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Abstract 9 

Clay swell potential can be classified based on the value of activity and it is defined as the ratio 10 

of plasticity index to clay content as a percentage. This paper outlines the investigation into how 11 

activity correlates with other key properties of clayey soils. Specifically, four approaches were 12 

evaluated for predicting activity using: a) liquid limit (LL), specific surface area (SSA), cation 13 

exchange capacity (CEC) and clay content; b) LL, SSA and CEC; c) LL; and d) SSA and CEC. 14 

For this purpose, a database of 104 samples was collected from which 35 machine learning 15 

algorithms were trained. Gradient Boosting Trees showed the highest prediction accuracy in the 16 

four approaches and, to improve its prediction performance, a Bayesian Optimization was applied 17 

to tune theirs hyperparameters, resulting in the final models. The performance of the developed 18 

models was evaluated, showing prominent results with exceptionally good metrics, except in the 19 

approach from SSA and CEC where the trained algorithm was not capable of predicting activity 20 

with confidence (R2=0.46). This algorithm can predict activity using only LL with high accuracy 21 

(R2=0.94), and when combined with SSA and CEC, the precision is further enhanced (R2=0.96). 22 

Finally, a variable importance analysis was performed, indicating LL is the variable with the 23 

greatest influence in predicting activity. 24 

25 
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content; activity. 27 
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1. Introduction 29 

Key properties of clays such as Atterberg limits, Specific Surface Area (SSA) and Cation 30 

Exchange Capacity (CEC), are important in geotechnical engineering and in particular for 31 

characterizing expansive soils. Expansive soils are a very problematic matter in several fields of 32 

civil engineering, posing significant amount of damage (Jones Jr and Holtz 1973). Expansive soils 33 

are those in which the variation of water content results in a large volume change (Kar 2021). The 34 

construction on these soils often generates serious issues, especially when lightweight structures 35 

are built. There are several approaches to estimate the expansive potential of a soil. Expansive 36 

soils can be identified by the Atterberg limits, clay content, or a combination of both. Skempton 37 

(1953) proposed the concept of activity, i.e. the ratio of plasticity index (PI) to clay fraction 38 

content, which can be utilized as an index property to establish the swelling potential of expansive 39 

soil. Peck et al. (1974) correlated PI with the expansion potential. Zapata et al. (2006) suggested 40 

that considering the % passing 75µm improved the prediction. Different authors developed other 41 

types of tests to identify expansive soils (e.g. Lambe 1960; Yao et al. 2004). SSA (Chittoori and 42 

Puppala 2011) and CEC (Mitchell and Soga 2005; Nelson et al. 2015) are also used to indirectly 43 

identify expansive soils. According to Low (1987), the surface's level of hydration has a 44 

significant impact on how clays behave. This makes the SSA of a clayey soil extremely 45 

significant, and it has been proposed that SSA can be used to forecast the engineering behaviour 46 

of fine-grained soils (e.g. Warkentin 1972). The principal clay minerals, such as montmorillonite, 47 

illite, and kaolinite, have a significant impact on the SSA of soils, which reflects the consistency 48 

traits as well as the clay concentration (Spagnoli and Shimobe 2019). Muhunthan (1991) 49 

attempted a rheological correlation between SSA and LL. CEC and the soil's swelling 50 

characteristics are strongly connected. With an increase in CEC, there is also an increase in soil 51 

swelling (Christidis 1998). The higher the presence of smectitic clay minerals (i.e. expansive 52 

clays), the more the clay swells. According to Al-Rawas (1999), the cations are what regulate 53 

how expansive soils are. Therefore, both LL and CEC are variables that regulate the soils' 54 

propensity to swell (Spagnoli and Shimobe 2019). Chittori and Puppala (2011) suggested that 55 
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since SSA of smectitic soils is higher than those of kaolitic soils, SSA can be used to predict the 56 

expansion potential, as the water holding capacity is higher.  57 

Although activity is not a complex or difficult parameter to obtain, it is a relevant property of 58 

clayey soils correlated with swelling potential. Several authors have proposed a correlation 59 

between soil activity and other geotechnical parameters (e.g. Polidori 2009; Spagnoli and 60 

Shimobe 2019). However, in general, the proposed geotechnical correlations consider only two 61 

parameters at the same time (input and output). Machine learning (ML) techniques have 62 

progressively emerged as an alternative approach to address numerous geotechnical challenges 63 

(e.g. Díaz et al. 2018; Díaz et al. 2021; Díaz and Tomás 2021; Phoon and Zhang 2023; Salvatore 64 

et al. 2022; Wang et al. 2020; Zhang et al. 2022a; Zhang et al. 2023; Zhang et al. 2022b). 65 

Motivated by these advantages, this paper employs machine learning techniques to explore 66 

potential correlations between soil activity and other properties of clayey soils (LL, SSA, CEC 67 

and clay content). To achieve this, the study focused on four approaches based on various 68 

properties associated with activity, comparing their outcomes to evaluate the performance of each. 69 

The objective is to understand clearly which properties can be utilized to determine activity with 70 

an appropriate degree of accuracy. To this end, four prediction models to forecast activity were 71 

developed using a dataset of experimental results. With this dataset, a comparative study of 72 

various ML algorithms was carried out. The algorithms that performed best underwent Bayesian 73 

optimization to determine the appropriate model hyperparameters. The results of the final tuned 74 

models in predicting activity are then evaluated and discussed. Finally, an importance analysis of 75 

the variables is conducted to identify the most important parameters in the prediction of activity. 76 

 77 

2. Database 78 

104 data points regarding clay content <2µm, SSA (m2/g), CEC (meq/100g), and LL obtained by 79 

means of the Casagrande cup were acquired from 12 different publications and a single datapoint 80 

belonging to the authors. The activity value was obtained from the data. Pure clays and natural 81 

clays were selected, in order to have a relatively high heterogeneity in the data. Specifically data 82 

from (Arifin 2008), Cerato (2001), Cerato and Lutenegger (2002), Cerato and Lutenegger (2004), 83 
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Cerato and Lutenegger (2005), Marcial (2013), Mishra et al. (2012), Santhoshkumar et al. (2016), 84 

Schwing et al. (2013), Sivapullaiah et al. (2008), Spagnoli et al. (2013) and Zhang et al. (2003) 85 

were used. 86 

 87 

2.1. Statistical description 88 

Some descriptive statistical information is provided in Table 1. Skewness and kurtosis are two 89 

measures of the shape of a distribution in statistics. Skewness measures the degree of asymmetry 90 

in a distribution, while kurtosis measures the degree of peakedness or flatness. Skewness is 91 

defined as the third standardized moment of a distribution and can be positive (skewed right), 92 

negative (skewed left), or zero (symmetric). Positive skewness indicates that the tail of the 93 

distribution is longer on the right-hand side, while negative skewness signifies that the tail is 94 

longer on the left-hand side. Kurtosis is defined as the fourth standardized moment of a 95 

distribution and can be high (leptokurtic) indicating that the distribution has a sharp peak and fat 96 

tails, or low (platykurtic) kurtosis signifying a flatter distribution with fewer outliers (Wackerly 97 

et al. 2014). 98 

Figure 1 presents the box plots for the data. A box plot is a visual representation of the distribution 99 

of a dataset that shows the median, quartiles, and outliers. It consists of a rectangular box, which 100 

extends from the first quartile (Q1) to the third quartile (Q3), with a vertical line inside that 101 

represents the median. The distance between the upper and lower edges of the box, known as the 102 

interquartile range (IQR), contains the middle 50% of the data. The whiskers extend from the box 103 

to the minimum and maximum values within a certain range of the dataset. The range is typically 104 

set at 1.5 times the IQR (Gelman and Hill 2006). Figure 1 shows several outliers, which are data 105 

points outside of this range and are plotted individually as dots outside the whiskers. Figure 2 106 

shows selected histograms of the data. The goodness of fit for the probability distributions is 107 

conducted using the Anderson-Darling (AD) test. The AD is a statistical test based on the idea of 108 

comparing the cumulative distribution function (CDF) of the sample data to the CDF of the 109 

theoretical distribution being tested (Hollander, et al., 2015). Notably, with the exception of clay 110 
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content, none of the data adheres to the normal distribution. AD gives more weight to the tails 111 

than does the Kolmogorov-Smirnov (KS) test (Stephens 1974).  112 

 113 

Statistics Clay content 
(%) ＜2µm 

SSA 
(m2/g) 

CEC 
(meq/100g) LL (%) Activity 

Count 104 104 104 104 104 
Mean 56.039 285.459 37.834 181.361 2.189 

Median 57 225.5 28.25 74 0.99099 
Mode 36.2 15 2 42 0.44 

Minimum 10.2 11 0.8 24 0.2 
Maximum 100 800 120.9 678 8.0132 
Skewness -0.18 0.49 0.81 1.14 1.15 
Kurtosis -0.61 -1.12 -0.135 -0.132 -0.053 

Standard Deviation  20.23 235.25 31.07 180.77 2.24 

Table 1. Descriptive statistics of the data analyzed. 114 

115 

Figure 1. Box plots of the data analyzed. 116 

 117 

For the data presented in Table 1, the clay content values follow a 2-Param Weibull distribution, 118 

while the remaining parameters follow a 3-Param Weibull distributions (see histograms in Figure 119 

2). Additionally, a normality test has been performed for all data sets. A normality test is a 120 

statistical test used to determine whether a given set of data comes from a normally distributed 121 

population. Normality tests are used to check the assumption of normality, which is often made 122 

in statistical inference procedures such as hypothesis testing and confidence interval estimation 123 
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(Devore et al. 2013). The normality test used was the Shapiro-Wilk test, which is based on the 124 

deviation between the observed data and the expected normal distribution. 125 

 126 

 127 

Figure 2. Histograms for the data from Table 1 for a) clay content, b) SSA, c) CEC, d) LL, and 128 

e) activity 129 

 130 

Figure 3 shows the probability plots for clay content and activity, as an example. A probability 131 

plot is a graphical technique used in statistics to assess whether a set of data follows a particular 132 

distribution. It compares the ordered values of a dataset to the expected values of a theoretical 133 

distribution. If the data follows the distribution, the plot should show a roughly straight line. If 134 

the data does not follow the distribution, the plot will show deviations from the straight line 135 

(Moore and McCabe 1989). In a probability plot, the x-axis represents the expected values of the 136 
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theoretical distribution being tested, while the y-axis represents the ordered values of the dataset 137 

being tested. The points on the plot are plotted based on their rank order, such that the smallest 138 

observation is plotted at the far left and the largest observation is plotted at the far right. The 139 

closer the points are to the straight line, the better the fit of the data to the theoretical normal 140 

distribution being tested. The probability plots for CEC, SSA and LL are similar to Figure 3b. It 141 

is possible to observe that while the data follow a straight line for clay content (Figure 3a), this is 142 

not the case for activity (Figure 3b). 143 

 144 
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 145 

Figure 3. Probability plots for a) clay content and b) activity. To note the difference considering 146 

their normality path. 147 

 148 
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3. Methodology. 149 

With the 104 samples described in the previous section, the four variables previously presented 150 

were used to predict activity of clayey soils. Specifically, four approaches have been studied 151 

taking into account different variables (Table 2) and these predict activity from: 1) LL, clay 152 

content, SSA and CEC, 2) LL, SSA and CEC, 3) LL, and 4) SSA and CEC.  153 

 154 

Approach 1 Approach 2 Approach 3 Approach 4 
LL LL LL SSA 

Clay content SSA - CEC 
SSA CEC - - 
CEC - - - 

Table 2. Variables considered in each of the approaches considered in the prediction of activity. 155 

3.2. Machine learning methods 156 

3.2.1. Gradient boosting trees 157 

Gradient boosting trees are a powerful family of machine learning algorithms for performing 158 

gradient descent on decision trees using the boosting ensemble learning method. The main idea 159 

behind them is to combine iteratively several simple models (i.e. weak learners) to obtain a model 160 

with enhanced prediction accuracy (i.e. strong learner). Boosting algorithms were initially 161 

proposed for classification tasks (Freund 1995; Freund and Schapire 1996; Schapire 1990). 162 

Friedman (2001) expanded the boosting to regression tasks by creating the gradient boosting 163 

machines method (GBM). The boosting method adjusts the weights of the training sample 164 

according to the last iteration and assigns more weight to observations that are difficult to predict 165 

and less weight to those that have already been well managed. It can be understood as a numerical 166 

optimization algorithm aiming to find an additive model that maximally reduces the loss function. 167 

The GBM algorithm builds successive decision trees to fit one training example at a time (the tree 168 

that best reduces the loss function). As it fits each new sample, it updates its knowledge of which 169 

features are important for the prediction of future samples. It starts with an initial estimation for 170 

model parameters and iteratively enhances these estimations until a required level of accuracy has 171 

been achieved or some other stopping criterion has been satisfied. Specifically, in regression 172 

problems, the algorithm begins by initializing the model with a first prediction, which is a decision 173 
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tree that maximally minimizes the loss function (mean squared error in regression), then at each 174 

stage a new decision tree is fitted to the existing residual and added to the prior model to update 175 

the previously obtained residuals. The algorithm keeps on iterating until the prefixed maximum 176 

number of iterations is reached. This process is called stage wise, meaning that at each new stage, 177 

the decision trees included into the model at previous steps remain unchanged. With the process 178 

of fitting decision trees to the residuals, the algorithm is enhanced in the zones where it does not 179 

perform well. Four hyperparameters mainly govern behaviour of the GBM: 1) the learning rate, 180 

2) the number of boosting stages to perform, 3) the number of features to consider when looking 181 

for the best split, and 4) the maximum depth of the individual regression estimators. 182 

 183 

3.2.2. Bayesian hyperparameter optimization 184 

The performance of the machine learning algorithms is strongly determined by the model 185 

parameters (i.e. hyperparameters) which need to be set before training. In this study, the optimal 186 

hyperparameters were established applying Bayesian optimization (Shahriari et al. 2015; Snoek 187 

et al. 2012) which is a general technique for function optimization. Bayesian optimization builds 188 

a probability model based on the previous evaluation results of the target for finding the value 189 

that minimizes the objective function. Bayesian hyperparameter optimization was performed 190 

using BayesSearchCV from the Scikit-optimize package on Python (Head et al. 2020). This 191 

method uses stepwise Bayesian Optimization to discover the most promising hyperparameters in 192 

the problem-space. This optimization method was chosen for hyperparameter tuning due to its 193 

efficiency (Eriksson et al. 2019) and because it has been proven to be superior to other 194 

optimization algorithms on many optimization benchmark functions (Jones 2001). Finally, it must 195 

be remarked that this technique has been extensively used for machine learning hyperparameter 196 

tuning in geotechnics (e.g. Li et al. 2022; Zhang et al. 2021). 197 

 198 

3.2.3. Verification and evaluation of the machine learning models 199 

In this paper, a training set was employed to choose and build the predictive models and a test set 200 

was used to examine the trained models in each of the four approaches analysed. The coefficient 201 
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of determination (R2), the mean square error (MSE) and the mean absolute error (MAE), were 202 

applied with the aim of evaluating the reliability of the algorithms considered and to interpret the 203 

correspondence between predictions and observed values. The definition of R2, MSE and MAE 204 

is expressed by (Equations 1 to 3): 205 

 206 

𝑅𝑅2 = 1 −
� (y𝑖𝑖

𝑛𝑛
𝑖𝑖=1 −y�𝑖𝑖)2

� (y𝑖𝑖
𝑛𝑛
𝑖𝑖=1 −𝑦𝑦�𝑖𝑖)2

         (1) 207 

 208 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
� (y𝑖𝑖

𝑛𝑛
𝑖𝑖=1 − y�𝑖𝑖)2        (2) 209 

 210 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |y𝑖𝑖 − y�𝑖𝑖|𝑛𝑛
𝑖𝑖=1          (3) 211 

 212 

where y is the measured value, ŷ is the model predicted value, ȳ is the average of the measured 213 

values, and n is the number of samples in the training or testing sets. 214 

 215 

On the other hand, k-fold cross-validation (Stone 1974), was used in the Bayesian optimization. 216 

In the k-fold cross-validation approach, the dataset is randomly shuffled and then divided into k 217 

folds. k-1 folds are used to train the model and the remaining fold (the test set) is employed for 218 

the evaluation. The process is repeated k times, and performance of the model is evaluated by the 219 

mean prediction error of k sub-datasets. In this study, the optimization was done with a 5-fold 220 

cross-validation. 221 

 222 

3.2.4. Data preparation. Feature rescaling 223 

To improve the performance of the machine learning algorithms, the dataset was pre-processed. 224 

In particular, the input parameters of the dataset were standardized using the min-max scaling, 225 

which involves rescaling the range of features to scale the range in [0, 1]. Using this data rescaling 226 

method, the impact of parameters with different scales on the algorithm performance can be 227 

minimised. 228 
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3.2.5. Machine learning algorithm selection 229 

35 ML algorithms were built and trained in each of the four approaches considered, using the 230 

Scikit-learn package (Pedregosa et al. 2011) which is the most useful and robust library for 231 

machine learning in Python. The initial selection included: SVR, Random Forest Regressor, Extra 232 

Trees Regressor, AdaBoost Regressor, NuSVR, Gradient Boosting Regressor, K-Neighbors 233 

Regressor, Histogram-based Gradient Boosting Regressor, Bagging Regressor, MLP Regressor, 234 

Huber Regressor, Linear SVR, Ridge CV, Bayesian Ridge, Ridge, Linear Regression, 235 

Transformed Target Regressor, Lasso CV, Elastic Net CV, Lasso Lars CV, Lasso Lars IC, Lars 236 

CV, Lars, SGD Regressor, RANSAC Regressor, Elastic Net, Lasso, Orthogonal Matching Pursuit 237 

CV, Passive Aggressive Regressor, Gaussian Process Regressor, Orthogonal Matching Pursuit, 238 

Decision Tree Regressor, Dummy Regressor, Lasso Lars and Kernel Ridge.  239 

 240 

3.3. Model conception 241 

To choose the optimal model to predict activity in each of the four approaches considered, the 242 

next phases were followed: 243 

1. Building a database, collecting data from different research papers. In this phase, 104 244 

samples of clayey soils containing values of LL, clay content, SSA, CEC and activity 245 

were gathered. 246 

2. Rescaling of the input variables. 247 

3. Application of 35 Machine Learning Algorithms: Using the chosen inputs for each of the 248 

considered approaches. 249 

4. Identification of the best models, considering R2 as the main statistical performance 250 

indicator. 251 

5. Optimizing the best models for each of the four approaches using Bayesian optimization. 252 

6. Assessing the predictive capability of the four selected models considering the test set. 253 

7. Performing a feature importance analysis of the selected models to find the inputs with a 254 

higher influence on the predictions.  255 

 256 
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4. Application and results 257 

4.1. Predictive comparisons among different algorithms 258 

In this section, from the 35 machine learning algorithms considered, a selection process is carried 259 

out, choosing R2 as the reference metric. Table 3 displays the results of this analysis, but only 260 

highlights the top ten results for each of the considered approaches. From the analysis of the 261 

comparative study, it can be deduced that for the four approaches, the algorithm with the best 262 

performance is the Gradient Boosting Regressor Trees (GBRT). 263 

Ranking 
Approach 1 Approach 2 Approach 3 Approach 4 

Algorithm R2 Algorithm R2 Algorithm R2 Algorithm R2 

1 
Gradient 
Boosting 
Regressor 

0.98 
Gradient 
Boosting 
Regressor 

0.96 
Gradient 
Boosting 
Regressor 

0.95 
Gradient 
Boosting 
Regressor 

0.45 

2 Extra Tree 
Regressor 0.96 Extra Trees 

Regressor 0.94 Bagging 
Regressor 0.94 

Passive 
Aggressive 
Regressor 

0.44 

3 
Gaussian 
Process 

Regressor 
0.95 Decision Tree 

Regressor 0.93 AdaBoost 
Regressor 0.94 Extra Trees 

Regressor 0.43 

4 Random Forest 
Regressor 0.93 

Random 
Forest 

Regressor 
0.93 SVR 0.94 MLP 

Regressor 0.42 

5 Linear SVR 0.93 RANSAC 
Regressor 0.93 

Random 
Forest 

Regressor 
0.94 Linear SVR 0.42 

6 Huber 
Regressor 0.93 Linear SVR 0.93 

Decision 
Tree 

Regressor 
0.93 AdaBoost 

Regressor 0.41 

7 Ridge 0.93 Huber 
Regressor 0.93 XGB 

Regressor 0.93 Poisson 
Regressor 0.40 

8 
Passive 

Aggressive 
Regressor 

0.92 Bagging 
Regressor 0.93 Nu SVR 0.93 Gamma 

Regressor 0.40 

9 Elastic Net CV 0.92 AdaBoost 
Regressor 0.92 Linear SVR 0.93 SGD 

Regressor 0.36 

10 RANSAC 
Regressor 0.92 Lars 0.92 RANSAC 

Regressor 0.93 
Random 
Forest 

Regressor 
0.36 

 264 

Table 3. Ranking of the first ten algorithms with the best coefficient of determination according 265 

to the analysis of the 35 initially selected. 266 

 267 

Since the GBRT selected models are decision tree-based algorithms and these are fairly 268 

insensitive to the scale of the features, the developed models were compared with and without 269 
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rescaling. The results without scaling of features suggested that it had virtually no impact on the 270 

GBRT results. 271 

 272 

4.2. Bayesian optimization 273 

With the four GBRT models previously selected, a Bayesian optimization process was performed 274 

to find the hyperparameters that give the models better predictive accuracy. In this Bayesian 275 

searching process, the R2 was chosen as the reference metric. The cross-validation folds were 276 

created by a stratified fold with a splitting number of 5 and an iteration number of 70. With this 277 

process, the hyperparameters were established using cross-validation on the training set and the 278 

predictions were performed on the test set. The values of the hyperparameters obtained in this 279 

optimization process for each of the approaches taken into consideration are shown in Table 4. 280 

 281 

Hyperparameter Approach 1 Approach 2 Approach 3 Approach 4 
Learning rate 0.07427 0.01259 0.00194 0.00118 

Maximum depth 2 4 2 1 
Number of estimators 1013 894 1881 1830 
Number of features None None None 2 
Table 4. Values of the hyperparameters in the final GBRT models obtained by Bayesian 282 

optimization for each of the approaches considered. 283 

4.3. Performance analysis 284 

Following the fine-tuning of the hyperparameters, the selected models with the best performance 285 

in each one of the approaches considered were analysed with the test dataset. In Table 5 is 286 

included a summary of the performance metrics obtained in the training and test sets of the 287 

definitive tuned models. 288 

 289 

Approach R2 MAE MSE 
Training Test Training Test Training Test 

1 0.999 0.984 0.02 0.19 0.01 0.08 
2 0.999 0.964 0.02 0.28 0.01 0.16 
3 0.934 0.944 0.40 0.42 0.34 0.26 
4 0.667 0.459 1.01 1.26 1.71 2.45 
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Table 5. Summary of accuracy parameters in the train and test sets of the models for each 290 

approach. 291 

 292 

Figure 4 examines the relationships between the models’ predictions and the actual activity with 293 

a linear regression analysis. For a perfect fit, all data should fall along a 1:1 line, as the model 294 

outputs would be equal to the measured values. An excellent fit was obtained for the first two 295 

approaches with values of R2>0.96. A slightly lower level of accuracy is obtained in the approach 296 

3 although it still gets good metrics (R2>0.94). Approach 4 does not offer good results and it can 297 

be concluded that there is no reliable way to predict activity from CEC and SSA because less than 298 

half of the variance in the outcome variable is explained by the model (R2=0.46). 299 

On the other hand, from the analysis of the MAE values in the test set, the proposed GBRT 300 

deviates, on average, from the predictions by ±0.19, ±0.28, ±0.42 and ±1.26 respectively for each 301 

of the respective approaches. It should be noted when analyzing these values that approximately 302 

40% of the test set has activity values exceeding 2.5, reaching up to values of nearly 7 (Figure 4). 303 

The values of the first three approaches show accurate models, but in the fourth approach the 304 

value is too high, showing a notable dispersion in the prediction of activity. Approach 1 yielded 305 

the best predictive performance and includes as predictor variables clay content (directly related 306 

to activity) and LL (associated with activity through PI). Nevertheless, Approach 2, which no 307 

longer includes clay content, and Approach 3 (using only LL) also presented outstanding 308 

performance metrics. This is an important observation, as this algorithm enables the prediction of 309 

soil activity solely based on LL without significant errors, or even minimizing these errors if SSA 310 

and CEC are additionally available alongside LL, rendering further soil properties unnecessary. 311 
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 312 

Figure 4. Performance of the selected models for the training and test datasets in each of the 313 

approaches considered, a) activity from LL, clay content, SSA and CEC, b) activity from LL, 314 

SSA and CEC, c) activity from LL, and d) activity from SSA and CEC. 315 

 316 

Figure 5 presents the residuals of the GBRT model predictions for each of the four approaches, 317 

which are calculated as the difference between predicted and observed values. Additionally, the 318 

figure showcases the quantile-quantile (Q-Q) plots for these residuals. A Q-Q plot contrasts the 319 

quantiles of a given dataset with the quantiles of a theoretical probability distribution, in this case, 320 

the Gaussian distribution. 321 
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 322 

Figure 5. Residuals and Q-Q plots of ach of the approaches considered, a) activity from LL, 323 

clay content, SSA and CEC, b) activity from LL, SSA and CEC, c) activity from LL, and d) 324 

activity from SSA and CEC. 325 

 326 

From examining the Q-Q plots, it can be inferred that in the test dataset, the residuals follow a 327 

distribution close to Gaussian although with a slight tendency towards positive residuals in the 328 

first two approaches. In approaches 3 and 4, the residuals move away from the Gaussian 329 

distribution, showing a light negative skewed distribution. These trends to Gaussian distributions 330 

are desirable since the algorithms, on average, predict the values with low error, and there are no 331 

extreme deviations in the predictions. 332 

The evolution of the predicted activity in the test dataset for the four approaches considered is 333 

shown in Figure 6, compared with the measured values. Approaches 1, 2, and 3 accurately capture 334 

the evolution of actual values. In these 3 approaches, there are no areas where the algorithm tends 335 

to have less reliable predictions, both in the maximum and in the minimum values of activity, the 336 

difference between the predicted and the actual values is relatively small. Instead, in approach 4, 337 
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the predictive power is less, and the algorithm seems not to capture well the prediction of the high 338 

values and it can fail the prediction to identify large values of activity. 339 

 340 

 341 

Figure 6. Activity prediction results for the test dataset in each of the approaches considered, a) 342 

activity from LL, clay content, SSA and CEC, b) activity from LL, SSA and CEC, c) activity from 343 

LL, and d) activity from SSA and CEC. 344 

 345 

4.4. Variable importance in the prediction of activity 346 

The feature importance is an important tool for the model interpretability, providing an evaluation 347 

of the predictive capacity of the input variables which can help to know the contributions of these 348 

to the output of the model. The trained GBRT models can automatically calculate feature 349 

importance, which can be obtained through the Gini Importance or mean decrease in impurity 350 

(Breiman et al. 1984). This method determines each feature importance as the sum over the 351 

number of splits in all the trees that include a specific feature, proportionally to the number of 352 

samples it splits.  353 

Figure 7 shows the acquired importance order of the input variables in the approaches considered, 354 

taking into consideration that the approach 3 only considers one variable, so this analysis is not 355 

necessary. A higher value compared to another means greater importance of a feature for making 356 
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a prediction. In the developed GBRT models, LL is clearly the most important feature variable in 357 

the approaches 1 and 2, and the rest of the variables have a less impact on the prediction of 358 

activity. This is an interesting observation, as in approach 1 our model gives greater importance 359 

in the prediction to LL than to clay content, which is a variable that by definition is proportional 360 

to the value of activity. However, LL is also related to plasticity index and therefore to activity, 361 

and this strong relationship has already been shown in numerous works (e.g. Spagnoli and 362 

Shimobe 2019). In the approach 4, SSA has a significant impact in the prediction of activity, 363 

while the contribution of CEC is small. 364 

 365 

 366 

 367 

 368 

 369 

 370 
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Figure 7. Importance ranking of the input parameters in the activity prediction for each of the 372 

approaches considered, a) activity from LL, clay content, SSA and CEC, b) activity from LL, 373 

SSA and CEC and c) activity from SSA and CEC. 374 

 375 

5. Conclusions. 376 

In geotechnical engineering, dealing with expansive soils is crucial due to their challenging 377 

swelling and shrinking behaviors. This study introduces a novel approach, utilizing GBRT to 378 

predict activity in clayey soils, a property related to swelling potential. Such predictive 379 

capabilities have direct applications in pre-anticipating soil behavior, leading to safer and more 380 

efficient construction and infrastructure planning. To achieve this aim four approaches to predict 381 

activity were considered using different input variables: 1) LL, clay content, SSA and CEC, 2) 382 

LL, SSA and CEC, 3) LL, and 4) SSA and CEC. This research paper has offered several key 383 

insights and contributions: 384 

1. GBRT outperformed the 35 algorithms that were initially selected and evaluated. These 385 

algorithms were subsequently tuned using a Bayesian optimization process, obtaining the 386 

definitive algorithms for the four approaches considered. 387 

2. In the first three approaches, models yield high prediction accuracy. Approach 1, with its 388 

inclusion of clay content (linked to activity) and LL (related via PI), had the highest predictive 389 

accuracy (R2 = 0.98).  390 

3. The notable performance of Approaches 2 and 3 suggests that soil activity can be reliably 391 

predicted using only LL (R2 = 0.94), with even greater precision when combined with SSA and 392 

CEC  (R2 = 0.96). 393 

4. The fourth approach, i.e. predicting activity from SSA and CEC, did not show satisfactory 394 

results in any of the models analysed, obtaining an R2 value of 0.46, being able to conclude that 395 

there is no reliable way to predict activity from SSA and CEC.  396 

5. The conducted feature importance analysis indicated that LL is the most influential variable in 397 

predicting activity for Approaches 1 and 2, with other variables having a lesser impact. In 398 

Approach 4, SSA is the primary contributor to the prediction of activity. 399 
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Finally, the potential for scalability and adaptability of the proposed algorithms might be subject 400 

to further detailed investigation. By incorporating a larger dataset, the proposed algorithms could 401 

be refined, potentially extending the relevance of the current work. This could also create the way 402 

for accounting for the effects of additional variables, marking a direction for future research. 403 
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