by knowledge graphs (KG), which store informa-
tion that employ nodes (entities) and edges (re-
lations) creating a network. This way of storing
knowledge has been popularized in recent years
due to it being a more expressive, versatile and
scalable than traditional databases (Hogan et al.,
2021).

The efficient use of knowledge stored in a KG
with machine learning models is not a trivial task.
Traditional machine learning models, including
deep neural networks use vectors as input, while
the structure of KGs is more complex and can’t

be simplified in a vector, due to the need for rep-
resenting nodes, edges, connectivity, global rela-
tions inside the graph and features of every element
(Sanchez-Lengeling et al., 2021).

Methodologies used for extracting knowledge
from KGs focus on creating latent vectors with the
graph information (embeddings) or using neural
networks specially designed for dealing with the
graph structure.

Many KBs are developed using non supervised
machine learning techniques, generating massive
data in the process. Those methods may cause er-
rors when completing the KB due to false relations
between nodes. Large KBs also have problems
with not useful information introduced for a spe-
cific task which can be considered as noise.

2 Knowledge Graph Structure

KGs are made up of two sets of elements G = V,E.
Where V is the set of nodes (entities) and E is the
set of edges (relations). Where:

|V | = N, |E| = R

being N and R the number of entities and rela-
tions, respectively.

A knowledge graph can be classified as homo-
geneous or heterogeneous if nodes are of the same
class or different classes, cyclic or acyclic if its
possible to reach the initial node traveling between
edges or no and directed or undirected if nodes are
connected in one direction only or both, respec-
tively.

There are variants from conventional graph, this
is the case of hypergraphs which contains hyper-
edges linking more than two nodes or multigraphs
which allow more than one edge between two
nodes.

Graph Knowledge can be represented in many
ways due to the versatility of the graph structure. A

109

https://doi.org/10.26615/978-954-452-092-2_012

representation of nodes and edges connecting those
nodes is necessary. More complex graphs may
consider many features inside each node, nodes
containing subnodes with their own relations, fea-
tures for each edge, different types of edges and
global features associated with the entire graph
(Sanchez-Lengeling et al., 2021).

For representing the information contained in
a KB, consider a head entity eh and a tail entity
et sharing a relation r. This is represented by a
triple (eh, r, et). If the entities are directly con-
nected with the relation we consider this a ”1-hop”
relation, otherwise it is called a ”multi-hop” rela-
tion. Multi-hop relations are more difficult to de-
tect, mainly for entities with a distance of 3 hops or
more. There are many tasks involving constructed
KGs in NLP, most of the current research focus
on entity linking, question answering (QA) and
Fact Checking. The structure of triples is generally
utilized for representing graph information in the
lowest level. This is the general structure in query
languages developed for graph databases as Cypher
for databases like Neo4j and sparql for data in the
Resource Description Framework (RDF) format.

3 Machine Learning Techniques

ML techniques used on KBs represent the informa-
tion contained in nodes and edges in a structured
format as embeddings, other models act directly
over the graph structure, this is the case of Graph
Neural Networks (GNNs).

We have considered three different families of
models for Entity Linking according to the tech-
niques used to perform the task. There are transla-
tional models, which consider that the different re-
lationships between elements can be represented as
displacements in space, matrix factorization mod-
els represent the relationships between entities as
tensors and perform decomposition operations on
the tensors to represent each entity and relationship
and finally deep neural models are used to obtain
the main characteristics of each possible relation-
ship and determine whether they are truthful or
encode information from nearby entities.

3.1 Translational models

3.1.1 Euclidean Space Models
Translational models express the existing relation
between two entities as a translation in a vector
space. Head entity h and tail entity t have a relation
r which can translate the first entity to the second,

this is the case for the first translational model,
TransE (Bordes et al., 2013):

h+ r ≈ t (1)

The loss function for creating embeddings with
TransE is based on:

|h+ r − t| ≈ 0 (2)

TransE does not deal well with complex rela-
tions, i.e relations one-to-many (1-N), many-to-one
(N-1) or many-to-many (N-N). TransH improves
the representation of complex relations creating a
unique hyperplane for each relation between two
entities (Wang et al., 2014). In this case, the rela-
tion is a vector of the hyperplane and entity vectors
are translated to the hyperplane by a multiplication
with a specific relation matrix(Wr).

TransR considers both entities and relations
should be in different spaces. This allow differ-
ent entity representations according to the relation
between them (Lin et al., 2015). In this case, en-
tities h and t from each triple are proyected in the
relation space multiplying with the matrix Mr get-
ting hr and tr.

TransD uses less parameters than its predecessor,
this can be done using vector multiplications in-
stead of matrices. TransD assumes two vectors for
each entity and relation: the first vector (h, r, t) rep-
resents the meaning of the entity or relation and the
second (hp, rp, tp) indicates how the entity must be
proyected in the relation space, is utilized to map
entities in the relation space (Ji et al., 2015). For
each triple there are two matrices Mrh (relation-
head) and Mrt (relation-tail) for proyecting entities
in the relation space.

TransD uses the same number of parameters
for each specific relation. This may lead to
overfitting when using more parameters than nec-
essary (simple relations) or underfitting when
there are less parameters (complex relations). In
TranSparse(separate) each relation uses a sparse
matrix for each entity, with different sparse degrees.
This enable the use of more or less parameters de-
pending of the complexity of the relation (Ji et al.,
2015).

TransE regularization forces entity embeddings
to stay inside a spherical vector space out of the
range of the correct triple. The regularization used
in TransE is normalization, making the magnitude
of each embedding become 1 during each step of

110

learning. This provoke a violation of equation (2),
making the sum of head entity and relation not
equal to tail entity. This causes major problems,
warping the embeddings obtained. To solve this
TorusE creates entity and relation embeddings us-
ing the same principles as TransE but in a torus
space (Ebisu and Ichise, 2017).

PairRE employs paired vectors for representing
complex relations. These vectors proyect entities in
the euclidean space where distance is minimized if
the relation is right. The main advantage of PairRE
is that both paired vectors allow more versatility in
the loss function, achieving a better representation
of complex relations (Chao et al., 2020).

3.1.2 Complex Space Models
Even if Euclidean space models progressively im-
prove state of the art, they still have difficulties
dealing with relations of symmetry, anti-symmetry,
inversion and composition. RotatE tries to solve
this problem with a complex space in order to rep-
resent embeddings using Euler’s identity. This way
the translation from the head entity to the tail en-
tity is a rotation (Sun et al., 2019). RotatE also
changes the loss function introducing self adversar-
ial samples, which improves the training process.
The score function employed in RotatE is the the
same as equation (2), but using Hadamard prod-
uct instead of vector sum between head entity and
relation.

RotatE is improved with more dimension spaces
through relation modeling with orthogonal trans-
formations embeddings OTE (Tang et al., 2019).
OTE makes orthogonal transformations with the
head and relation vectors to the tail vector, and then
from the tail and relation vectors to the head vector.

Extending the idea of complex spaces, QuatE
uses an hypercomplex space with 3 imaginary com-
ponents i, j, k with the objective of having more
degrees of freedom to the obtained embeddings. In
this case, the scoring function utilized rotates head
entity using the Hamilton product (Zhang et al.,
2019).

Previous models interpret relations using only
translations or rotations inside a geometric space,
but not both types of movements. Whereas trans-
lationals models are not capable of represent fun-
damental aspects of relations as symmetry, inver-
sion or composition, rotational models fail to deal
with hierarchical relations or multiples relations
between two entities. However, DualE deals with
these problems using dual cuaternions (Cao et al.,

2021). Dual cuaternions are built with the sum of
two cuaternions (Q = a+ ϵb) where a and b repre-
sent the two cuaternions. Using dual cuaternions it
is possible to model embeddings with translation
and rotation relations.

3.1.3 Other Non-Euclidean Space Models
Other models explore the posibility of using math-
ematical expresions out of the euclidean space.

ManifoldE is a model that uses non-euclidean
space. It considers that translational models are
algebraically ill-conceived because they generate
more equations than variables to solve, leading to
approximate calculations for tasks like entity link-
ing, where there are many entity candidates for
one relation. In the case of ManifoldE, it uses a
principle based on a ”manifold” function for ex-
pressing the relation between two entities (Xiao
et al., 2015). With this approach calculation should
be exact, retrieving true candidates for each rela-
tion. ManifoldE expands the position of golden
triples from one point (TransE) to a manifold us-
ing a larger dimension sphere, diminishing noise
when detecting true relations between all candi-
dates and improving embedding vectors precision.
Considering a head entity and a relation, all pos-
sible tail entities are inside a manifold of greater
dimension (sphere). Scoring function is obtained
as the difference in distance between radius of the
sphere and equation (2). ManifoldE improves their
results using a hyperplane as a manifold instead of
a sphere.

Hyperbolic space is ideal for modeling entities
with hierarchical information due to its curvature.
The problem with hyperbolic space is represent-
ing entities with different hierarchies under differ-
ent relations. MuRP utilizes a Poincaré Ball as
a hyperbolic space, creating multi-relational em-
beddings for each entity and relation (Balažević
et al., 2019). The key of MuRP is using a hy-
persphere in hyperbolic space because it grows
exponentially compare to euclidean space, having
more space to separate each node. MuRP trains
relation-specific parameters used for transforming
entity embeddings through Möbius matrix-vector
multiplication (in order to obtain the hyperbolic
entity embeddings) and Möbius addition. The hy-
perbolic entity embeddings are obtained by Möbius
matrix-vector multiplication projecting the original
embeddings to the tangent space of the Poincaré
ball transformed by the diagonal relation matrix
and then projected back to Poincaré ball.

111

MuRP cannot encode some logical properties
of relationships. It uses a fixed curvature for each
relation.Although specific curvature for each rela-
tion would represent better hierarchies based on
the context, it also uses only translations in the
hyperbolic space. By contrast, ATTH creates em-
beddings in hyperbolic space using reflexions and
rotations, enabling RotatE patterns to be captured,
as well as considering a relation-specific curvature
cr that allows a variety of hierarchies (Chami et al.,
2020). Rotations are created with Givens transfor-
mations matrices due to this model does not employ
complex numbers. ATTH use entity biases in the
scoring function which act as margins for triples.

Previous methods are designed for creating en-
tity and relation representations in Euclidean, Hy-
perbolic or Hyperspherical space, but no one of
them compare results in different spaces. Geometry
Interaction Knowledge Graph Embeddings (GIE)
(Cao et al., 2022) considers vectors in Euclidean
(E), Hyperbolic (H) and Hyperspherical (S) spaces
for head and tail entities and uses an attention mech-
anism over each vector in order to prioritize the
space which represents better knowledge from the
entity. Vectors in Hyperbolic and Hyperspherical
space are logarithmically mapped to tangent space
before applying attention and then features are ex-
tracted. GIE has an attention vector with a specific
component for each different space both for head
and tail entities inside a triple.

3.2 Tensor factorization models

Using tensors for expressing entities and relations
has some advantages over translational models:

· Tensors can represent multiple relations of any
order, you just need to increase tensor dimension-
ality.

· Previous knowledge from the problem structure
is not necessary in order to infer knowledge from
data.

3.2.1 Euclidean Space Models
RESCAL is the first tensor factorization model
created to represent relations between entities. In
this model, each matrix is constructed representing
the relation between two entities, like a confusion
matrix, and each matrix indicates a specific relation.
The data is given as a (n · n · m) tensor where
n is the number of entities and m is the number of
relations (Nickel et al., 2011). RESCAL employs
the following factorization over each slice of tensor
Xk:

Xk ≈ ARkA
T , for k = 1, ...,m (3)

Where A is a n x r matrix containing latent-
component representation of entities an Rk is an
r x r matrix that models the interactions between
latent components for relation k.

Matrix Rk is asymmetric, which is useful for
considering whether a latent component acts as
a subject or object, given that each entity has a
unique latent-component representation even if it is
a subject or object in a relation. Matrices A and Rk

are computed solving the following minimization
problem:

min f(A,Rk) + g(A,Rk) (4)

Where:

f(A,Rk) =
1

2
(
∑
||Xk −ARkA

T ||2F) (5)

and g is a regularization term included to avoid
overfitting:

g(A,Rk) =
1

2
λ(||A||2F +

∑
||Rk||2F) (6)

In order to reduce training parameters in
RESCAL, DistMult uses a diagonal matrix Wr in-
stead of an asymmetric relation matrix (Yang et al.,
2014). This leads to a more expressive model than
transE with the same number of parameters, being
as scalable as previously mentioned models but less
expressive than RESCAL.

Holographic embeddings use vector circular cor-
relation to represent entity embeddings. HolE cre-
ates holographic embeddings for represent pairs
of entities(Nickel et al., 2015). Correlation makes
HolE efficient to compute and scalable to large
datasets. This operation can be considered as a
compression of the tensor product, in circular cor-
relation each component is a sum of a fixed parti-
tion of pairwise interactions. HolE can store and
retrieve information via circular convolution and
circular correlation, respectively and it also learns
the embeddings of the data.

SimplE is a tensor factorization method
based con Canonical Polyadic(CP) decomposition
(Kazemi and Poole, 2018). It uses two vectors for
each entity (he, te) and relation (vr, vr−1). SimplE
uses a similarity function for each triple which is

112

the average of the CP scores for the current triple
and its inverse relation triple.

TuckER is a lineal model for tensor factoriza-
tion which generalizes previous tensor factoriza-
tion models like RESCAL, DistMult, ComplEx
and SimplE based on Tucker decomposition. It
makes a decomposition from the binary tensor of
triplets. It factorizes a tensor into a core smaller
tensor multiplying one matrix for each dimension
in the original tensor (Balazevic et al., 2019). In
the case of TuckER, the decomposition creates a
smaller tensor W, and matrices eh, wr and et for
head entity, relation and tail entity, respectively.

3.2.2 Other Non-Euclidean Space Models
As RotatE, ComplEx uses imaginary numbers in
the complex space, in this case it performs tensor
factorization using Hermitian dot product, which
involves the conjugate-transform on one of the two
vectors multiplied. With this type of dot product,
we obtain a non symmetric matrix being able to
represent antisymmetric relations while maintain-
ing linearity and low time complexity (Trouillon
et al., 2016).

3.3 Deep Neural Models
Graph neural networks can encode information
about neighbours from each specific node, intro-
ducing context during processing in the neural net-
work.

3.3.1 Graph Convolutional Networks (GCNs)
The first GCN introduced generates hidden states
for each node processed taking into consideration
each neighbour and relation. For each GCN layer,
the processed node adds information from each
neighbour equally as shown in the next equation:

h
(l+1)
i = σ

 ∑

m∈Mi

gm(h
(l)
i , h

(l)
j)

 (7)

Where hli is the hidden state of node i for the
layer l in the GCN. Mi is the set of neighbours
considered for node i, gm is a linear transformation
which uses a weight matrix W and σ is an element-
wise activation function.

The context given by graphs improves many
tasks when dealing with relational data, this is the
case for R-GCN, an encoder that produces a hid-
den state for each node considering neighbours but
also specific relations (Schlichtkrull et al., 2017),

in contrast with original GCN, being suitable for
processing heterogeneous graphs.

3.3.2 Graph Attention Networks (GATs)
GCNs make convolutions considering equal im-
portance among all edges in the processed graph,
which may be a shallow approach for tasks where
specific nodes and edges have more important in-
formation than others (Kipf and Welling, 2017). In
order to solve this issue, Graph Attention Networks
are introduced. GATs make a convolution consid-
ering different weights for each edge connected
to a specific node and can have multiple weights
associated for each edge equal to the number of
attention heads (Veličković et al., 2018).

A2N uses attention mechanism with specific
queries in order to generate conditioned embed-
dings taking into account each query with the neigh-
borhood of a source entity (Bansal et al., 2019). A
scalar attention score is generated for each neigh-
bour and then their embeddings are aggregated gen-
erating a new source embedding ŝ. Lastly, concate-
nate the new source embedding with the initial and
projecting it to obtain the final source embedding,
s . In the original paper, DistMult is utilized as
an attention scoring function as it allows the pro-
jection of neighbors in the same space as target
entities.

The use of non-Euclidean spaces has been ex-
tended to graph neural networks as in the case of
M2GNN (Wang et al., 2021). Previous models
using non-Euclidean spaces only considered homo-
geneous relations, so they lack expressiveness in
this respect. M2GNN creates a non-constant het-
erogeneous curvature space using new parameters
in the network called curvature coefficients. The
proposed architecture also makes use of attention
heads to improve the accuracy obtained.

3.4 Convolutional Neural Networks (CNNs)

CNNs utilized broadly in computer vision have
recently been used for entity linking. The main
reason is that CNNs can solve entity linking tasks
with far less parameters than previous mentioned
models like DistMult. CNNs are also considered
a very expressive way of representing entities and
relations comparing to translational models, due
to the number of features extracted with the CNN
filters (Kipf and Welling, 2017).

ConvE is the first convolutional model achieving
good results with entity linking tasks. It is simple,
as it uses only one convolutional layer with 2D

113

convolutions, a proyection layer to the embedding
dimension and an inner product to make the en-
tity linking prediction (Dettmers et al., 2017). The
convolution is made by first concatenating the 2D
vectors from the head entity and relation embed-
dings. Score function used for training the model
is the following:

ϕ(eh, et) = f(vec(f(eh; rr) ∗ w))W)et (8)

Where eh and rr are the 2D representations of
embeddings eh and rr respectively. w are filters
used in the convolutional layer, W is the matrix for
projecting the data into another dimensional space
for matching eo.

ConvKB uses a convolutional layer with 3-
column matrices, where each matrix is made of
the concatenation of the triple vectors (eh, r, et).
The features obtained after convolution are con-
catenated and score is obtained performing a mul-
tiplication with a weight vector w (Nguyen et al.,
2018).

Filters used for convolution in previous models
are designed arbitrarily, which can lead to a poor
performance. In order to solve this problem, Hy-
pER uses a hypernetwork for determining the right
filter for each relation (ević et al., 2019). A fully
connected layer is used for obtaining embeddings
representing head entity and relation, then the hy-
pernetwork creates the filters of each relation em-
bedding which will be utilized during convolution
of entity embeddings. The hypernetwork proposed
is a single fully connected layer. HypER uses a
weight matrix that projects the results to another
dimensional space in order to make the dot product
between head entity and tail entity.

4 Discussion and future directions

The representation of knowledge bases as embed-
ding vectors can be seen as a way to obtain contex-
tualised embeddings of any knowledge base with a
graph structure, such as ontologies. Furthermore,
contextualized embeddings can be used beyond
tasks such as entity linking or knowledge base com-
pletion by representing the latent knowledge of the
knowledge bases used in the form of vectors.

Contextualised embedding vectors commonly
used in natural language processing (NLP) are usu-
ally obtained from a corpus with unsupervised tech-
niques such as Word2Vec (Mikolov et al., 2013) or
GloVe (Pennington et al., 2014), using Long-Short

Term Memory neural networks (LSTMs) on the
text as in the case of ELMo (Peters et al., 2018)
or using language models with Transformers-type
architecture as BERT (Devlin et al., 2019).

With the methods explained in this paper, con-
textual vectors can be created taking into account
as context only the graph itself and the relations
existing in it without taking into consideration any
corpus. This becomes even more important taking
into account the current research trends within NLP
focused on combining knowledge from ontologies
with the latent language of language models, creat-
ing synergies with the aim of improving the state
of the art in different NLP tasks, achieving explain-
able models or reaching competitive results with
lighter models (Pan et al., 2023). It is expected
that the improvement of embeddings obtained from
knowledge graphs will be useful to achieve a better
integration between language models and knowl-
edge graphs.

5 Conclusions

Both in the case of translational models and in ten-
sor factorization, there is a tendency to represent
increasingly complex spaces, to the point of com-
bining different types of spaces into one (euclidean,
hyperspherical and hyperbolic) or to represent in-
creasingly complex vector spaces (complex space,
quaternions, etc.). However, in some cases it is
observed that the state of the art is surpassed with-
out necessarily increasing the complexity of the
space represented; this is the case of SimplE (which
achieves results similar to ComplEx) or Tucker.

Alternative spaces to the euclidean with posi-
tive or negative curvature tend to better represent
some properties of entities with a smaller number
of features, such as circular relations in hyperspher-
ical spaces and hierarchies in hyperbolic spaces,
allowing the creation of embeddings at a lower
computational cost.

In the case of deep neural models, tests have
also been carried out with positive and negative
curvature spaces. In these cases, curvature is a
parameter to be trained within the network.

The current state of the art is led by models that
combine different vector spaces (GIE, M2GNN).

114

References
Ivana Balazevic, Carl Allen, and Timothy Hospedales.

2019. TuckER: Tensor factorization for knowledge
graph completion. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5185–5194, Hong Kong, China. As-
sociation for Computational Linguistics.

Ivana Balažević, Carl Allen, and Timothy Hospedales.
2019. Multi-relational poincaré graph embeddings.

Trapit Bansal, Da-Cheng Juan, Sujith Ravi, and Andrew
McCallum. 2019. A2N: Attending to neighbors for
knowledge graph inference. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4387–4392, Florence, Italy.
Association for Computational Linguistics.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems, volume 26. Curran Associates,
Inc.

Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Xiaochun
Cao, and Qingming Huang. 2021. Dual quater-
nion knowledge graph embeddings. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(8):6894–6902.

Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Xiaochun
Cao, and Qingming Huang. 2022. Geometry interac-
tion knowledge graph embeddings.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic
Sala, Sujith Ravi, and Christopher Ré. 2020. Low-
dimensional hyperbolic knowledge graph embed-
dings.

Linlin Chao, Jianshan He, Taifeng Wang, and Wei Chu.
2020. Pairre: Knowledge graph embeddings via
paired relation vectors.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2017. Convolutional 2d knowl-
edge graph embeddings.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Takuma Ebisu and Ryutaro Ichise. 2017. Toruse:
Knowledge graph embedding on a lie group.

Ivana Balaž ević, Carl Allen, and Timothy M.
Hospedales. 2019. Hypernetwork knowledge graph
embeddings. In Artificial Neural Networks and Ma-
chine Learning – ICANN 2019: Workshop and Spe-
cial Sessions, pages 553–565. Springer International
Publishing.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Clau-
dia D’amato, Gerard De Melo, Claudio Gutierrez,
Sabrina Kirrane, José Emilio Labra Gayo, Roberto
Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga
Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula,
Lukas Schmelzeisen, Juan Sequeda, Steffen Staab,
and Antoine Zimmermann. 2021. Knowledge graphs.
ACM Comput. Surv., 54(4).

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun
Zhao. 2015. Knowledge graph embedding via dy-
namic mapping matrix. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 687–696, Beijing, China. Asso-
ciation for Computational Linguistics.

Seyed Mehran Kazemi and David Poole. 2018. Simple
embedding for link prediction in knowledge graphs.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation em-
beddings for knowledge graph completion. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, AAAI’15, page 2181–2187.
AAAI Press.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen,
and Dinh Phung. 2018. A novel embedding model
for knowledge base completion based on convolu-
tional neural network. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 327–333, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso Pog-
gio. 2015. Holographic embeddings of knowledge
graphs.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proceedings of
the 28th International Conference on International
Conference on Machine Learning, ICML’11, page
809–816, Madison, WI, USA. Omnipress.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji-
apu Wang, and Xindong Wu. 2023. Unifying large
language models and knowledge graphs: A roadmap.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

115

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations.

Benjamin Sanchez-Lengeling, Emily Reif, Adam
Pearce, and Alexander B. Wiltschko. 2021. A gen-
tle introduction to graph neural networks. Distill.
Https://distill.pub/2021/gnn-intro.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2017. Modeling relational data with graph convolu-
tional networks.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding
by relational rotation in complex space. CoRR,
abs/1902.10197.

Yun Tang, Jing Huang, Guangtao Wang, Xiaodong He,
and Bowen Zhou. 2019. Orthogonal relation trans-
forms with graph context modeling for knowledge
graph embedding.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks.

Shen Wang, Xiaokai Wei, Cicero Nogueira
Nogueira dos Santos, Zhiguo Wang, Ramesh
Nallapati, Andrew Arnold, Bing Xiang, Philip S.
Yu, and Isabel F. Cruz. 2021. Mixed-curvature
multi-relational graph neural network for knowledge
graph completion. In Proceedings of the Web
Conference 2021, WWW ’21, page 1761–1771,
New York, NY, USA. Association for Computing
Machinery.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence,
AAAI’14, page 1112–1119. AAAI Press.

Han Xiao, Minlie Huang, and Xiaoyan Zhu. 2015. From
one point to a manifold: Knowledge graph embed-
ding for precise link prediction.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2014. Embedding entities and relations
for learning and inference in knowledge bases.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019.
Quaternion knowledge graph embeddings.

116

	A Review in Knowledge Extraction from Knowledge Bases

