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Abstract:

Purpose: Permanent magnet synchronous spherical motors can have wide use in robotics and industrial
automation. They enable 3-DOF omnidirectional motion of their rotor. They are suitable for several ap-
plications as for instance actuation in robotics, traction in electric vehicles and use in several automation
systems. Unlike conventional synchronous motors, permanent magnet synchronous spherical motors consist
of a fixed inner shell which is the stator and a rotating outer shell which is the rotor. Their dynamic model
is multivariable and strongly nonlinear. The treatment of the associated control problem is important.

Design/methodology/approach: In this article the multivariable dynamic model of permanent magnet
synchronous spherical motors is analyzed and a nonlinear optimal (H-infinity) control method is devel-
oped for it. Differential flatness properties are proven for the spherical motor’s state-space model. Next,
the motor’s state-space description undergoes approximate linearization with the use of first-order Taylor
series expansion and through the computation of the associated Jacobian matrices. The linearization pro-
cess takes place at each sampling instance around a time-varying operating point which is defined by the
present value of the motors’ state vector and by the last sampled value of the control inputs vector. For
the approximately linearized model of the permanent magnet synchronous spherical motor a stabilizing
H-infinity feedback controller is designed. To compute the controller’s gains an algebraic Riccati equation
has to be repetitively solved at each time-step of the control algorithm. The global stability properties of
the control scheme are proven through Lyapunov analysis. Finally, the performance of the nonlinear opti-
mal control method is compared against a flatness-based control approach implemented in successive loops.

Findings: Due to the nonlinear and multivariable structure of the state-space model of spherical mo-
tors the solution of the associated nonlinear control problem is a non-trivial task. In this article a novel
nonlinear optimal (H-infinity) control approach is proposed for the dynamic model of permanent magnet
synchronous spherical motors. The method is based on approximate linearization of the motor’s state-space
model with the use of first-order Taylor series expansion and through the computation of the associated
Jacobian matrices. Furthermore, the article has introduced a different solution to the nonlinear control
problem of the permanent magnet synchronous spherical motor which is based on flatness-based control
implemented in successive loops.

Research limitations/implications: The presented control approaches do not exhibit any limitations
but on the contrary they have specific advantages. In comparison to global linearization-based control
schemes (such as Lie-algebra-based control) they do not make use of complicated changes of state variables
(diffeomorphims) and transformations of the system’s state-space description. The computed control in-
puts are applied directly on the initial nonlinear state-space model of the PM spherical motor without the
intervention of inverse transformations and thus without coming against the risk of singularities.

Practical implications: The motion control problem of spherical motors is non-trivial because of the
complicated nonlinear and multivariable dynamics of these electric machines. So far, there have been
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several attempts to apply nonlinear feedback control to permanent magnet synchronous spherical motors.
However, due to the model’s complexity, few results exist about the associated nonlinear optimal control
problem. The proposed nonlinear control method for permanent magnet synchronous spherical motors
make more efficient, precise and reliable the use of such motors in robotics, in electric traction and in
several automation systems

Social implications: The treated research topic is central for robotic and industrial automation. Perma-
nent magnet synchronous spherical motors are suitable for several applications as for instance actuation in
robotics, traction in electric vehicles and use in several automation systems. The solution of the control
problem for the nonlinear dynamical model of permanent magnet synchronous spherical motors has many
industrial applications and therefore contributes to economic growth and development.

Originality/value:The proposed nonlinear optimal control method is novel comparing to past attempts
for solving the optimal control problem for nonlinear dynamical systems. Unlike past approaches, in the
new nonlinear optimal control method linearization is performed around a temporary operating point which
is defined by the present value of the system’s state vector and by the last sampled value of the control
inputs vector and not at points that belong to the desirable trajectory (setpoints). Besides, the Riccati
equation which is used for computing the feedback gains of the controller is new, and so is the global
stability proof for this control method. Comparing to NMPC (Nonlinear Model Predictive Control) which
is a popular approach for treating the optimal control problem in industry, the new nonlinear optimal
(H-infinity) control scheme is of proven global stability and the convergence of its iterative search for the
optimum does not depend on initial conditions and trials with multiple sets of controller parameters. It
is also noteworthy that the nonlinear optimal control method is applicable to a wider class of dynamical
systems than approaches based on the solution of State Dependent Riccati Equations (SDRE). The SDRE
approaches can be applied only to dynamical systems which can be transformed to the Linear Parameter
Varying (LPV) form. Besides, the nonlinear optimal control method performs better than nonlinear opti-
mal control schemes which use approximation of the solution of the Hamilton-Jacobi-Bellman equation by
Galerkin series expansions. Furthermore. the second control method which is proposed by the article, that
is flatness-based control loop is also novel, and demonstrates substantial contribution in nonlinear control
for robotics and industrial automation.

Keywords: spherical motors, permanent magnent sychronous motors, nonlinear H-infinity control, Tay-
lor series expansion, Jacobian matrices, Riccati equation, global stability, differential flatness properties,
flatness-based control in successive loops.

1 Introduction

Permanent magnet synchronous spherical motors enable 3-DOF omnidirectional motion of their rotor (Bai
et al., 2022), (Liu et al., 2017), (Bai and Lee, 2018). They are suitable for several applications as for
instance actuation in robotics, traction in electric vehicles and use in several automation systems (Bai et
al., 2021), (Bai et al., 2022), (Bai and Lee, 2014). Unlike conventional synchronous motors, permanent
magnet synchronous spherical motors consist of a fixed inner shell which is the stator and a rotating outer
shell which is the rotor (Bai et al., 2016), (Wen et al., 2021), (Li et al., 2020). The stator is supplied with
a number of electromagnetic coils (EM) while the rotor is supplied with a number of permanent magnets
(PM) grouped in pole pairs (Guo et al., 2019), (Rong et al., 2019), (Chai et al., 2020). Current circulates
in the stator’s electromagnetic coils and the interaction of the electromagnetic field of the stator’s EMs
with the magnetic field of the rotor’s PMs generates the 3-DOF turn motion of the rotor (Sun and Lee,
2014), (Liu et al., 2017), (Chen et al., 2020). The dynamics of the rotor’s turn motion is determined by
Euler-Lagrange equations (Wen et al., 2022), (Rigatos, 2015a), (Rigatos and Karapanou, 2020). This dy-
namic model receives as control inputs three torque variables which determine rotation by a certain angle
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around the axes of a cartesian coordinates frame (Xia et al., 2010), (Li et al., 2018), (Li et al., 2019). These
mechanical torque variables are in turn associated with the currents of stator’s EMs through an algebraic
matrices relation (Yan et al., 2014), (Rossini et al., 2013), (Yan et al., 2010). Thus, the EMs currents are
the final control inputs of the spherical motor (Gan et al., 2020), (Yan et al., 2006), (Wang et al., 2016).
The motion control problem of spherical motors is non-trivial because of the complicated nonlinear and
multivariable dynamics of these electric machines (Guo et al., 2020), (Liu et al., 2018), (Kumagui et al.,
2013). So far, there have been several attempts to apply nonlinear feedback control to permanent magnet
synchronous spherical motors (Zhang et al., 2016), (Guidan et al., 2011), (Lee and Sun, 2005). However,
due to the model’s complexity, few results exist about the associated nonlinear optimal control problem
(Rigatos, 2016), (Chen et al., 2012), (Park et al., 2018). The application of spherical motors in drive
systems can greatly simplify mechanical transmission components, improve torque density, efficiency and
other performance indicators (Lee and Sun, 2023), (Ogulmuz and Tirkir, 2023), (Zhao et al., 2023), (Wen
et al., 2023), (Zhou et al., 2023) . Therefore, they are expected to have broad application prospects in
fields such as electric traction, robotics and aerospace (Huang et al., 2022), (Han et al., 2022).

In this article, a novel nonlinear optimal control method is proposed for the dynamic model of the per-
manent magnet synchronous spherical motor (Rigatos and Karapanou, 2020), (Rigatos, 2016). First,
the state-space model of this actuation system is formulated in matrix form and its differential flatness
properties are proven (Rigatos, 2015a). Next, the state-space model of the spherical motor undergoes a
linearization procedure which takes place at each sampling instance around a temporary operating point
which is updated at each time-step of the control algorithm. The linearization point is defined at each
sampling interval by the present value of the motor’s state vector and by the last sampled value of the
control inputs vector. The linearization process is based on first-order Taylor series expansion and on the
computation of the associated Jacobian matrices (Rigatos and Tzafestas, 2007), (Basseville and Nikiforov,
1993), (Rigatos and Zhang, 2009). The modelling error which is due to the truncation of higher-order
terms in the Taylor series expansion is compensated by the robustness of the nonlinear optimal control
algorithm. To select the controller’s feedback gains an algebraic Riccati equation in repetitively solved
at each time-step of the control method (Rigatos and Busawon, 2018), (Rigatos et al., 2022). The global
stability properties of the control loop are proven through Lyapunov analysis (Rigatos, 2016), (Rigatos et
al., 2015), (Toussaint et al., 2000).

Next, flatness-based control in successive loops is also developed for the dynamic model of the permanent
magnet synchronous spherical motor (Rigatos et al., 2018), (Rigatos, 2015b). The method of flatness-based
control in successive loops was first introduced in (Rigatos, 2015a). The dynamic model of the spherical
motor is separated into two subsystems, where the first subsystem has as state variables the turn angles
of the rotor around the reference axes of a cartesian coordinates frame, while the second subsystem has as
state variables the associated angular velocities. Each one of these subsystems can be viewed independently
as a differentially flat system and control about it can be performed with inversion of its dynamics as in the
case of input-output linearized flat systems. The state variables of the second subsystem (angular velocities
of the rotor) become virtual control inputs for the first subsystem (turn angles of the rotor). Finally, ex-
ogenous control inputs are applied to the second subsystem (torques that modify the angular speed of the
rotor). The whole control method is implemented in two successive loops and its global stability properties
are also proven through Lyapunov stability analysis.

The structure of the article is as follows: in Section 2 the dynamic model of the permanent magnet syn-
chronous spherical motor is given in state-space form and its differential flatness properties are proven.
Morover, the relation that connects the mechanical torques of the rotor with the currents of the stator’s
EMs is given. In Section 3 the state-space model of the spherical motor undergoes approximate linearization
with first-order Taylor series expansion and through the computation of the associated Jacobian matrices.
In Section 4 the solution of the nonlinear optimal control problem for the spherical motor is provided and
the associated Lyapunov stability analysis is given. In Section 5 a flatness-based controller is successive
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loop is formulated for the dynamic model of the spherical motor. In Section 6 the performance of the
nonlinear optimal control is tested through simulation experiments and is compared against a flatness
-based controller in successive loops for the dynamic model of the spherical motor. Finally, in Section 7
concluding remarks are stated.

2 Dynamic model of the permanent magnet spherical motor

2.1 State-space model of the spherical motor

The diagram of the 3-DOF spherical motor and the associated coordinate frames about the rotor’s motion
are shown in Fig. 1. The outer shell of the motor is the rotor and has permanent magnets on it. The inner
part of the motor is the stator and is supplied with electromagnets. The interaction between the stator’s
electromagnets and the rotor’s permanent magnets generates the torque which enables 3-DOF rotations
for the rotor (Bai et al., 2022), (Liu et al., 2017), (Bai and Lee, 2018).

Figure 1: Diagram of the 3-DOF spherical synchronous motor with permanent magnets at the rotor (Source:
Authors’ own work)

The vector of the turn angles of the rotor around the axes of the inertial reference frame is given by
q = [α, β, γ]T . The vector of the associated angular velocities is given by q̇ = [α̇, β̇, γ̇]T . Using Euler-
Lagrange analysis one obtains the dynamic model of the spherical motor. This is given by (Bai et al.,
2022)

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ − τd (1)

where the inertia matrix is given by
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M(q) =





Iacos(β)
2 + Itsin(β)

2 +mh2
zcos(β)

2 0 Itsin(β)
0 Ia +mh2

z 0
Itsin(β) 0 It



 (2)

and the Coriolis-centrifugal forces matrix is given by

C(q, q̇)q̇ =





2ȧβ̇cos(β)sin(β)Ia + 2ȧβ̇sin(β)cos(β)(Iz −mh2
z) + Itβ̇γ̇cos(β)

ȧ2sin(γ)cos(β)(Ia +mh2
z − It)− Itȧγ̇cos(β)

Itȧβ̇cos(β)



 (3)

The gravitational forces vector and the disturbance torques vector are given by

G(q) = mghz





−cos(β)sin(α)
−sin(β)cos(α)

0



 τd =





b1α̇

b2β̇
b3γ̇



 (4)

As noted above, in the dynamic model of the spherical permanent magnet motor of Eq. (1) M(q) is the
inertia matrix which is symmetric and positive definite, C(q, q̇)q̇ is the Coriolis and centrifugal forces ma-
trix and G(q) is the gravitational forces matrix. Moreover, Ia is the moment of inertia for rotation around
the X and Y axis and It is the moment of inertia for rotation around the Z axis. Other parameters of
the model are: m which is the mass of the rotor, and hz which is the distance between the center of the
mass and the center of rotation. Finally, τ is the motor’s electromagnetic torque which is generated by
the interaction between the stator’s electromagnets and the rotor’s permanent magnets, while τd is the
disturbance torques vector (Bai et al., 2022).

The inverse of the inertia matrix M(q) is given by

M(q)−1 = 1
detM





M11 −M21 M31

−M12 M22 −M32

M13 −M23 M33



 (5)

where the determinant detM is given by detM = It(Ia+h2
z)[Iacos(β)

2+mh2
zcos(β)

2]. The sub-determinant
of matrix M are defined as follows: M11 = It(Ia + mh2

z), M12 = 0, M13 = −(It)sin(β)(Ia + mh2
z),

M21 = 0, M22 = (Ia + mh2
z)Itcos(β)

2, M23 = 0, M31 = (Ia + mh2
z)Itsin(β), M32 = 0 and M33 =

[Iacos(β)
2 + Itsin(β)

2 +mh2
zcos(β)

2](Ia +mh2
z).

Using the inverse of the inertia matrix M(q) and Eq. (1) the dynamic model of the permanent magnet
spherical motor becomes

q̈ = −M(q)−1C(q, q̇)q̇ −M(q)−1g(q)−M(q)−1τd +M(q)−1τ (6)

Eq. (6) can be also written analytically as





α̈

β̈
γ̈



 = − 1
detM





M11 −M21 M31

−M12 M22 −M32

M13 −M23 M33









C1 +G1 + τd1

C2 +G2 + τd2

C3 +G3 + τd3



+ 1
detM





M11 −M21 M31

−M12 M22 −M32

M13 −M23 M33









τ1
τ2
τ3





(7)
or equivalently

5
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











α̈

β̈

γ̈













=















−M11(C1+G1+τd1)+M21(C2+G2+d̃2)−M31(C3+G3+τd3)
detM

M12(C1+G1+τd1)−M22(C2+G2+d̃2)+M32(C3+G3+τd3)
detM

−M13(C1+G1+τd1)+M23(C2+G2+d̃2)−M33(C3+G3+τd3)
detM















+













M11

detM
− M21

detM
M31

detM

− M12

detM
M22

detM
− M32

detM

M13

detM
− M23

detM
M33

detM

























τ1

τ2

τ3













(8)
The state vector of the spherical permanent magnets motor is x = [x1, x2, x3, x4, x5, x6]

T or equiva-
lently x = [α, α̇, β, β̇, γ, γ̇]T . The control inputs vector of the system is u = [u1, u2, u3]

T or equivalently
u = [τ1, τ2, τ3]

T .

Using the state variables notation the determinant and the sub-determinants of the inertia matrix are
written as follows: detM = It(Ia + h2

z)[Iacos(β)
2 + mh2

zcos(β)
2]. The sub-determinant of matrix M

are defined as follows: M11 = It(Ia + mh2
z), M12 = 0, M13 = −(It)sin(x3)(Ia + mh2

z), M21 = 0,
M22 = (Ia + mh2

z)Itcos(x3)
2, M23 =, M31 = (Ia + mh2

z)Itsin(x3), M32 = 0 and M33 = [Iacos(x3)
2 +

Itsin(x3)
2 +mh2

zcos(x3)
2](Ia +mh2

z).

Additionally, about the elements of the Coriolis matrix one has: C1 = 2ȧβ̇cos(β)sin(β)Ia+2ȧβ̇sin(β)cos(β)(Iz−
mh2

z) + Itβ̇γ̇cos(β), C2 = ȧ2sin(γ)cos(β)(Ia +mh2
z − It)− Itȧγ̇cos(β) and C3 = Itȧβ̇cos(β).

Moreover, about the elements of the gravitational vector and about the elements of the disturbance torque
vector one has: G1 = −mghzcos(x3)sin(x1), G2 = −mghzsin(x3)cos(x1), G3 = 0 and τd1 = b2x2,
τd2 = b2x4, τd3 = b3x6

Consequently, the state-space model of the spherical motor is written in the following matrix form

















ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

















=



















x2
−M11(C1+G1+τd1)+M21(C2+G2+d̃2)−M31(C3+G3+τd3)

detM

x4
M12(C1+G1+τd1)−M22(C2+G2+d̃2)+M32(C3+G3+τd3)

detM

x6

−M13(C1+G1+τd1)+M23(C2+G2+d̃2)−M33(C3+G3+τd3)
detM



















+

















0 0 0
M11

detM
− M21

detM
M31

detM

0 0 0
− M12

detM
M22

detM
− M32

detM

0 0 0
M13

detM
− M23

detM
M33

detM





















u2

u2

u3





(9)
The state-space model of the spherical motor given in Eq. (9) can be also written in the following concise
nonlinear affine-in-the-input state-space form:

ẋ = f(x) + g(x)u (10)

where x∈R6×1, f(x)∈R6×1, g(x)∈R6×3 and u∈R3×1 .

2.2 Computation of the electromagnetic torque of the spherical motor

The minimum torque model is established with the use of the characteristic function of the torque which
is developed between a permanent magnet (PM) pole at the rotor and an electromagnetic (EM) coil
at the stator of the spherical motor. This model makes use of the so-called separation angle while the
characteristic function is computed with the use of the finite-elements method. Thus, the minimum torque
model between the i-th stator coil and the j-th permanent magnet pole is given by

τij = f(θij)
xsi×xrj

|xsi×xrj |
(11)

6
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where θij is the separation angle between the i-th EM coil of the stator i = 1, 2, · · · , Nem and the j-th PM
of the rotor j = 1, 2, · · · , Npm. Moreover, Ii is the current at the i-th EM coil and all such currents form
the real control inputs vector of the motor. Furthermore, xsi∈R

3 is a vector defining the position of the
i-th EM of the stator in a cartesian coordinates frame while xrj∈R

3 is a vector defining the position of
the j-th PM of the rotor in this coordinates frame. The torque element τij represents the electromagnetic
torque generated between the i-th EM coil of the stator and the j-th PM pole of the rotor. According to
the above, the cumulative torque vector, consisting of three cartesian components τx, τy , τz , is given by

τ =
∑Nem

i=1

∑Npm

j=1 f(θij)
xsi×xrj

|xsi×xrj |
(12)

The relation about the cumulative electromagnetic torque of the rotor is given by

τ =





τx
τy
τz



 =





qx,1 qx,2 · · · qx,Nem

qy,1 qy,2 · · · qy,Nem

qz,1 qz,2 · · · qz,Nem













I1
I2
· · ·
INem









(13)

where coefficient qx,i, i = 1, 2, · · · , Nem is obtained by summing up all x-axis components of the torque ele-
ments τij for j = 1, 2, · · · , Npm which have been generated at the PMs of the rotor due to the current Ii at
the i-th EM coil of the stator. Equivalently, coefficient qy,i, i = 1, 2, · · · , Nem is obtained by summing up all
y-axis components of the torque elements τij for j = 1, 2, · · · , Npm which have been generated at the PMs
of the rotor due to the current Ii at the i-th EM coil of the stator. Finally, coefficient qz,i, i = 1, 2, · · · , Nem

is obtained by summing up all z-axis components of the torque elements τij for j = 1, 2, · · · , Npm which
have been generated at the PMs of the rotor due to the current Ii at the i-th EM coil of the stator.

The above relation can be also written in the concise form

τ = Q·I (14)

where τ∈R3×1, Q∈R3×Nem and I∈RNem×1. Once the torque’s vector τ = [τx, τy, τz ]
T which is associated

with a specific rotational motion of the motor is given, one can compute the vector of currents of the
EM coils of the stator which constitute the real control input vector of the motor. This is done using the
pseudo-inverse matrix and the relation

I = [QTQ]−1QT ·τ (15)

2.3 Differential flatness properties of the spherical motor

It will be proven that the dynamic model of the spherical motor is differentially flat with flat outputs vector
Y = [x1, x3, x5]

T that is Y = [α, β, γ]T (Rigatos, 2015a). The state-space model of the spherical motor is
rewritten as

















ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

















=

















x2

f2(x)
x4

f4(x)
x6

f6(x)

















+

















0 0 0
g12(x) g22(x) g32(x)

0 0 0
g14(x) g24(x) g34(x)

0 0 0
g16(x) g26(x) g36(x)





















u1

u2

u3



 (16)

Form the 1st, 3rd and 5th rows of the state-space model one has

x2 = ẋ1 x4 = ẋ3 x6 = ẋ5 (17)

Consequently, state variables x2, x4 and x6 are differential functions of the flat outputs of the system, or
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x2 = h2(Y, Ẏ ) x4 = h4(Y, Ẏ ) x6 = h6(Y, Ẏ ) (18)

Besides, from the 2nd, 4th and 6th rows of the state-space model one has





ẍ1

ẍ3

ẍ5



 =





f2(x)
f4(x)
f6(x)



+





g12(x) g22(x) g32(x)
g14(x) g24(x) g34(x)
g16(x) g26(x) g36(x)









u1

u2

u3



 (19)

which finally gives





u1

u2

u3



 =





g12(x) g22(x) g32(x)
g14(x) g24(x) g34(x)
g16(x) g26(x) g36(x)





−1 







ẍ1

ẍ3

ẍ5



−





f2(x)
f4(x)
f6(x)







 (20)

Consequently, the control inputs u1, u2 and u3 are differential functions of the flat outputs of the system,
or

u1 = hu1
(Y, Ẏ ) u2 = hu2

(Y, Ẏ ) u3 = hu3
(Y, Ẏ ) (21)

As a result of the above, the dynamic model of the permanent magnet synchronous motor is differentially
flat. The differential flatness properties of the spherical motor demonstrate that: (i) the system can be
transformed into an input-output linearized form through successive differentiations of its flat outputs, (ii)
the setpoints definition problem for this system can be efficiently solved. One defines first setpoints without
any constraints for state variables x1, x3, x5 which are associated with the flat outputs of the system. Next,
setpoints for x2, x4, x6 are defined as differential functions of the setpoints for state variables x1, x3 and x5.

3 Approximate linearization of the dynamic model of the spherical motor

3.1 The approximate linearization concept

The dynamic model of the spherical motor being initially in the state-space form of Eq. (10) undergoes
approximate linearization, which allows for obtaining the equivalent state-space form

ẋ = Ax+Bu+ d̃ (22)

where A, B are the Jacobian matrices of the nonlinear system and d̃ is the cumulative disturbance vector.
The linearization process takes place at each sampling instance around the time-varying point (x∗, u∗)
where x∗ is the present value of the motor’s state vector and u∗ is the last sampled value of the control
inputs vector. The linearization relies on first-order Taylor series expansion and on the computation of the
associated Jacobian matrices. The modelling error d̃ may comprise (i) model uncertainty due to truncation
of of higher-order terms in the Taylor series expansion (ii) exogenous perturbations, (iii) sensors measure-
ment noise of any distribution.

Matrices A and B are the Jacobian matrices of the system which are computed as follows:

A = ∇x[f(x) + g(x)u] |(x∗,u∗) ⇒
A = ∇x[f(x)] |(x∗,u∗) +∇x[g1(x)u1] |(x∗,u∗) +∇x[g2(x)u2] |(x∗,u∗) +∇x[g3(x)u3] |(x∗,u∗)

(23)

B = ∇u[f(x) + g(x)u] |(x∗,u∗) ⇒B = g(x) |(x∗,u∗) (24)

The linearization approach which has been followed for implementing the nonlinear optimal control scheme
results into a quite accurate model of the system’s dynamics. Consider for instance the following affine-in-
the-input state-space model
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ẋ = f(x) + g(x)u⇒

ẋ = [f(x∗) +∇xf(x) |x∗ (x− x∗)] + [g(x∗) +∇xg(x) |x∗ (x − x∗)]u∗ + g(x∗)u∗ + g(x∗)(u − u∗) + d̃1⇒

ẋ = [∇xf(x) |x∗ +∇xg(x) |x∗ u∗]x+ g(x∗)u− [∇xf(x) |x∗ +∇xg(x) |x∗ u∗]x∗ + f(x∗) + g(x∗)u∗ + d̃1
(25)

where d̃1 is the modelling error due to truncation of higher order terms in the Taylor series expansion of
f(x) and g(x). Next, by defining A = [∇xf(x) |x∗ +∇xg(x) |x∗ u∗], B = g(x∗) one obtains

ẋ = Ax+Bu−Ax∗ + f(x∗) + g(x∗)u∗ + d̃1 (26)

Moreover by denoting d̃ = −Ax∗ + f(x∗) + g(x∗)u∗ + d̃1 about the cumulative modelling error term in the
Taylor series expansion procedure one has

ẋ = Ax+Bu+ d̃ (27)

which is the approximately linearized model of the dynamics of the system of Eq. (22). The term
f(x∗) + g(x∗)u∗ is the derivative of the state vector at (x∗, u∗) which is almost annihilated by −Ax∗.

3.2 Computation of Jacobian matrices

The computation of the Jacobian matrix A = ∇x[f(x)] |(x∗,u∗) proceeds as follows:

First row of the Jacobian matrix A = ∇x[f(x)] |(x∗,u∗):
∂f1
∂x1

= 0, ∂f1
∂x2

= 1, ∂f1
∂x3

= 0, ∂f1
∂x4

= 0, ∂f1
∂x5

= 0,
∂f1
∂x6

= 0.

Second row of the Jacobian matrix A = ∇x[f(x)] |(x∗,u∗): It holds that f2(x) =
f2,num(x)
f2,den(x)

where f2,num(x) =

−M11(C1 +G1 + τd1) +M21(C2 +G2 + τd2)−M31(C3 +G3 + τd3) and f2,den(x) = detM . Thus

∂f2(x)
∂xi

=
∂f2,num

∂xi
f2,den−f2,num

∂f
2,den
∂xi

f2

2,den

(28)

where for i = 1, 2, 3, 4, 5, 6

∂f2,num(x)
∂xi

= −∂M11

∂xi
(C1 +G1 + τd1)−M11(

∂C1

∂xi
+ ∂G1

∂xi
+ ∂τd1

∂xi
)+

+∂M21

∂xi
(C2 +G2 + τd2) +M21(

∂C2

∂xi
+ ∂G2

∂xi
+ ∂τd2

∂xi
)−

−∂M31

∂xi
(C1 +G2 + τd1)−M31(

∂C3

∂xi
+ ∂G3

∂xi
+ ∂τd3

∂xi
)

(29)

and for i = 1, 2, 3, 4, 5, 6

∂f2,den(x)
∂xi

= ∂detM
∂xi

(30)

Third row of the Jacobian matrix A = ∇x[f(x)] |(x∗,u∗):
∂f3
∂x1

= 0, ∂f3
∂x2

= 0, ∂f3
∂x3

= 0, ∂f3
∂x4

= 1, ∂f3
∂x5

= 0,
∂f3
∂x6

= 0.

Fourth row of the Jacobian matrix A = ∇x[f(x)] |(x∗,u∗): It holds that f4(x) =
f4,num(x)
f4,den(x)

where f4,num(x) =

M12(C1 +G1 + τd1)−M22(C2 +G2 + τd2) +M32(C3 +G3 + τd3) and f4,den(x) = detM . Thus

∂f4(x)
∂xi

=
∂f4,num

∂xi
f4,den−f4,num

∂f
4,den
∂xi

f2

4,den

(31)

where for i = 1, 2, 3, 4, 5, 6
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∂f4,num(x)
∂xi

= ∂M12

∂xi
(C1 +G1 + τd1) +M12(

∂C1

∂xi
+ ∂G1

∂xi
+ ∂τd1

∂xi
)+

−∂M22

∂xi
(C2 +G2 + τd2)−M22(

∂C2

∂xi
+ ∂G2

∂xi
+ ∂τd2

∂xi
)+

+∂M32

∂xi
(C1 +G2 + τd1) +M32(

∂C3

∂xi
+ ∂G3

∂xi
+ ∂τd3

∂xi
)

(32)

and for i = 1, 2, 3, 4, 5, 6

∂f4,den(x)
∂xi

= ∂detM
∂xi

(33)

Fifth row of the Jacobian matrix A = ∇x[f(x)] |(x∗,u∗):
∂f5
∂x1

= 0, ∂f5
∂x2

= 0, ∂f5
∂x3

= 0, ∂f5
∂x4

= 0, ∂f5
∂x5

= 0,
∂f5
∂x6

= 1.

Sixth row of the Jacobian matrix A = ∇x[f(x)] |(x∗,u∗): It holds that f6(x) =
f6,num(x)
f6,den(x)

where f6,num(x) =

−M13(C1 +G1 + τd1) +M23(C2 +G2 + τd2)−M33(C3 +G3 + τd3) and f6,den(x) = detM . Thus

∂f6(x)
∂xi

=
∂f6,num

∂xi
f6,den−f6,num

∂f
6,den
∂xi

f2

6,den

(34)

where for i = 1, 2, 3, 4, 5, 6

∂f6,num(x)
∂xi

= −∂M13

∂xi
(C1 +G1 + τd1)−M13(

∂C1

∂xi
+ ∂G1

∂xi
+ ∂τd1

∂xi
)+

+∂M23

∂xi
(C2 +G2 + τd2) +M23(

∂C2

∂xi
+ ∂G2

∂xi
+ ∂τd2

∂xi
)−

−∂M33

∂xi
(C1 +G2 + τd1)−M33(

∂C3

∂xi
+ ∂G3

∂xi
+ ∂τd3

∂xi
)

(35)

and for i = 1, 2, 3, 4, 5, 6

∂f6,den(x)
∂xi

= ∂detM
∂xi

(36)

Computation of the Jacobian matrix ∇xg1(x) |(x∗,u∗):

It holds that g21(x) =
M11

detM
thus for i = 1, 2, 3, 4, 5, 6

∂g21
∂xi

=

∂M11

∂xi
detM−M 11∂detM

∂xi

detM2

(37)

Moreover g41(x) = − M12

detM
thus for i = 1, 2, 3, 4, 5, 6

∂g41
∂xi

= −

∂M12

∂xi
detM−M 12∂detM

∂xi

detM2

(38)

Additionally g61(x) =
M13

detM
thus for i = 1, 2, 3, 4, 5, 6

∂g61
∂xi

=

∂M13

∂xi
detM−M 13∂detM

∂xi

detM2

(39)

Consequently

∇xg1(x) |(x∗,u∗)=



















0 0 0 0 0 0
∂g21(x)
∂x1

∂g21(x)
∂x2

∂g21(x)
∂x3

∂g21(x)
∂x4

∂g21(x)
∂x5

∂g21(x)
∂x6

0 0 0 0 0 0
∂g41(x)
∂x1

∂g41(x)
∂x2

∂g41(x)
∂x3

∂g41(x)
∂x4

∂g41(x)
∂x5

∂g41(x)
∂x6

0 0 0 0 0 0
∂g61(x)
∂x1

∂g61(x)
∂x2

∂g61(x)
∂x3

∂g61(x)
∂x4

∂g61(x)
∂x5

∂g61(x)
∂x6



















(40)

Computation of the Jacobian matrix ∇xg2(x) |(x∗,u∗):
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It holds that g22(x) = − M21

detM
thus for i = 1, 2, 3, 4, 5, 6

∂g22
∂xi

= −

∂M21

∂xi
detM−M 21∂detM

∂xi

detM2

(41)

Moreover g42(x) =
M12

detM
thus for i = 1, 2, 3, 4, 5, 6

∂g42
∂xi

=

∂M22

∂xi
detM−M 22∂detM

∂xi

detM2

(42)

Additionally g62(x) = − M23

detM
thus for i = 1, 2, 3, 4, 5, 6

∂g62
∂xi

= −

∂M23

∂xi
detM−M 23∂detM

∂xi

detM2

(43)

Consequently

∇xg2(x) |(x∗,u∗)=



















0 0 0 0 0 0
∂g22(x)
∂x1

∂g22(x)
∂x2

∂g22(x)
∂x3

∂g22(x)
∂x4

∂g22(x)
∂x5

∂g22(x)
∂x6

0 0 0 0 0 0
∂g42(x)
∂x1

∂g42(x)
∂x2

∂g42(x)
∂x3

∂g42(x)
∂x4

∂g42(x)
∂x5

∂g42(x)
∂x6

0 0 0 0 0 0
∂g62(x)
∂x1

∂g62(x)
∂x2

∂g62(x)
∂x3

∂g62(x)
∂x4

∂g62(x)
∂x5

∂g62(x)
∂x6



















(44)

Computation of the Jacobian matrix ∇xg3(x) |(x∗,u∗):

It holds that g23(x) =
M31

detM
thus for i = 1, 2, 3, 4, 5, 6

∂g23
∂xi

=

∂M31

∂xi
detM−M 31∂detM

∂xi

detM2

(45)

Moreover g43(x) = − M32

detM
thus for i = 1, 2, 3, 4, 5, 6

∂g43
∂xi

= −

∂M32

∂xi
detM−M 32∂detM

∂xi

detM2

(46)

Additionally g63(x) =
M33

detM
thus for i = 1, 2, 3, 4, 5, 6

∂g63
∂xi

=

∂M33

∂xi
detM−M 33∂detM

∂xi

detM2

(47)

Consequently

∇xg3(x) |(x∗,u∗)=



















0 0 0 0 0 0
∂g23(x)
∂x1

∂g23(x)
∂x2

∂g23(x)
∂x3

∂g23(x)
∂x4

∂g23(x)
∂x5

∂g23(x)
∂x6

0 0 0 0 0 0
∂g43(x)
∂x1

∂g43(x)
∂x2

∂g43(x)
∂x3

∂g43(x)
∂x4

∂g43(x)
∂x5

∂g43(x)
∂x6

0 0 0 0 0 0
∂g63(x)
∂x1

∂g63(x)
∂x2

∂g63(x)
∂x3

∂g63(x)
∂x4

∂g63(x)
∂x5

∂g63(x)
∂x6



















(48)

Computation of the partial derivatives of the elements of the inertia matrix (a) ∂detM
∂xi

= 0 for i = 1, 2, 4, 5, 6

and ∂detM
∂x3

= −It(Ia + h2
z)(2Ia + 2mh2

z)cos(z3)sin(x3), (b)
∂M11

∂xi
= 0 for i = 1, 2, 3, 4, 5, 6, (c) ∂M12

∂xi
= 0 for

i = 1, 2, 3, 4, 5, 6, (d) ∂M13

∂xi
= 0 for i = 1, 2, 4, 5, 6 and ∂M13

∂x3

= −(Itcos(x3))(Ia + mh2
z), (e)

∂M21

∂xi
= 0 for

i = 1, 2, 3, 4, 5, 6, (f) ∂M22

∂xi
= 0 for i = 1, 2, 4, 5, 6 and ∂M22

∂xi
= −(Ia +mh2

z)Itcos(x3)sin(x3), (g)
∂M23

∂xi
= 0

for i = 1, 2, 3, 4, 5, 6, (h) ∂M31

∂xi
= 0 for i = 1, 2, 4, 5, 6 and ∂M31

∂x3
= −(Ia +mh2

z)Itcos(x3), (i)
∂M32

∂xi
= 0 for
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i = 1, 2, 3, 4, 5, 6, (j) ∂M33

∂xi
= 0 for i = 1, 2, 4, 5, 6 and ∂M33

∂x3

= [−2Ia +2It − 2mh2
z]cos(x3)sin(x3)(Ia +mh2

z)

Computation of the partial derivatives of the elements of the Coriolis matrix: (a) ∂C1

∂x1

= 0, ∂C1

∂x2

=

2x4cos(x3)sin(x3)Ia+2x4sin(x3)cos(x3)(It−mh2
z),

∂C1

∂x3

= 2x2x4[−sin(x3)
2+cos(x3)

2]Ia−2x2x4[cos(x3)
2−

sin(x3)
2](It−mh2

z)−I4x4x6sin(x3),
∂C1

∂x4
= 2x2cos(x3)sin(x3)Ia+2x4sin(x3)cos(x3)(It−mh2

z)+Itx6cos(x3),
∂C1

∂x5

= 0, ∂C1

∂x6

= Itx4cos(x3),

(b) ∂C2

∂x1

= 0, ∂C2

∂x2

= 2x2sin(x5)cos(x3)(Ia + mh2
z − It) − Itx6cos()x3,

∂C2

∂x3

= −x2
2sin(x5)sin(x3)(Ia +

mh2
z − It) + Itx2x6sin(x3),

∂C2

∂x4

= 0, ∂C2

∂x5

= −x2
2sin(x5)sin(x3)(Ia +mh2

z − It),
∂C2

∂x6

= 0− Itx2cos(x3),

(c) ∂C3

∂x1

= 0, ∂C3

∂x2

= Itx2cos(x3),
∂C3

∂x3

= Itx4cos(x3),
∂C3

∂x4

= 0, ∂C3

∂x5

= −Itx2x4sin(x3),
∂C3

∂x6

= 0.

Computation of the partial derivatives of the elements of the gravitational forces vector: (a) ∂G1

∂x1
=

−mghz[cos(x3)sin(x1)],
∂G1

∂x2

= 0, ∂G1

∂x3

= mghz[sin(x3)sin(x1)],
∂G1

∂x4

= 0, ∂G1

∂x5

= 0, ∂G1

∂x6

= 0.

(b) ∂G2

∂x1

= mghz[sin(x3)sin(x1)],
∂G2

∂x2

= 0, ∂G2

∂x3

= mghz[cos(x3)sin(x1)],
∂G2

∂x4

= 0, ∂G2

∂x5

= 0, ∂G2

∂x6

= 0.

(c) ∂G3

∂xi
= 0 for i = 1, 2, · · · , 6

Computation of the partial derivatives of the elements of the disturbance torques vector ∂τd1
∂xi

= 0 for

i = 1, 3, 4, 5, 6 and ∂τd1
∂x2

= b12,
∂τd2
∂xi

= 0 for i = 1, 2, 3, 5, 6 and ∂τd2
∂x4

= b2,
∂τd3
∂xi

= 0 for i = 1, 2, 3, 4, 5 and
∂τd3
∂x6

= b6,

4 Nonlinear optimal controller and stability properties

4.1 Stabilizing feedback control

After linearization around its current operating point, the dynamic model of the permanent magnet syn-
chronous spherical motor, is written as

ẋ = Ax+Bu+ d1 (49)

where A and B are the Jacobian matrices of the nonlinear state-space description of the system. Parameter
d1 stands for the linearization error in the model of the spherical motor, appearing previously in Eq. (49).
The reference setpoints for the state vector of the spherical motor are denoted by xd = [xd

1, · · · , x
d
6].

Tracking of this setpoint is achieved after applying the control input ud. At every time instant the control
input ud is assumed to differ from the control input u appearing in Eq. (49) by an amount equal to ∆u,
that is ud = u+∆u (Rigatos and Karapanou, 2020)

ẋd = Axd +Bud + d2 (50)

The kinematics of the controlled system described in Eq. (49) can be also written as

ẋ = Ax+ Bu+Bud − Bud + d1 (51)

and by denoting d3 = −Bud + d1 as an aggregate disturbance term one obtains

ẋ = Ax+Bu+Bud + d3 (52)

By subtracting Eq. (50) from Eq. (52) one has
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ẋ− ẋd = A(x− xd) +Bu+ d3 − d2 (53)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as d̃ = d3 − d2, the
tracking error dynamics becomes

ė = Ae+Bu+ d̃ (54)

For the approximately linearized model of the system a stabilizing feedback controller is developed. The
controller, follows the optimal (H-infinity) control concept, and has the form

u(t) = −Ke(t) (55)

with K = 1
r
BTP where P is a positive definite symmetric matrix which is obtained from the solution of

the Riccati equation (Rigatos and Karapanou, 2020)

ATP + PA+Q− P (2
r
BBT − 1

ρ2LL
T )P = 0 (56)

where Q is a positive semi-definite symmetric matrix. The diagram of the considered control loop is de-
picted in Fig. 2.

Figure 2: Diagram of the control scheme for the permanent magnet synchronous spherical motor (Source:
Authors’ own work)

With reference to Eq. (49), the solution of the H-infinity feedback control problem for the permanent
magnet spherical motor and the computation of the worst case disturbance that the related controller can
sustain, comes from superposition of Bellman’s optimality principle when considering that the permanent

13

Page 13 of 34 Robotic Intelligence and Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Robotic Intelligence and Autom
ation

magnet spherical motor is affected by two separate inputs (i) the control input u (ii) the cumulative distur-
bance input d̃(t). Solving the optimal control problem for u, that is for the minimum variation (optimal)
control input that achieves elimination of the state vector’s tracking error, gives u = − 1

r
BTPe. Equiva-

lently, solving the optimal control problem for d̃, that is for the worst case disturbance that the control
loop can sustain gives d̃ = 1

ρ2L
TPe.

4.2 Lyapunov stability analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear control scheme assures
H∞ tracking performance for the permanent magnet spherical synchronous motor, and that in case of
bounded disturbance terms asymptotic convergence to the reference setpoints is achieved. The tracking
error dynamics for the permanent magnet spherical motor is written in the form

ė = Ae+Bu+ Ld̃ (57)

where in the permanent magnet spherical motor’s case L∈R6×6 is the disturbance-inputs gain matrix.
Variable d̃ denotes model uncertainties and external disturbances of the permanent magnet spherical motor.
The following Lyapunov equation is considered

V = 1
2e

TPe (58)

where e = x− xd is the tracking error. By differentiating with respect to time one obtains

V̇ = 1
2 ė

TPe+ 1
2e

TP ė⇒

V̇ = 1
2 [Ae +Bu+ Ld̃]TPe+ 1

2e
TP [Ae+Bu+ Ld̃]⇒

(59)

V̇ = 1
2 [e

TAT + uTBT + d̃TLT ]Pe+

+ 1
2e

TP [Ae+Bu + Ld̃]⇒
(60)

V̇ = 1
2e

TATPe+ 1
2u

TBTPe+ 1
2 d̃

TLTPe+
1
2e

TPAe+ 1
2e

TPBu+ 1
2e

TPLd̃
(61)

The previous equation is rewritten as

V̇ = 1
2e

T (ATP + PA)e+ (12u
TBTPe+ 1

2e
TPBu)+

+(12 d̃
TLTPe+ 1

2e
TPLd̃)

(62)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists a positive definite
matrix P , which is the solution of the following matrix equation

ATP + PA = −Q+ P (2
r
BBT − 1

ρ2LL
T )P (63)

Moreover, the following feedback control law is applied to the system

u = − 1
r
BTPe (64)

By substituting Eq. (63) and Eq. (64) one obtains

V̇ = 1
2e

T [−Q+ P (2
r
BBT − 1

ρ2LL
T )P ]e+

+eTPB(− 1
r
BTPe) + eTPLd̃⇒

(65)

V̇ = − 1
2e

TQe+ 1
r
eTPBBTPe− 1

2ρ2 e
TPLLTPe

− 1
r
eTPBBTPe+ eTPLd̃

(66)

which after intermediate operations gives

14

Page 14 of 34Robotic Intelligence and Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Robotic Intelligence and Autom
ation

V̇ = − 1
2e

TQe− 1
2ρ2 e

TPLLTPe+ eTPLd̃ (67)

or, equivalently

V̇ = − 1
2e

TQe− 1
2ρ2 e

TPLLTPe+

+ 1
2e

TPLd̃+ 1
2 d̃

TLTPe
(68)

Lemma: The following inequality holds

1
2e

TPLd̃+ 1
2 d̃L

TPe− 1
2ρ2 e

TPLLTPe≤ 1
2ρ

2d̃T d̃ (69)

Proof : The binomial (ρα− 1
ρ
b)2 is considered. Expanding the left part of the above inequality one gets

ρ2a2 + 1
ρ2 b

2 − 2ab ≥ 0 ⇒ 1
2ρ

2a2 + 1
2ρ2 b

2 − ab ≥ 0 ⇒

ab− 1
2ρ2 b

2 ≤ 1
2ρ

2a2 ⇒ 1
2ab+

1
2ab−

1
2ρ2 b

2 ≤ 1
2ρ

2a2
(70)

The following substitutions are carried out: a = d̃ and b = eTPL and the previous relation becomes

1
2 d̃

TLTPe+ 1
2e

TPLd̃− 1
2ρ2 e

TPLLTPe≤1
2ρ

2d̃T d̃ (71)

Eq. (71) is substituted in Eq. (68) and the inequality is enforced, thus giving

V̇≤− 1
2e

TQe+ 1
2ρ

2d̃T d̃ (72)

Eq. (72) shows that the H∞ tracking performance criterion is satisfied. The integration of V̇ from 0 to T
gives

∫ T

0
V̇ (t)dt≤ − 1

2

∫ T

0
||e||2Qdt+

1
2ρ

2
∫ T

0
||d̃||2dt⇒

2V (T ) +
∫ T

0
||e||2Qdt≤2V (0) + ρ2

∫ T

0
||d̃||2dt

(73)

Moreover, if there exists a positive constant Md > 0 such that

∫∞

0 ||d̃||2dt ≤ Md (74)

then one gets

∫∞

0
||e||2Qdt ≤ 2V (0) + ρ2Md (75)

Thus, the integral
∫∞

0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the definition of the
Lyapunov function V in Eq. (58) it becomes clear that e(t) will be also bounded since e(t) ∈ Ωe =
{e|eTPe≤2V (0) + ρ2Md}. According to the above and with the use of Barbalat’s Lemma one obtains
limt→∞ e(t) = 0.

After following the stages of the stability proof one arrives at Eq. (72) which shows that the H-infinity
tracking performance criterion holds. By selecting the attenuation coefficient ρ to be sufficiently small and
in particular to satisfy ρ2 < ||e||2Q/||d̃||

2 one has that the first derivative of the Lyapunov function is upper
bounded by 0. This condition holds at each sampling instance and consequently global stability for the
control loop can be concluded.

Comparing to other nonlinear approaches that one could have considered for the dynamic model of the
spherical motors the article’s nonlinear optimal control method exhibits specific advantages. These are
outlined in the following: (i) Compared to global linearization-based techniques such as Lie algebra-based
control and flatness-based control through transformation into canonical forms and eigenvalues assignment
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the proposed nonlinear optimal control method does not need complicated state-space model transforma-
tions with the definition of new state variables (diffeomorphisms). The optimal control is applied directly
on the initial nonlinear state space model of the system without involving inverse transformations that
may come against singularity issues, (ii) compared to popular approaches for treating the optimal control
problem electric motors and actuators, such as Nonlinear Model Predictive Control (NMPC) the proposed
nonlinear optimal control method is of proven global stability and its convergence to optimum does not
depend on parameter values selection and on initialization (multiple shooting methods), (iii) compared to
sliding-mode control the nonlinear optimal control method does not need the controlled system to be found
or to be transformed into a specific state-space form. For instance it is known that unless the system is in
the input-output linearized form (canonical form) there is no systematic manner for defining sliding surfaces
and for computing the sliding-mode control inputs, (iv) compared to backstepping control the nonlinear
optimal control method does not need the controlled system to be found or to be transformed into a specific
state-space form. For instance in backstepping control unless the system is found in the triangular (strict
feedback) form there is no systematic manner to compute the stabilizing feedback control inputs, (v) unlike
multiple local-models feedback control the proposed nonlinear optimal control approach does not induce an
excessive computational load. It does not need linearization around multiple arbitrarily chosen operating
points and does not require the solution of multiple Riccati equations or LMIs (vi) compared to PID-type
control, the nonlinear optimal control method does not follow a heuristics-based selection of controller pa-
rameters and ensures global stability in changes of operating points and under variable operating conditions.

5 Flatness-based control implemented in successive loops

5.1 A successive loops state-space model

A different formulation is introduced now for the state-space model of the permanent magnet synchronous
spherical motor. The state vector of the spherical motor is defined as

x = [x1, x2, x3, x4, x5, x6]
T⇒

x = [α, β, γ, α̇, β̇, γ̇]T
(76)

Consequently, one has that






















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









ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6


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






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















=




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





























x4

x5

x6

−M11(C1+G1+τd1)+M21(C2+G2+d̃2)−M31(C3+G3+τd3)
detM

M12(C1+G1+τd1)−M22(C2+G2+d̃2)+M32(C3+G3+τd3)
detM

−M13(C1+G1+τd1)+M23(C2+G2+d̃2)−M33(C3+G3+τd3)
detM
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M11
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detM
M31

detM
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detM
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
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u1

u2

u3





(77)
Equivalently, the motor’s state-space model is written as follows:
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















ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6
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
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













x4

x5

x6

f4(x)
f5(x)
f6(x)

















+

















0 0 0
0 0 0
0 0 0

g41(x) g42(x) g43(x)
g51(x) g52(x) g53(x)
g61(x) g62(x) g63(x)





















u1

u2

u3



 (78)

Next, the following state vectors are defined x13 = [x1, x2, x3]
T and x46 = [x4, x5, x6]

T . Moreover, the
following vectors are defined f13 = [x4, x5, x6]

T and f46 = [f4(x), f5(x), f6(x)]
T . Additionally, one defines

the matrices g13 = 03×3 and

g46 =





g41(x) g42(x) g43(x)
g51(x) g52(x) g53(x)
g61(x) g62(x) g63(x)



 (79)

Thus, the state-space model of the system comes into the following concise formL

(

ẋ13

ẋ46

)

=

(

x46

f46(x)

)

+

(

03×3

g46(x46)

)

u (80)

This is a triangular state-space form for the dynamics of the permanent magnet spherical motor. Equiva-
lently, one has the description of the dynamics of the spherical motor through the following two equations:

ẋ13 = x46 (81)

ẋ45 = f46(x) + g46(x)u (82)

It can be shown that under this new state-space description of Eq. (81) and Eq. (82) the spherical motor
is a differentially flat system with flat output Y = x13. Indeed, from Eq. (81) one has that

x46 = ẋ13⇒x46 = Ẏ (83)

Consequently, state variable Y is a differential function of the flat output Y . Besides, from Eq. (82) it
holds that

u = g46(x)
−1[ẋ46 − f46(x)]⇒

u = g46(Y, Ẏ )−1[Ÿ − f46(Y, Ẏ )]
(84)

Consequently, control u is also a differential function of the above-noted flat output Y = x13. As a result of
the previous analysis the dynamic model of the spherical motor in Eq. (81) and Eq. (82) is differentially flat.

5.2 Design of a stabilizing controller in successive loops

It can be shown that each one of Eq. (81) and Eq. (82) is a differentially flat subsystem.

For the subsystem of Eq. (81) x13 is the state vector and x46 is viewed as a control inputs vector. Thus x46

is a differential function of x13 and this subsystem is differentially flat. For the subsystem of Eq. (82), x46

is the flat output, x13 is viewed as a coefficients vector and control inputs u can be written as differential
function of x46. Consequently, this is also a differentially flat subsystem.

For the subsystem of Eq. (81) the setpoint is defined as xd
13 and the value of the virtual control input

which stabilizes this subsystem is

x∗
46 = ẋd

13 −K1(x13 − xd
13) (85)
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Next, the control input that makes x46 converge to the targeted value x∗
46 is

u = g46(x)
−1[ẋd

46 − f46(x) −K2(x46 − xd
46)] (86)

By applying Eq. (85) and Eq. (86) into Eq. (81) and Eq.(82) respectively, the tracking error dynamics for
the two successive loops becomes

(ẋ13 − ẋd
13) +K1(x13 − xd

13) = 0
(ẋ46 − ẋd

46) +K2(x46 − xd
46) = 0

(87)

Next, by defining the tracking error variables e13 = x13 − xd
13 and e46 = x45 − xd

46 one has

ė13 +K1e13 = 0⇒limt→∞e13 = 0⇒limt→∞x13 = xd
13

ė46 +K2e46 = 0⇒limt→∞e46 = 0⇒limt→∞x46 = xd
46

(88)

Consequently limr→∞xi(t) = xd
i (t) for i = 1, 2, · · · , 6. The global stability properties of this control scheme

can be also proven through Lyapunov analysis. To this end the following Lyapunov function is defined

V = 1
2 [e

T
13e13 + eT46e46] (89)

By differentiating in time one gets

V̇ = [eT13ė13 + eT46ė46]⇒V̇ = eT13[−K1e13] + eT46[−K1e46]

⇒V̇ = −eT13K1e13 − eT46K2e46⇒V̇ < 0
(90)

Then V̇ < 0 ∀ e13 6=0 and e46 6=0, while V̇ = 0 only when e13 = 0 and e46 = 0. Therefore, V̇ is strictly
negative and V is a continuously diminishing function which converges asymptotically to 0.

6 Simulation tests

6.1 Results about nonlinear optimal control of the spherical motor

Results about the use of the nonlinear optimal control method on the dynamic model of the permanent
magnet synchronous spherical motor are shown in the following diagrams, given in Fig. 3 to Fig. 10. The
values of the model’s parameters have been according to (Bai et al., 2022). Indicative values about the
parameters of the spherical motor were: m = 5.0kg, hz = 0.005m, g = 10m/sec2, bi = 0.05 i = 1, 2, 3,
Ia = 0.65kg·m2, It = 0.50kg·m2. Indicative values about the parameters of the H-infinity controller were:
r = 0.001, ρ = 0.2, Q = 0.02·I6×6, and L = 10−4·I6×6. It can be observed that the nonlinear optimal
control method achieves fast and accurate tracking of reference setpoints by the state-variables of the per-
manent magnet synchronous spherical motor, while keeping also moderate the variations of the control
inputs. It is noted that to implement this nonlinear control method one does not have to measure the
entire state vector of the system. It suffices to measure at each sampling instance state variables x1, x2,
x4 (rotor’s turn angles) while state variables x4, x5, x6 (rotor’s angular velocities) can be estimated with
the use of a nonlinear observer such as the nonlinear H-infinity Kalman Filter (Rigatos and Karapanou,
2020). The minimization of the control inputs amplitude is meaningful, because it also signifies reduction
of the cost and of the energy for achieving the control objectives. .

Parameters r, ρ and Q which appear in Eq. (63). are assigned offline constant values, while the gains
vector K is updated at each sampling instance, based on the positive definite and symmetric matrix P
which is the solution of the method’s algebraic Riccati equation. The tracking accuracy and the transient
performance of the control scheme depends on the values of coefficients r, ρ and on the values of the
elements of the diagonal matrix Q. Actually, for relatively small values of r one achieves elimination of
the state vectors’ tracking error. Moreover, for relatively high values of the diagonal elements of matrix Q
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one achieves fast convergence the state variables’ reference trajectories, Finally the smallest value of the
attenuation coefficient ρ that results into a valid solution of the method’s Riccati equation in the form of
the positive definite and symmetric matrix P , is the one that provides the control loop with maximum
robustness.

To elaborate on nonlinear optimal control for the permanent magnet synchronous spherical motor the
following Tables are given (i) Table Ia providing results about the accuracy of tracking of setpoints by the
state variables of the spherical motor under an exact dynamic model, (ii) Table IIa providing results about
the accuracy of tracking of setpoints by the state variables of the spherical motor under a model that is
subject to disturbances (for instance change ∆α% in the elements of the gravitational vector Gi, i = 1, 2, 3
of the spherical motor’s dynamic model), (iii) Table IIIa providing results about the convergence times of
the state variables of the spherical motor’s state variables to the associated setpoints (Source: Authors’
own work).

Table Ia - Nonlinear optimal control
Tracking RMSE ×10−3 for the spherical motor in the disturbance-free case

RMSEx1
RMSEx2

RMSEx3
RMSEx4

RMSEx5
RMSEx6

test1 0.1787 0.0001 0.1357 0.0001 0.0002 0.0001
test2 0.1893 0.0001 0.0627 0.0001 0.0001 0.0001
test3 0.1048 0.0129 0.0283 0.0212 0.0596 0.0056
test4 0.0623 0.0480 0.3583 0.2538 0.1263 0.0340
test5 0.1049 0.0123 0.0283 0.0212 0.0596 0.0056
test6 0.1248 0.0163 0.1860 0.0344 0.0435 0.0190
test7 0.1049 0.0123 0.0283 0.0212 0.0596 0.0056
test8 0.1559 0.0825 0.3956 0.1945 0.0843 0.0672

Table IIa - Nonlinear optimal control
Tracking RMSE ×10−3 for the spherical motor in the case of disturbances

∆a% RMSEx1
RMSEx2

RMSEx3
RMSEx4

RMSEx5
RMSEx6

0% 0.1787 0.0001 0.1357 0.0001 0.0002 0.0001
10% 0.1966 0.0001 0.1490 0.0001 0.0003 0.0001
20% 0.2144 0.0001 0.1625 0.0001 0.0004 0.0001
30% 0.2341 0.0001 0.1757 0.0001 0.0005 0.0001
40% 0.2499 0.0001 0.1889 0.0001 0.0006 0.0001
50% 0.2677 0.0001 0.2021 0.0001 0.0007 0.0001
60% 0.2855 0.0001 0.2153 0.0001 0.0009 0.0001

Table IIIa - Nonlinear optimal control
Convergence times (sec) of states of the spherical motor

No test Ts x1 Ts x2 Ts x3 Ts x4 Ts x5 Ts x6

test1 3.5 3.5 4.0 2.5 3.0 3.0
test2 4.0 3.5 4.5 2.5 4.0 3.0
test3 4.0 4.0 4.5 3.0 3.0 3.0
test4 4.0 4.0 4.5 3.0 3.0 3.0
test5 3.5 3.5 4.5 2.5 3.0 2.5
test6 3.5 4.0 3.0 2.5 3.0 2.5
test7 3.0 3.5 4.0 2.5 2.5 3.0
test8 3.0 3.0 3.5 3.0 2.5 2.5
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Figure 3: Tracking of setpoint 1 for the permanent magnet synchronous spherical motor with nonlinear
optimal control (a) Convergence of the state variables x1 = α, x3 = β, x5 = γ (blue lines) to the reference
setpoints (red lines) and their KF-based estimation (green line), (b) Variation of the control inputs u1, u2

and u3 (Source: Authors’ own work)
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Figure 4: Tracking of setpoint 2 for the permanent magnet synchronous spherical motor with nonlinear
optimal control (a) Convergence of the state variables x1 = α, x3 = β, x5 = γ (blue lines) to the reference
setpoints (red lines) and their KF-based estimation (green line), (b) Variation of the control inputs u1, u2

and u3 (Source: Authors’ own work)
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Figure 5: Tracking of setpoint 3 for the permanent magnet synchronous spherical motor with nonlinear
optimal control (a) Convergence of the state variables x1 = α, x3 = β, x5 = γ (blue lines) to the reference
setpoints (red lines) and their KF-based estimation (green line), (b) Variation of the control inputs u1, u2

and u3 (Source: Authors’ own work)
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Figure 6: Tracking of setpoint 4 for the permanent magnet synchronous spherical motor with nonlinear
optimal control (a) Convergence of the state variables x1 = α, x3 = β, x5 = γ (blue lines) to the reference
setpoints (red lines) and their KF-based estimation (green line), (b) Variation of the control inputs u1, u2

and u3 (Source: Authors’ own work)
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Figure 7: Tracking of setpoint 5 for the permanent magnet synchronous spherical motor with nonlinear
optimal control (a) Convergence of the state variables x1 = α, x3 = β, x5 = γ (blue lines) to the reference
setpoints (red lines) and their KF-based estimation (green line), (b) Variation of the control inputs u1, u2

and u3 (Source: Authors’ own work)
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Figure 8: Tracking of setpoint 6 for the permanent magnet synchronous spherical motor with nonlinear
optimal control (a) Convergence of the state variables x1 = α, x3 = β, x5 = γ (blue lines) to the reference
setpoints (red lines) and their KF-based estimation (green line), (b) Variation of the control inputs u1, u2

and u3 (Source: Authors’ own work)
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Figure 9: Tracking of setpoint 7 for the permanent magnet synchronous spherical motor with nonlinear
optimal control (a) Convergence of the state variables x1 = α, x3 = β, x5 = γ (blue lines) to the reference
setpoints (red lines) and their KF-based estimation (green line), (b) Variation of the control inputs u1, u2

and u3 (Source: Authors’ own work)
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Figure 10: Tracking of setpoint 8 for the permanent magnet synchronous spherical motor with nonlinear
optimal control (a) Convergence of the state variables x1 = α, x3 = β, x5 = γ (blue lines) to the reference
setpoints (red lines) and their KF-based estimation (green line), (b) Variation of the control inputs u1, u2

and u3 (Source: Authors’ own work)
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6.2 Results about flatness-based control in successive loops of the spherical motor

Results about the use of flatness-based control in successive loops on the dynamic model of the permanent
magnet synchronous spherical motor are shown in the following diagrams, given in Fig. 11 to Fig. 18. It
can be noticed, that under this control scheme one achieves again fast and precise tracking of reference
setpoints for all state variables of the permanent magnet synchronous spherical motor. It is noteworthy,
that through the stages of this method one solves also the setpoints definition problem for all state vari-
ables of the controlled system. Actually, the selection of setpoints for state variables x1, x2 and x2 is
unconstrained. On the other side by defining state variables x4, x5 and x6 as virtual control inputs for
the subsystem of x1, x2 and x3 one can find the setpoints for x4, x5 and x6 as functions of the setpoints
for x1, x2 and x3. The speed of convergence of the state variables of the permanent magnet synchronous
spherical motor under flatness-based control implemented in successive loops depends on the selection of
values for the diagonal gain matrices K1, K2 of Eq. (85) and Eq. (86). Indicative values for these gain
matrices were K1 = 0.8·I3×3 while K2 = 2.0·I3×3.

To elaborate on flatness-based control in successive loops for the permanent magnet synchronous spherical
motor the following Tables are given (i) Table Ib providing results about the accuracy of tracking of set-
points by the state variables of the spherical motor under an exact dynamic model, (ii) Table IIb providing
results about the accuracy of tracking of setpoints by the state variables of the spherical motor under
a model that is subject to disturbances (for instance change ∆α% in the elements of the gravitational
vector Gi, i = 1, 2, 3 of the spherical motor’s dynamic model), (iii) Table IIIb providing results about the
convergence times of the state variables of the spherical motor’s state variables to the associated setpoints
(Source: Authors’ own work).

Table Ib - Flatness-based control in successive loops
Tracking RMSE ×10−3 for the spherical motor in the disturbance-free case

RMSEx1
RMSEx2

RMSEx3
RMSEx4

RMSEx5
RMSEx6

test1 0.1947 0.0214 0.2731 0.0308 0.3515 0.0387
test2 0.2759 0.0307 0.2731 0.0300 0.4328 0.0476
test3 0.1729 0.0184 0.3419 0.0372 0.4081 0.0443
test4 0.1911 0.0263 0.2487 0.0403 0.4237 0.0508
test5 0.1723 0.0183 0.3410 0.0372 0.4078 0.0442
test6 0.1834 0.0178 0.3484 0.0371 0.4189 0.0438
test7 0.1725 0.0184 0.3419 0.0372 0.4677 0.0442
test8 0.2099 0.0390 0.3585 0.0382 0.4409 0.0589

Table IIb - Flatness-based control in successive loops
Tracking RMSE ×10−3 for the spherical motor in the case of disturbances

∆a% RMSEx1
RMSEx2

RMSEx3
RMSEx4

RMSEx5
RMSEx6

0% 0.1947 0.0214 0.2731 0.0308 0.3515 0.0387
10% 0.2018 0.0096 0.0101 0.0040 0.3211 0.0072
20% 0.2864 0.0130 0.0147 0.0080 0.3238 0.0038
30% 0.5019 0.0119 0.0217 0.0082 0.5880 0.0054
40% 0.7188 0.0101 0.0470 0.0084 0.7844 0.0070
50% 0.8279 0.0103 0.0548 0.0093 0.8819 0.0068
60% 0.9187 0.0106 0.0606 0.0101 0.3641 0.0066
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Figure 11: Tracking of setpoint 1 for the permanent magnet synchronous spherical motor with flatness-
based control in successive loops (a) Convergence of the state variables x1 = α, x3 = β, x5 = γ (blue lines)
to the reference setpoints (red lines), (b) Variation of the control inputs u1, u2 and u3 (Source: Authors’
own work)
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Figure 12: Tracking of setpoint 2 for the permanent magnet synchronous spherical motor with flatness-
based control in successive loops (a) Convergence of the state variables x1 = α, x3 = β, x5 = γ (blue lines)
to the reference setpoints (red lines), (b) Variation of the control inputs u1, u2 and u3 (Source: Authors’
own work)
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Figure 13: Tracking of setpoint 3 for the permanent magnet synchronous spherical motor with flatness-
based control in successive loops (a) Convergence of the state variables x1 = α, x3 = β, x5 = γ (blue lines)
to the reference setpoints (red lines), (b) Variation of the control inputs u1, u2 and u3 (Source: Authors’
own work)
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Figure 14: Tracking of setpoint 4 for the permanent magnet synchronous spherical motor with flatness-
based control in successive loops (a) Convergence of the state variables x1 = α, x3 = β, x5 = γ (blue lines)
to the reference setpoints (red lines), (b) Variation of the control inputs u1, u2 and u3 (Source: Authors’
own work)
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Figure 15: Tracking of setpoint 5 for the permanent magnet synchronous spherical motor with flatness-
based control in successive loops (a) Convergence of the state variables x1 = α, x3 = β, x5 = γ (blue lines)
to the reference setpoints (red lines), (b) Variation of the control inputs u1, u2 and u3 (Source: Authors’
own work)
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Figure 16: Tracking of setpoint 6 for the permanent magnet synchronous spherical motor with flatness-
based control in successive loops (a) Convergence of the state variables x1 = α, x3 = β, x5 = γ (blue lines)
to the reference setpoints (red lines), (b) Variation of the control inputs u1, u2 and u3 (Source: Authors’
own work)
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Figure 17: Tracking of setpoint 7 for the permanent magnet synchronous spherical motor with flatness-
based control in successive loops (a) Convergence of the state variables x1 = α, x3 = β, x5 = γ (blue lines)
to the reference setpoints (red lines), (b) Variation of the control inputs u1, u2 and u3 (Source: Authors’
own work)
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Figure 18: Tracking of setpoint 8 for the permanent magnet synchronous spherical motor with flatness-
based control in successive loops (a) Convergence of the state variables x1 = α, x3 = β, x5 = γ (blue lines)
to the reference setpoints (red lines), (b) Variation of the control inputs u1, u2 and u3 (Source: Authors’
own work)
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Table IIIb - Flatness-based control in successive loops
Convergence times (sec) of states of the spherical motor

No test Ts x1 Ts x2 Ts x3 Ts x4 Ts x5 Ts x6

test1 7.5 1.0 7.5 1.0 7.5 1.0
test2 7.5 1.0 7.5 1.0 7.5 1.0
test3 7.5 6.0 7.5 6.0 7.5 6.0
test4 7.5 6.0 7.5 6.0 7.5 6.0
test5 7.0 5.0 7.5 5.0 7.0 5.0
test6 7.0 6.0 7.5 6.0 7.0 6.0
test7 6.0 6.0 7.0 6.0 7.5 6.0
test8 6.0 6.0 7.0 6.0 7.0 6.0

7 Conclusions

Permanent magnet synchronous spherical motors find use is several applications, as for instance in manu-
facturing processes, in actuation of robotic systems and in electric traction systems. Unlike conventional
electric motors, in spherical motors the stator is a fixed inner shell while the rotor is a turning outer shell.
The torques that generate the turn motion of spherical motors come from the interaction of the stator’s
EMs with the rotor’s PMs. Due to the nonlinear and multivariable structure of the state-space model of
spherical motors the solution of the associated nonlinear control problem is a non-trivial task. In this arti-
cle a novel nonlinear optimal (H-infinity) control approach has been proposed first for the dynamic model
of permanent magnet synchronous spherical motors. The method is based on approximate linearization of
the motor’s state-space model with the use of first-order Taylor series expansion and through the compu-
tation of the associated Jacobian matrices. The linearization process takes place at each sampling instance
around a temporary operating point which is defined by the present value of the motor’s state vector
and by the last sampled value of the motor’s control inputs vector. To compute the stabilizing feedback
gains of this controller an algebraic Riccati equation is repetitively solved at each time-step of the con-
trol algorithm. The global stability properties of the control scheme are proven through Lyapunov analysis.

Furthermore, the article has introduced a different solution to the nonlinear control problem of the per-
manent magnet synchronous spherical motor which is based on flatness-based control implemented in
successive loops. It has been proven that the dynamic model of the spherical motor is a differentially
flat system. Besides, the state-space model of the system has been decomposed in two subsystems, where
the first subsystem has as state vector the turn angles of the rotor while the second subsystem has as
state vector the angular velocities of the rotor. Moreover, the first subsystem receives as virtual control
inputs vector the angular velocities of the rotor while the second subsystem receives as control inputs
the mechanical torques which are generated by the variations of the currents of the stator’s EMs. It
is shown that each one of these subsystems is differentially flat. This signifies, that a stabilizing feed-
back controller can be designed by each one of them using the controller design process which is followed
for input-output linearizable differentially flat systems. The two subsystems are connected in successive
loops and actually the control inputs of the first subsystem become setpoints for the second subsystem.
The integrated system which is obtained by connecting the above noted subsystems in cascading mode is
globally asymptotically stable and this is proven through Lyapunov analysis. Both control methods have
achieved fast and accurate tracking of reference setpoints under moderate variations o of the control inputs.

The two control approaches which have presented in this article, that is nonlinear optimal control and
flatness-based control in successive loops, achieve control and stabilization of the nonlinear dynamics of
the permanent magnet synchronous spherical motor without changes of state variables and without com-
plicated transformations of the system’s state-space model. The first control method is optimal because
apart from elimination of the tracking error for the state variables of the spherical motor it also achieves
minimization of the variations of the control inputs. By reducing the control inputs’ amplitude it en-
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sures minimal dispersion of energy by the control loop. The second control method is suboptimal since
its objective is only the elimination of the state vectors’ tracking error, while the feedback gains of the
flatness-based controller in successive loops do not necessarily ensure suppression of the amplitude of the
control inputs. Although the flatness-based control method may spend some more energy towards achieving
the control objectives it also results in smooth convergence of the state variables to the associated setpoints.
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