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An unprecedented global social and economic impact as well as a significant

number of fatalities have been brought on by the coronavirus disease 2019

(COVID-19), produced by the severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2). Acute SARS-CoV-2 infection can, in certain situations, cause

immunological abnormalities, leading to an anomalous innate and adaptive

immune response. While most patients only experience mild symptoms and

recover without the need for mechanical ventilation, a substantial percentage of

those who are affected develop severe respiratory illness, which can be fatal. The

absence of effective therapies when disease progresses to a very severe

condition coupled with the incomplete understanding of COVID-19’s

pathogenesis triggers the need to develop innovative therapeutic approaches

for patients at high risk of mortality. As a result, we investigate the potential

contribution of promising combinatorial cell therapy to prevent death in

critical patients.
KEYWORDS

COVID-19, cytokine storm, immunomodulation, mesenchymal stromal cells, SARS-
CoV-2, advanced therapies
1 Introduction

Severe acute respiratory syndrome coronavirus 2, or SARS-Cov-

2, is a new coronavirus originally discovered after an outbreak of

respiratory illness called COVID-19 in the Chinese city of Wuhan,

Hubei (1). The infection of this virus quickly transitioned from

being an isolated epidemic in a Chinese region to becoming a global

health emergency of global alarm, and eventually a worldwide

pandemic, due to the accelerated number of infections and

fatalities that happened first in China and afterwards over the

world. On March 11, 2020, given the rapid and progressive

expansion of the epidemic internationally, the World Health

Organization (WHO) declared a state of pandemic.

Coronaviruses belong to a broad virus family and happen to be

the primary cause of common cold and some other diseases such as

Middle East respiratory syndrome (MERS-CoV) and severe acute

respiratory syndrome (SARS-CoV) (2, 3). They are encapsulated,

and exhibit a spherical shape with the longest single-strand positive-

sense RNA genome amid RNA viruses (4). Their name is due to a

spike protein in their surface that resembles a crown.

SARS-CoV-2 is mostly spread through respiratory particles that

are emitted when an infected individual sneezes, speaks or coughs.

These particles, both small and large in size, tend to be concentrated

within a short distance, the probability of transmission decreases

with barrier methods as masks, physical separation and increased

ventilation (5, 6).

Initial studies showed that SARS-CoV-2 infection can manifest

across a wide clinical spectrum, ranging from asymptomatic

infection to critical illness; for individuals who experience

symptoms, the median incubation period of SARS-CoV-2

infection is typically around 4 to 5 days, and within an 11-day

timeframe following infection, approximately 97% of individuals
02
are likely to experience symptoms (7). Obesity, cardiovascular

disease, chronic lung disease, diabetes, and advanced age are

among the main risk factors associated with the progression of

severe COVID-19 (6, 8, 9). Depending on the degree of severity of

the clinical manifestations, the picture ranges from medium/

moderate to severe and critical (Table 1). Clinical or radiographic

evidence of lower respiratory tract disease, combined with a blood

oxygen saturation level of 94% or above while the patient is

breathing ambient air, indicates moderate disease. Severe disease

can be identified by lung infiltrates (affecting more than 50% of the

lung field within 24 to 48 hours), tachypnea (respiratory rate of 30

breaths per minute), hypoxemia (oxygen saturation of 93% or

lower; ratio of partial pressure of arterial oxygen to fraction of

inspired oxygen of 300), and tachycardia (heart rate exceeding 100

beats per minute) (6, 10) and patients can progress to Adult

Respiratory Distress Syndrome (ARDS), which is a common
TABLE 1 Clinical spectrum of infection severity.

Mild to moderate Severe to critical

Fever Immune Dysfunction

Dry cough Lymphopenia

Smell/taste loss Sustained inflammation

Headache Secondary bacterial/fungi infection

Dizziness ARDS (Acute respiratory distress syndrome

Nausea Thrombosis

Diarrhea Multiorganic damage (liver, kidney, myocardial)

Muscle/Joint pain
Respiratory distress
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immunopathological feature of severe COVID-19, SARS-1-CoV

and MERS-CoV and is caused by an aggressive inflammatory

response that can lead to respiratory difficulties and

death (Figure 1).

Throughout initial phases of the pandemic, approximately 17%

to 35% of COVID-19 hospitalized patients were treated in an

Intensive Care Unit (ICU), most likely due to hypoxemic

respiratory worsening (11). Typically, children experience less

severe symptoms primarily affecting the upper respiratory system,

and hospitalization is rarely necessary, accounting for 2% to 5% of

individuals who have been confirmed to have COVID-19 through

laboratory testing exhibit an unclear susceptibility to the virus, as it

is not well understood why they are less prone to contracting it,

plausible causes include partial immunity from preceding viral

exposures, lower exposure rates, and less strong immune

responses, such as no cytokine storm (CS). Though the large

percentage of pediatric cases are mild, a small proportion (7%) of

hospitalized children, develop severe disease that requires

mechanical ventilation (12).
2 High mortality risk COVID-19
patients: size of the niche

The evaluation of COVID-19 is based upon disease severity.

Although severe sickness can affect anyone, most individuals with

serious illness have at least one risk factor, several comorbidities and

underlying diseases that eventually will progress into admission to

the ICU, intubation, mechanical ventilation and death). Elder

patients with comorbidities typically have severe to critical

COVID-19 (13, 14). In a report from the Chinese Centre for

Disease Control and Prevention (15), rates of case fatalities were

respectively, 8% for those who age 70 to 79 year old and 15% for

those aged 80 or older. This data contrasts to the 2.3% overall cohort

case fatality rate (10), indicating that while symptoms of infection in

kids and teenagers are often moderate, a tiny percentage do have

severe and even fatal illness (16).
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In a study of approximately 300,000 confirmed COVID-19

cases recorded in the United States, patients with documented co-

morbidities exhibited a mortality rate that was 12-fold higher

compared to those without such underlying conditions (17).

Furthermore, the COVID-19 vaccine significantly decreases the

risk of developing a severe disease and is linked to a lower fatality

rate. Roughly, clinical features and distribution of COVID-19

population can be seen on Figure 1. Since a high proportion of

SARS-CoV-2 infections are asymptomatic and mild infections go

mostly undetected (18), the infection mortality rate has been

estimated in many studies to be between 0.15% and 1%, with

substantial variation by region and among different risk categories

(19, 20).

As of May 31st 2023, 689,549,946 people have been diagnosed

with COVID-19, either by PCR assessment or any other available

assay. Total death reported rises up to 6,884,636, close to 1% (21).

The most prevalent clinical signs of COVID-19 include

dyspnea, dry cough, and fever. Typically, 2 days to 2 weeks after

viral contact, symptoms start to appear (22). Previous studies

conducted on 181 COVID-19 confirmed cases outside Wuhan,

China showed that 5 days after initial exposure, symptoms started

to occur, and 97% of people began to experience symptoms 11 days

after infection (7). Additional signs experienced by some patients

include ageusia, anosmia, myalgia, sore throat, fatigue, diarrhea,

and headache (23, 24). While patients may initially present with

chills and respiratory symptoms without fever, in later stages of the

disease, dyspnea can progress to ARDS or multiple organ failure (8).

Since the initial phases of the pandemic, it was clear that the

diversity in symptoms, age, genetics, geographic location and

morbidity play dissimilar roles in viral transmission and disease

spectrum. Complex biochemical and immunological studies are

required to understand the genetic implications underlying severe

COVID-19. Similar to other RNA viruses, SARS-CoV-2 undergoes

continuous evolution through random mutations and therefore,

those new mutations could affect its infectivity and virulence.

Moreover, the ability of the virus to elude adaptive immune

responses from previous SARS-CoV-2 infections, specific
FIGURE 1

Flow Chart of clinical outcome and epidemiology distribution of COVID-19 patients. Percentages are dependent on variants, country, age and other morbidities.
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antivirals and antibodies may also amend the efficacy of vaccines or

increase reinfection risk (25).

According to seroprevalence surveys (26–28), more than 33%,

and even more than 50% of the global population will be infected

with SARS-CoV-2 by 2022 (29, 30). With so many people still

infected, understanding the duration and effectiveness of immunity

is crucial for future considerations regarding protection against

reinfections and severe disease.

Several variants of SARS-CoV-2 mutants, which display certain

characteristics, such as increased virulence or transmissibility, have

been acknowledged so far, Alpha (B.1.1.7), which was first seen in

the United Kingdom, Beta (B.1.351), initially discovered in South

Africa; Gamma (P.1), discovered in Manaus, Brazil; and Delta, first

discovered in India and became dominant in July 2021 (31, 32).

In November 2021, the Omicron (B.1.1.529) variant was

classified as a Variant of Concern (VOC) and rapidly emerged as

the predominant variant worldwide. This VOC is more contagious

than previous variants which, in fact, have largely disappeared

worldwide (33). The clinical relevance, emergence and

transmission of these new variants evolves quickly, especially for

how it may affect the effectiveness of vaccines and the rates of

transmission as well as effectiveness of current therapeutics (34).

With the introduction of the Omicron variant, the fraction of

completely asymptomatic cases may increase even further. Due to

its increased transmissibility and the occurrence of steep epidemic

waves, it is anticipated that the number of infected individuals will

rise significantly with the emergence of the Omicron variant

(35, 36).

Moreover, those individuals with a higher death rate (WHO

grade 8), are typically male, older than 65, and show concomitant

comorbidities such as obesity, high blood pressure, cardiovascular

illnesses, cancer, type 2 diabetes, smokers, etc. Characteristics that

can be used as early warning signs of a High Mortality Risk (37), as

well as non-vaccinated people or immunocompromised patients

that might result in a poor response to the COVID-19 vaccination.

Even more, a previous study has identified three phenotypes among

COVID-19 patients who were admitted to the hospital based on

their age and sex, underlying medical conditions, clinical and

laboratory data, as well as radiological features at the time of

presentation. The phenotypes have therapeutic implications

despite not being intended for use in mortality prediction, and

relationships with patient prognosis were identified, leading to the

development of a simplified probabilistic model that may be

relevant to other cohorts. Phenotype A was typical for young

women with mild respiratory symptoms and normal

inflammatory parameters, phenotype B included mainly obese

patients, lymphopenia and moderately high inflammatory values.

Finally, phenotype C patients were older, with higher inflammatory

parameters and more comorbidities (38). Furthermore, the

International Severe Acute Respiratory and Emerging Infection

Consortium (ISARIC) has published an assessment of patients’

mortality risk based on a cohort of more than 35.000 patients (39),

with 8 elements readily available at admission (age, respiratory rate,

peripheral oxygen saturation, sex, level of consciousness, number of

comorbidities, C reactive protein and urea level).
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2.1 SARS-CoV-2 virus entry and effects

Coronaviruses have an enveloped, positive sense single-

stranded RNA genome. The five main proteins are the spike

protein (S), membrane glycoprotein (M), an additional membrane

glycoprotein (HE), nucleocapsid protein (N), and a small

membrane protein (SM). The S protein belongs to the group I

fusion glycoproteins. It has a homotrimeric structure with a single

top conformation and two lower conformations. The spike is made

up of two subunits, the N′-terminal S1 and the C′-terminal S2,

which are each in charge of a specific function, such as interacting

with the host cell or engulfing a virion, respectively. RNA genome is

hold within the nucleocapsid while the S-protein, membrane

proteins and envelope constitute together the viral envelope (40).

Coronavirus spike proteins are class I fusion proteins that

resemble the envelopes of other viruses such as human

immunodeficiency virus (HIV) or hemagglutinin of influenza

species (41). The SARS-CoV-2 virus uses the angiotensin-

converting enzyme II (ACE2) receptor as a cellular entry (42),

which is widely distributed in type II alveolar cells and as well as a

small proportion of monocytes and macrophages, the capillary

endothelium of the lungs and many other organs, including the

hepatic, cardiovascular, gastrointestinal, and renal systems which

also express ACE2 (43). ACE2 variant N720D may also enhance

SARS-CoV-2 infectivity (44), and show more affinity of Furin to the

mutated D614G S-protein of the virus (45). As soon as the viral

spike protein attaches to the ACE2 receptor of the host cell

membrane, the virus enters into host cells. Changes on the S-

protein after docking grants the virus entrance to the endosomal

pathway, virus RNA is then translated into viral components (46) in

such a way that structural proteins are produced by the infected cell

and their fragments exposed extracellularly by the Human

Leukocyte Antigen (HLA)-II to the Antigen Presenting Cell

(APC) (Figure 2).
2.2 Dysfunctional immune response

In the case of SARS-CoV-2 infection, severe disease is partially

generated by the trigger of an unbalanced immune response. Innate

immune cells must identify the virus’s invasion in order to stop the

viral attack. This is done by pathogen-associated molecular patterns

(PAMPs). Following the identification of viral genetic material, type I

interferon (IFN) production is stimulated, and its signaling cascade

activates important genes to inhibit viral replication and the

development of a potent adaptive immune response (Figure 2A).

After an infection occurs, nasal epithelial cells increase the

production of secreted immunoglobulins. In cases of severe

COVID-19 infection, this natural mucosal defense mechanism

can be exploited to harm the host by boosting the expression of

pro-inflammatory cytokines (CS). Viral infections stimulate the

enhancement of IFN regulatory genes (IRF3 and IRF7), which

subsequently elevate the synthesis of type I IFN (47), in fact,

nasal epithelial cells exhibit robust upregulation of both interferon

I and III as their primary antiviral reaction (48). Type I IFNs play a
frontiersin.org
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vital role in regulating viral replication and bolstering the innate

immune response (49).

The first barrier, the innate immunity, for any infection includes

macrophages, neutrophils and NK-cells, mostly on the

oropharyngeal mucosa. In 60-80% of the cases (asymptomatic)

(18, 50–56), this barrier stops the virus and kills the virion-infected

cell transmitting the message to the adaptive immune system. The

HLA-II molecules of the antigen-presenting cells (APCs, mostly

macrophages and dendritic cells) presents to the lymphocyte T-

receptor (TCR) of the CD4-helper cells the antigens (“peptides”

product of the hydrolysis of the S, M and N proteins) and activate

into T-helper cells (Th): Th1 (in peripheral tissues) and follicular T-

helper cells (Tfc, secondary lymphoid organs) which will, in turn,

activate both the B-cells, which produce neutralizing antibodies and

CD8+ cytotoxic cells, that kill virion infected cells. In convalescent

patients recovered from COVID-19, memory NK-cells and B-cells

remain in the body (in peripheral blood and lymphoid organs)

ready to respond when these “foreign” antigens enter into the

body (57).

Following the attachment of SARS-CoV-2 to the target cell, there is

a possibility of over activation of the innate immune system and its

associated cells, such as dendritic cells,macrophages, and granulocytes.

The humoral and cellular immune system is subsequently activated by

the complex of pro-inflammatory cytokines secreted by these cells. The

immune system overreacts as a result of B-cell activation and antibody

hypersecretion, causing tissue damage. Cytokines secreted from

macrophages also recruit neutrophils and monocytes that penetrate

the infection site too severely, damaging lung tissue and aggravating

clinical symptoms. Figure 2 summarizes a simplified example of the

physiological response of the immune system. Memory T-cells can be

subdivided into Central memory T-Cells CDRA-CCR7+,

characteristic of the homing of T cells to the lymph nodes and

mucosal tissues and effector memory T-Cells CD45RA-CCR7- that
Frontiers in Immunology 05
migrate to peripheral tissues. Our group has previously identified

SARS-Cov-2 specific memory T-Cells, Figure 2B, modified from

Ferreras et al. (58).

Figure 3A depicts the dysfunctional SARS-Cov-2 induced

immune response with CD8+ and CD4+ exhaust ion

(lymphopenia) and Macrophage over activation (Tumour Necrosis

Factor-a and CS). Other effects of the virus on the immune system,

endothelia and tissue damage are thoroughly described.

2.2.1 NETosis and pyroptosis
In addition to engulfing bacteria, producing reactive oxygen

species, degranulating, and secreting antimicrobials, neutrophils

can also destroy invading pathogens, including viruses, by

forming Neutrophile Extracellular Traps (NETs). NETs are

extracellular fiber networks made mostly of neutrophil DNA that

attach to and eliminate extracellular pathogens with little harm to

the host cell. By harming endothelium cells, one of SARS-CoV-2

primary targets, neutrophils can also contribute to systemic viral

dissemination (59–62). T-helper (Th) 1 cells and intermediate

CD14+, CD16+ monocytes produce proinflammatory cytokine

profiles. This is followed by neutrophil and macrophage

infiltration into lung tissue, resulting in a CS (63). Rapid

activation of pathogenic Th1 cells induces secretion of

proinflammatory cytokines, such as interleukin-6 (IL-6) and

granulocyte-macrophage colony-stimulating factor (GM-CSF).

GM-CSF also activates CD14+ CD16+ inflammatory monocytes,

causing them to produce vast quantities of IL-6, Tumour Necrosis

Factor-a (TNF-a), and other cytokines (64, 65). IL-6, which is

primarily linked to macrophages and dendritic cells (DCs), is one of

the deleterious cytokines in COVID-19 linked with severe clinical

conditions (66). This affiliation not only highlights the significant

role of APCs in the development of the infection but also the

widespread involvement of the innate immune system (67).
BA

FIGURE 2

Overview of the Immune System Response. NET: Neutrophile Extracellular Traps. APC: Antigen Presenting Cell. NK: Natural Killer. TCR: T-cell
Receptor. HLA-I/HLA-II: Human Leukocyte Antigen I and II. Th1: T Helper 1 Lymphocyte. Tfc: Follicular T Helper Cell. CD8+ CTL: Cytotoxic T
Lymphocyte. (A) Course for a normal immune response engulfing innate and adaptive immunity. (B) Memory T-cells (modified from Ferreras et al,
2021). CD45RA-: CD45RA isoform depleted cells. CM: Central Memory T-cells. EM: Effector Memory T-cells.
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Once SARS-CoV-2 has entered the cell, rapid viral replication

may result in significant vascular leakage and endothelial and

epithelial cell death, which in turn triggers the production of a

large amount of proinflammatory cytokines and chemokines and,

as a direct result, cell pyroptosis (68).

Pyroptosis, a extremely inflammatory and Caspase-1-

dependent form of programmed cell death, is a common reaction

to intracellular pathogen infection and is a component of the

immune system’s fight against infection. Interleukin (IL)-1b,
which is released during pyroptosis, is raised in SARS-CoV-2

patients (8). Along with its beneficial effects on immune cell

migration to inflamed tissues, IL-1b also increases on SARS-Cov2

and is largely released by macrophages through apoptosis and

pyroptosis. In addition to IL-1bs beneficial effects on initiating

and maintaining inflammation, NLRP3-IL-1 signaling has also been

revealed to play a role in the COVID-19 CS. IL-1b, primarily

released by macrophages through apoptosis and pyroptosis is

elevated during SARS-Cov2 infection. It contributes positively to

the recruitment of immune cells to inflamed tissues. Additionally,

IL-1b is involved in initiating and sustaining inflammation, it has

been hypothesized that NLRP3-IL-1b signaling also plays a role in

the development of CS observed in COVID-19 (69).

NLRP3 is an innate immune system component that behaves as

a pattern recognition receptor (PRR) that acknowledges PAMPs.

There are several studies that suggest that IL-1b may contribute to

COVID-19 CS in coronavirus infections (70, 71). In addition,

alveolar epithelial cells and macrophages recognize pathogen-

associated molecular patterns (PAMPs), damage-associated

molecular patterns (DAMPs), and antibody-secreting cell (ASC)

oligomers. This recognition leads to the release of proinflammatory

chemokines, interferons, and cytokines, which attract immune cells,

particularly T-cells and monocytes, from the bloodstream into the

lungs affected by the infection (72), which might clarify the

lymphopenia detected in the majority of the patients with SARS-

CoV-2 infection (73). Additionally, SARS-CoV-2 induced

pyroptosis among lymphocytes and macrophages exacerbates the

lymphopenia in most of the observed patients (68).
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In addition, SARS-CoV-2 infection, cell pyroptosis, and the

resulting hyperinflammation might well induce NETosis, a

controlled cell death process caused by neutrophils releasing

NETs (74) that substantially lure and kill microbes as a

mechanism of the innate immune response (75). However, if

NETosis becomes dysregulated as it happens in acute and chronic

inflammatory diseases (76), it can contribute to the pathogenesis of

sepsis and ARDS, with NETs exacerbating multiorgan failure,

microthrombi and vascular tissue damage (77). Preceding studies

have described in severe cases of COVID-19, pathogenic

immunothrombosis resulting from a dysregulated NET formation

(59). COVID-19-related ARDS has been found to be linked to

increased NET formation, and constitutes a potential marker of

disease severity (78, 79).

Furthermore, the transmission risk is highly determined by the

viral load (80) and viral antigens may well lead to severe disease and

therefore induce a tougher antibody response (81). Previous studies

in mice have showed that viral exposure dose defines likelihood of

SARS-CoV-1 infection (80, 82) and SARS-CoV-2 research in

golden hamsters were indicative of dose-dependent infection (83)

(Figure 3). However, it is important to note that although patients

admitted to ICU may exhibit a slower decline in viral load, the peak

viral load of SARS-CoV-2 typically occurs within 5-6 days after the

onset of symptoms (84), and does not vary between patients with

mild and severe disease (85). A possible explanation could be that

antibodies might exacerbate disease severity by antibody-dependent

enhancement (ADE) as it happened with SARS-CoV outbreak in

2002 (86). Still, there is no present evidence backing this for SARS-

Cov-2 (87). Moreover, SARS-CoV-2 RNA has been found in

patients’ samples up until death, suggesting a clear correlation

between poor disease outcome and viral load persistence (15).

2.2.2 Cell death and Sars-Cov-2
It is widely recognized that cellular apoptosis and autophagy are

fundamental processes within cells, serving pivotal roles in

upholding balance and influencing disease development (88). A

growing body of research suggests that cell death and autophagy
BA

FIGURE 3

Dysfunctional SARS-Cov-2 induced immune response. NET: Neutrophile Extracellular Traps. APC: Antigen Presenting Cell. MAS: Macrophage Activation
Syndrome. NK: Natural Killer. (A) SARS-Cov-2 blocks normal immune response. (B) Pathogenic mechanism of the dysregulated immune response.
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induced by coronaviruses could hold significance in virus infection

and the development of disease. The occurrence of lymphopenia

has been linked with various indicators of severity, including the

presence of the death ligand, FasL (88). An increasing body of

evidence highlights the dual nature of these processes in the context

of viral infections (89, 90). On one side, these processes hinder the

virus’s replication and transmission by clearing infected cells

through cell death. Conversely, dysregulated cell death leads to

uncontrolled cellular damage and disruption in immune responses.

Concurrently, viruses exploit cell autophagy to their advantage,

utilizing it for replication niches, immune evasion, and extracellular

release (91).

Infection with SARS-CoV-2 in lung epithelial cells triggers both

cell death and an inflammatory response (92), to counteract this

phenomenon, the application of caspase inhibitors can inhibit

apoptosis, leading to the preservation of CD4+ T-cells and reverse

the process of lymphocyte apoptosis (93).While early inflammatory

responses are essential for constraining viral replication (94),

coronaviruses have developed tactics to elude detection by the

innate immune system by evading activation of pattern

recognition receptors (PRRs) and disrupting downstream

interferon (IFN) responses (95). Conversely, severe cases of

COVID-19 are marked by an excessive inflammatory reaction

both in the lungs and bloodstream (8, 96). In such cases, a blend

of cytokines, especially TNF-a and interferon gamma (IFN-g),
trigger a form of inflammatory cell death termed PANoptosis,

subsequently resulting in a CS (96, 97).
2.2.3 Endotheliitis
Recent research indicates that endothelial damage and the

resulting morphological and functional alterations in the

endothelium are significant contributors to COVID-19-induced

hyperinflammation. COVID-19 is expected to have a greater

effect on the lungs, as they are the first organs to become infected

and regenerate very slowly. Previous research suggest that SARS-

CoV-2 infection causes a disproportionate immune response,

known as a COVID-19 CS in severe COVID-19 cases (98, 99).

Post-mortem histology from three patients with late-stage COVID-

19 showed viral inclusions in microvascular lymphocytic

endotheliitis and endothelial apoptotic cells, with infiltration of

inflammatory cells around the vessels and endothelial cells, as well

as signs of endothelial apoptotic cell death in the kidney, lung, heart

and small bowel (100). Furthermore, recent research has found

indications of endothelial glycocalyx disruption in the plasma and

serum of 19 critically ill COVID-19 patients (101). This specific

result is noteworthy because the integrity of the endothelial

glycocalyx, which covers the luminal surface of endothelial cells,

is essential for the preservation of vascular homeostasis (102).

According to these results, SARS-CoV-2 infection has been

observed to directly contribute to the development of endotheliitis

in various organs. This involvement is evidenced by the presence of

viral bodies within endothelial cells and the accompanying

inflammatory response of the host. Additionally, in individuals

with COVID-19, activation of apoptosis and pyroptosis may play a

significant role in the damage to endothelial cells. The systemic
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decreased microcirculatory performance in various arterial beds

and its clinical consequences in COVID-19 patients might be stated

through COVID-19-endotheliitis (100).

The stabilization of the endothelium while preventing viral

replication, primarily with anti-inflammatory anti-cytokine drugs,

ACE inhibitors, and statins, this aspect of SARS-CoV-2 infection

and the development of endotheliitis becomes particularly

significant for vulnerable patients who already have pre-existing

endothelial dysfunction. Factors such as male sex, hypertension,

smoking, obesity, established cardiovascular disease, and diabetes,

which are associated with endothelial dysfunction, are also known

to be linked with unfavourable outcomes in COVID-19 (103–105).

2.2.4 Lymphopenia
Previous clinical findings indicate that lymphocyte

measurements including B cells, natural killer (NK), CD8+

cytotoxic T and CD4+ T cells were all reduced in COVID-19

patients (106, 107). A thorough study of B and T cell populations

in COVID-19 patients found a link between increased disease

severity and lower numbers of CD8+ and CD4+ T cells.

Furthermore, the drop in CD8+ T cells was greater in cases with

milder illness than the decrease in CD4+ T cells (108). Mechanisms

involved in lymphocyte depletion induced by SARS-CoV-2 might

be due to direct T-cell infection via ACE2 receptor, resulting in T-

cell death (109). The depletion and exhaustion of T-cells with their

respective function can be speeded by a number of pro-

inflammatory or anti-inflammatory cytokines, and the virus may

kill secondary lymphoid tissues like lymph nodes and the

spleen (110).

A major contributing component to the observed lymphopenia

is probably due to the inflammatory CS. TNF-a and IL-6 levels in

the serum have been found to be strongly linked with lymphopenia,

whereas levels in the serum of healed patients are nearly normal.

Massive lymphocyte death was discovered during autopsy

examinations on lymphoid organs taken from numerous

individuals who passed away from the condition; this death was

ascribed to high levels of IL-6. Tocilizumab, an IL-6 receptor

antagonist, treatment increased the number of circulating

lymphocytes, further indicating that an increase in IL-6 is a major

factor in the development of lymphopenia (111). Even more,

treatment of critical ICU patients with intubation, mechanical

ventilation and extracorporeal membrane oxygenation (ECMO)

with adipose-tissue derived Mesenchymal Stromal Cells (MSCs)

increase CD4+, CD8+ and B-cells, suggesting that inflammation

synergizes with other mechanisms causing lymphopenia (112). This

sequence of inflammatory events originates from the liberation of

pro-inflammatory cytokines, notably IL-18 and IL-1b. This

phenomenon elucidates the notable feature of commonly

observed neutrophilia and leukopenia (113). Overall, the

harshness of the disease has been closely linked to lymphopenia

and hyper-inflammatory response.

2.2.5 Thromboembolism
Early findings indicated greater incidence of venous

thromboembolism (VTE) in individuals with severe COVID-19
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disease compared to data from similar patients not afflicted by

SARS-CoV-2 in addition to respiratory problems. Patients with

COVID-19 usually experience coagulation problems, and those

with severe sickness frequently have high levels of coagulation

markers such D-dimer and fibrinogen degradation products.

Along with disseminated intravascular coagulation, severe

thrombocytopenia and lymphopenia have also been linked to

worse outcomes (114). As a result of the thromboinflammation

brought on by COVID-19, medical research has also shown that

patients with COVID-19 have an increased risk of developing

pulmonary embolism (PE). In COVID-19, thromboinflammation

appears as increased levels of procoagulants (like von Willebrand

factor) and endothelial dysfunction, which reduces the

endothelium’s protective antithrombotic action (115, 116).

2.2.6 Tissue damage
It has also been shown that SARS-CoV-2 principally affects the

lung by generating diffuse alveolar destruction with ARDS, yet the

recent research has revealed that the virus also has a negative influence

on further important organs and tissue, such as the heart, brain, large

intestine, kidneys, and spleen (117–120). In COVID-19 patients, there

is a link between inflammation and serious organ damage. Diffuse

alveolar injury, including damage to hyaline membranes, is the main

pathophysiology in ARDS. Pneumocytes’ viral cytopathic effect

suggests that there has been direct viral harm (121).

Emerging evidence suggests that SARS-CoV-2 has the

capability to efficiently propagate and replicate in various organs,

including the lungs, brain, heart, spleen, liver, and gastrointestinal

tract. This is supported by findings on the virus’s route of entry and

distribution, as well as the presence of infective RNA in these

organs. These findings indicate the need to explore alternative

mechanisms of cellular entry, such as non-receptor mediated

endocrine entry, in addition to the conventional understanding of

cellular entry through the ACE2 receptor.
2.3 T-cell and B-cell disorders

The resolution of a viral infection encompasses both cellular

and humoral immune reactions. The humoral immune response,

too, assumes a vital role in eradicating the virus within the host. The

antibody responses specific to SARS-CoV-2 exhibit differing levels

and characteristics between individuals with asymptomatic

infections and those experiencing severe disease.

B cells play a crucial role by producing antibodies and

facilitating the humoral immune response, rendering them highly

significant in establishing protective immunity against SARS-CoV-

2 (122), in addition T cells differentiate into cytotoxic T

lymphocytes (CD8+) and helper T-cells (CD4+) engaging with

the COVID-19 infection through distinct interactions (123).

Sustained defense hinges on the expansion of memory T cells

and B cells tailored to SARS-CoV-2. Notably, follicular T-helper

cells drive the humoral immune reaction, fostering a reservoir of

specialized memory B cells primed to respond swiftly if confronted

with a potential reinfection (124). The cytotoxic program in CD8+

T cells persists, type 1 cytokines and interleukin-17 (IL-17)
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production rise in T cells from patients who are in the recovery

phase. It’s interesting to note that B cells from people with acute

COVID-19 showed an imbalance between the cytokines IL-6 and

IL-10 in response to the activation of Toll-like receptors, leaning

toward a pro-inflammatory profile. Regardless of the clinical results,

the frequency of IL-6+ B cells reverted to normal in convalescent

patients, but the recovery of IL-10+ B cells was associated with the

resolution of lung problems (125).
3 COVID-19 time-course

COVID-19 shows several phases. During the early infection phase,

usually mild symptomatology is reported such as, fever, cough,

headache, etc. Laboratory abnormalities are lymphopenia, D

fragments of the fibrin protein (D-dimer), low LDH, etc. It is also

characterized by an increased viral load, which encourages a

conservative treatment based on antiviral agents. In a second phase,

the inflammatory response would predominate, leading to pulmonary

inflammation or fibrosis, coagulopathies, and tissue damage andwhere

anti-inflammatory drugs would have greater importance (Figure 4).

SARS-CoV-2 clearance from the lungs and upper respiratory

tract should be effective in the majority of COVID-19 patients as a

result of thefirst cytokine release, activation of the antiviral interferon

response, and recruitment of immune cells; nevertheless, an

abnormal immune response could lead to a severe disease

outcome. Certainly, the excessive production of inflammatory

cytokines and chemical mediators, along with macrophage

activation, endotheliitis, lung hyper-inflammation, coagulopathies,

thromboembolism, and tissue damage, collectively contribute to a

life-threatening response. This response is widely regarded as the

primary cause of the severity of COVID-19 and can lead to fatalities

in affected patients (126, 127). Furthermore, these life-threatening

responses are associated with elevated levels of circulating cytokines,

severe lymphopenia, thrombosis, and extensive infiltration of

mononuclear cells in multiple organs (73, 128, 129).

We could roughly discuss the physiopathology and viral

characteristics as follows; early infection, in which a viral infection

results in an initial immune system depression that frequently results

in significant lymphopenia (130). The virus infects ACE-2 receptor-

containing cells (endothelial, alveoli, gut epithelia, kidney, etc.),

causing a systemic endothelial inflammation that manifests

clinically as fever, dry cough, and lymphopenia. This inflammation

is more severe in patients with prior chronic endotheliitis (old age,

obesity, atherosclerosis, hypertension, diabetes, etc.). In around 10–

20% of infections, the virus is not stopped by the body’s first line of

defense (NK-cells, neutrophils, macrophages, IFN-g, etc.), the viral
load rises, and pneumonia with lymphopenia occurs, requiring

hospitalization (Figure 1). A hyper-inflammatory picture that

mimics Macrophage Activation Syndrome (MAS), Graft-versus-

Host Syndrome (GvHD), or secondary hemophagocytic

lymphohistiocytosis is present in hospitalized patients along with

symptoms such as respiratory distress, fever, hypoxia, etc.

Thromboembolism, tissue damage, and inflammation, a very

severe systemic inflammatory phase requiring an intensive care unit

develops in about 5% of infected patients. Unlike the SARS-1
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coronavirus, the host reaction is highly robust and varied. The

development of a major inflammatory phase (131), which leads to

ARDS, is in fact one of the most obvious features of the

physiopathology of pneumonia in COVID-19 illness (132) and a

condition that is similar to the MAS (126, 133) and injury to tissues

that might possibly require ECMO. Additionally, a progressive

endothelial thromboinflammatory syndrome (with raised D-

dimers levels) uncommon in other viral infections, aggravates the

disease’s prognosis (107, 134).
4 Combinational therapies

Along with vaccine research and other strategies that obstruct

viral entry or directly target the virus, therapies that treat the

immunopathology of the illness are increasingly being prioritized.

The use of monoclonal antibodies such as Sotrovimab or

Tixagevimab-cilgavimab for modulating the inflammatory

response can constitute an alternative therapeutic strategy. IFN,

IL-1, IL-6, and complement factor 5a are all mediators that target

the extreme inflammatory response that occurs after SARS-CoV-2

infection with the aim of avoiding organ damage (135–137) thus

monoclonal antibodies aiming to block these factors, together with

tyrosine kinase inhibitors are being used to block the cytokine

storm-like response or their ability to avert pulmonary vascular

leakage in people with COVID-19.
4.1 Convalescent plasma from donors

The earliest reports of treatments using plasma from patients

who had recovered from viral illnesses were published during the

1918 flu pandemic. Clinical improvement was seen in all

participants both before and after receiving convalescent plasma

transfusion status, according to a preliminary study of 5 critically

sick COVID-19 patients treated with convalescent plasma

encapsulating neutralizing antibodies (138). Nevertheless a
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multicenter randomized open-label clinical trial for convalescent

plasma in patients hospitalized with COVID-19 pneumonia (139)

did not result in a clear protection.
4.2 Cytokine inhibitors

Alongside with the clinical symptoms linked to viral invasion, the

CS has attracted the most interest, raising the hypothesis that anti-

inflammatory treatments aimed at lowering interleukin-6 (IL-6), IL-1,

or even TNF-a may be helpful. It has been established that increased

plasma levels of cytokines and chemokines, IL-6 in particular, are

significantly higher in severe than in mild to moderate disease

allowing to predict COVID-19 severity and survival (140–142) and

correlate with the harshness of the disease. Early reports showed

augmented plasma concentrations of IL-6, therefore providing the

introduction of anti-IL-6 therapies in randomized clinical trials (143,

144) therefore, novel cytokine inhibitors, including Baricitinib,

Anakinra, and Tocilizumab, were likely options for treating severe

COVID-19 which found appropriate niches (145–147).

Baricitinib, an inhibitor of Janus-Associated Kinases (JAKs),

which belong to a family of intracellular, non-receptor tyrosine

kinases that transduce cytokine-mediated signals via the JAK-STAT

pathway and since and JAKs mediate actions of many pro-

inflammatory cytokines, combines both antiviral and anti-

inflammatory effects. JAKs inhibitors block the signal

transduction pathways that activate the immune system and

cause inflammation, therefore, constitute an attractive treatment

approach to stop the development of more serious disorders (148),

considering the significant role that this transduction channel had

in the onset of the CS in COVID-19 (149).

It is clear that therapeutic approaches targeting cytokine

responses, in addition to anti-viral medications, deserve special

attention to reduce morbidity and mortality in COVID-19 patients,

even though the mechanisms by which SARS-CoV-2 infection

induces cytokine overproduction are not yet fully understood

(150, 151).
FIGURE 4

Time-course and clinical outcomes for COVID-19. Conservative treatment is being used for the first infection phase, which lasts up to 3–5 days and
progresses with mild symptomatology and increased viral load, whereas in a small proportion of patients the second phase, 7 day onwards, yields
extensive inflammatory response and an anti-inflammatory approach is recommended. Therapeutic proposal: Use SARS-Cov-2 memory CD45RA-
CD3+CD4+ during the first phase (viral) and safe and HLA-compliant mesenchymal stromal cells for the second phase (complications).
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4.3 Corticosteroids, dexamethasone

Patients with autoimmune and inflammatory conditions such

asthma, systemic lupus erythematous, Crohn’s disease, and

rheumatoid arthritis are given prescriptions for glucocorticoids.

Systemic corticosteroids (such as hydrocortisone, dexamethasone,

and methylprednisolone) are given orally or intravenously and are

effectively dispersed throughout the body, showing a variable degree

of relative anti-inflammatory effectiveness and mineralocorticoid

effects. However, high doses inhibit the immune response.

Dexamethasone, a synthetic corticosteroid that has the ability of

dampening the immune system, which discouraged its use during

early phases of COVID-19 infection. RECOVERY Trial showed a

beneficial outcome using low dose (6 mg/day) in severe patients,

defined as those with oxygen saturation lower than 94% (152).

Dexamethasone reduced deaths by one-fifth in other hospitalized

patients receiving only oxygen, but there was no benefit seen in

COVID-19 patients who did not require respiratory support.

Patients who had symptoms for more than 7 days and needed

mechanical ventilation benefited the most. On the other hand, there

was no benefit (and potential harm) amid patients who had shorter

symptom duration and no need for supplementary oxygen.

Furthermore, it could be extremely dangerous during recovery

because not only will the virus persevere, but the body will be

prevented from producing protective antibodies (153, 154).

In summary, numerous randomized trials have found that

systemic corticosteroid therapy improves clinical outcomes and

drops mortality in COVID-19 hospitalized patients who need

supplementary oxygen (155, 156), perhaps by dampening the

systemic inflammatory response induced by COVID-19, which

can result in lung injury and multisystem organ dysfunction.
4.4 Cell-based therapies

4.4.1 Memory T lymphocytes CD45RA-
The role of adaptive immunity in COVID-19 and the protective

immunity conferred by T-cells and the role of memory T-cells in

providing protection against SARS-CoV-2 has not yet been
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properly defined (58, 157, 158). Specific memory T-cells for other

coronavirus has been found up to 11 years after infection (159),

particularly in the context of allogeneic hematopoietic stem cell

transplantation (HSCT). This immunological memory assigns a

swift and fast secondary immune response that is decisive and

forms the basis of adoptive cell treatment for viral infections in

immunosuppressed patients. Infusion of CD45RA- memory T-cells

reduces induced mortality and CD45RA- T-cells alloreactivity of

GvHD in bone-marrow transplantation (160, 161).

Previous research suggested that CD45RA- memory T-cells

from the blood of convalescent donors include a SARS-CoV-2

specific T-cell population that is easy, efficient, and quick to

isolate and subsequently, may be able to clear virally infected cells

and confer T-cell immunity (Figure 2) (58). CD45RA- memory T

cells from convalescent donors harboring SARS-CoV-2 specific T-

cells were infused intravenously in a Phase 1 research clinical trial to

assess the safety and feasibility of adoptive cell treatment for

moderate to severe COVID-19 cases (NCT04578210). Nine

patients with lymphopenia and pneumonia who had at least one

HLA Class I match with the donor were enrolled (Figure 5A). The

CD45RA- memory T cells were administered to the first 3 patients

at a low dose (1x105 cells/kg), the following 3 patients at an

intermediate dose (5x105 cells/kg), and the last 3 patients at a

high dose (1x106 cells/kg). There were no documented severe

negative effects. Six days following the infusion, the patient’s

clinical state improved as measured by the National Early

Warning Score (NEWS) and a 7-category point ordinal.

Following infusion, the median length of stay in the hospital was

8 days for the low dose group, 7 days for the intermediate dose

group, and 4 days for the high dose group. Two weeks following the

infusion, the inflammatory markers normalized and all displayed

lymphocyte recovery. This study provides early evidence that the

use of allogeneic CD45RA- memory T-cells from convalescent

donors for the treatment of COVID-19 patients with moderate to

severe symptoms is possible, safe, and related with rapid clinical

improvement and brief hospital stays (162). Adoptive T-cell therapy

has essentially no side effects, and the cell product can be preserved in

a lymphocyte biobank to allow ready access in the event of future viral

pandemics (58). Repeated infusion of CD45RA- cells from family
BA

FIGURE 5

Clinical outcomes after CD45RA- (A) and MSC (B) treated patients. (A) T-cell memory based therapy (CD45RA depleted infused). Time-course and
clinical outcome. (B) Cell-based therapy. Mesenchymal Stromal-stem Cell (MSC) infusions and timing are represented in arrows. In the X axis, days
from the first MSC infusion are specified. Type of ventilation support is graded in colors through each row. MSC: Mesenchymal Stromal-stem Cells;
ICU: Intensive Care Unit; ECMO: Extra Corporeal Membrane Oxygenation.
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donors have also been used to refractory viral and fungi infections in

transplanted individuals (163).

4.4.2 Mesenchymal stem-stromal cells
Advanced Therapy Medicinal Products (ATMPs) are cutting-

edge therapies that include gene therapy, somatic cell therapy, and

tissue-engineered products. Mesenchymal Stem-stromal cells

(MSCs) are adult stem cells that have immunomodulatory,

regenerative, and differentiation capabilities. Among them MSC

have demonstrated to be safe in more than 400 clinical trials

(Clinicaltrials.gov). As for October 31, 2022, MSC were proposed

to be used in 37 clinical trials to treat COVID-19: 8 of them

completed, 6 still recruiting, 7 active not recruiting, 4 suspended

or withdrawn and the rest unknown.

MSC are multipotent non-hematopoietic progenitor cells with

different degrees of stemness, derived from the mesodermal germ

layer and resident inmost of tissues (164).MSCs can be sourced from

different types of tissues, including adipose tissue, Wharton’s jelly

tissue, bonemarrow, and amniotic fluid. They are able to differentiate

in a wide range of cell types such as chondrocytes, osteocytes, neural

cells, myocytes, and epithelial cells (165). The International Society

for Cellular Therapy (ISCT) proposed the minimum criteria for the

characterization of human MSC: (i) adherence to the plastic of the

culture plate, (ii) adipogenic, chondrogenic and osteogenic

differentiation capacity, and (iii) a specific profile of surface

markers CD45+, CD90+ and CD73+, CD105+, HLADR-, CD11b-

or CD14-, CD19- or CD79a- and CD34 (166, 167). Due to its unique

biological properties including adhesion to plastic, easy expansion

and culture, MSCs are the cell type mostly used in Cellular Therapy.

MSCs were first employed in humans as a cellular therapy in 1995,

and they have since been used in basic research and clinical applications

(168). The use of allogeneic MSCs in COVID-19 might prove useful

due to its capabilities to diminish this clinical and biological picture of

massive inflammation, and there are evidences of efficacy in GvHD

(169, 170). Bone marrow-derivedMSC appeared to be highly successful

as a therapeutic option for ARDS on a phase I-II trial (171).

MSCs from the umbilical cord (UC-MSC) exhibit minimal

immunogenicity and both immunoregulation and tissue-fixing

abilities. They are an outstanding option for allogeneic adoptive

transfer treatment because of this. It may be used to treat acute lung

damage brought on by the H5N1 infection which shared a comparable

inflammatory cytokine profile with COVID-19 (172–174).

Mesenchymal Stromal-stem cell therapy might have the ability to

avoid the release of cytokines via immune system, endorsing

endogenous repair because of the regenerative properties of the stem

cells. The MSC cells may aid in restoring lung microenvironment,

protect alveolar epithelial cells, and treat pulmonary dysfunction and

COVID-19 associated pneumonia (175). Furthermore, it has been

shown that intravenous infusion UC-MSC as an adjuvant therapy to

critically ill patients increases their chance of survival by inducing an

anti-inflammatory state (176). The main reason for improvement of

COVID-19 disease is the higher anti-inflammatory features of the

MSCs after its intravenous provision. Furthermore, previous studies

suggest that direct cell to cell mitochondrial transmission from MSCs

to the alveolar epithelium and immune cells restricts the inflammatory

response (177, 178). Among all stromal cells, Placenta-derived decidua
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stromal cells (DSCs) have been found to show a more robust

immunosuppressive effect than other sources of MSCs. These DSCs

display significantly stronger immunomodulatory and anti-

inflammatory properties, making them successful in treating and

managing steroid-refractory acute GvHD (179).

MSC therapy is thought to have the potential to prevent the

excessive release of cytokines during an immune system response

known as a cytokine storm. Additionally, MSCs possess reparative

properties that can stimulate the body’s natural healing processes.

These stem cells are capable of suppressing the proliferation of

immune cells and modulating the functions of both innate and

adaptive immune cells (180). Proinflammatory cytokines, such as

TNF-a, IFN-g, IL-1b, IL-2, IL-6, IL-8 and IL-17, signal over their

receptors in MSC surface and stimulate biosynthesis of HGF, LIF,

TSG-6, TGF-b, IL-10, and expression of superoxide dismutase (SOD),

prostaglandin-E2 (PGE2), indoleamine-pyrrole 2,3-dioxygenase

(IDO), nitric oxide synthase (iNOS, produced by murine cells) and

cyclooxygenase-2 (COX-2) produced by human cells (181, 182). It has

been shown that these molecules mediate the immunomodulatory

and immunosuppressive properties of MSCs (180).

Our group was the first to use allogeneic MSC to treat critical

mechanically ventilated COVID-19 patients (Figure 5B, Patients 1-13).

Preliminary results of the BALMYS trial (NCT 04348461, suspended

by lack of funding), indicate that critically ill patients with COVID-19

pneumonia can be safely administeredwithMSCderived from adipose

tissue (AT-MSC) in and that administration was followed by clinical

improvement and changes in inflammatory markers and recovery of

immune populations (B-cells, CD4+ and CD8+ cells), these results

suggest a potential biological effect of the cells.Only steroids were given

concurrently when the cells were delivered. During their time in the

ICU, the majority of patients received supportive care. This comprised

normal treatments such as sedation and mechanical ventilation in

addition to the use of vasopressors or inotropic medications, enteral or

parenteral feeding, diuretics, and/or antibiotics. The findings imply

that early adipose tissue-derived allogeneic MSC therapy during

mechanical intubation may enhance the outcome (112). We also

showed the absence of side effects following cell administration in

these critically ill patients with respiratory failure, extensive

inflammation, and prothrombotic risk. Allogeneic MSC was used to

treat 13 adult COVID-19 patients who were receiving invasive

mechanical ventilation and had previously taken antiviral and/or

anti-inflammatory medications (including hydroxychloroquine,

steroids, Tocilizumab, and/or Lopinavir/Ritonavir, among others)

(112). Patient 14 was a Grade 4 (no-intubated, no-mechanical

ventilation, that received bone-marrow derived mesenchymal

stromal cells infused intravenously (183).

Nonetheless, pre-clinical evidence of the potential of MSCs is

still limited and, even debatable (184, 185). MSCs are particularly

useful because in addition of being anti-inflammatory and

promoters of tissue regeneration they lacked ACE-2 Receptor

(175) and the transmembrane protease serine 2 making them

resistant to SARS-CoV-2 infection.

MSCs role plays through a paracrine mechanism, releasing

biologically active substances known as the secretome (186) which

is composed of soluble proteins, including a diverse range of growth

factors, chemokines, and cytokines, as well as extracellular vesicles
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(EVs) (187) that are capable to interact with the target cells and

modulate cellular responses. Because of its immunomodulatory, pro-

angiogenic, anti-protease, regenerative, and anti-inflammatory

properties, MSC-secretome could prove as a promising cell-free

therapeutic tool both for acute and chronic lung diseases.

MSC therapies act by modulating responses in inflammatory

diseases (188), migrate to sites of injury and inflammation in which

they can exert their immunomodulatory effects, through a paracrine

mode of action (189). Its immunomodulatory activity derives from

their capability to in-vitro suppress proliferation and action of B, T

and NK-cells, as well as dendritic cells, differentiation of monocytes

to anti-inflammatory macrophages, differentiation of effector T cells

to regulatory T cells and modulation of cytokine secretion (190).

Several clinical trials have assessed the numerous MSC sources

used in COVID-19 to date (191, 192). MSC therapies have shown

improved clinical symptomatology when comparing to conventional

treatment (175, 193–195), and have also improved the survival of

severe/critical patients even of those who developed ARDS (196–198).

One issue that must be taken into account is the proliferative

activity of the MSC that might be affected by its origin as well as

donor age (199, 200), therefore MSCs from older donors may have

limited therapeutic efficacy. Unlike Embryonic Stem Cells (ESCs),

MSCs are considered adult stem cells, and have a limited

proliferative capacity. When cultured in vitro, they age, affecting

their therapeutic properties, particularly after long-term culture

(199). As very large numbers of MSCs are required for therapeutic

applications, in vitro expansion is required.

Overall, MSC treatment is mostly safe and well tolerated,

however some MSC-related adverse events have still been

recorded, being the most predominant fever (201), chills (196),

headache (202), allergic rash, and liver dysfunction (203).

Nevertheless, in both MSC-treated patients and controls, adverse

events were recorded, indicating that the side effects might be

infusion-related (195, 204). Moreover, the baseline status of

patients with co-existing illnesses and the speed of infusion may

be associated with the appearance of adverse events (195).

Treatment with MSCs has several benefits (205) such as: a) can

quickly expand to a clinical volume at the appropriate time, b)

allogeneic mesenchymal stem cells have not yet been associated

with any negative side effects in clinical trials using mesenchymal

cells, c) feasible storage for future therapeutic use, d) mesenchymal

stem cells are multipotent stem cells, e) suitability and efficacy of

mesenchymal stem cells have been known in many clinical trials, f)

easy availability as can be obtained from various tissues such as

adipose tissues and bone marrow (205).
4.5 Vaccination

While the development of vaccines has taken typically around 8

to 15 years, the current development of multiple vaccines has been

unraveled in less than 12 months (206). The remarkable effectiveness

of vaccines against SARS-CoV-2, particularly 95% for BNT162b2

(BioNTech/Pfizer) and 94.1% for mRNA-1273 (Moderna), has

already been discussed and described extensively (207, 208).

Numerous studies have shown that natural immunity seems to
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persist for a reasonable amount of time (209–211). According to

epidemiological research, natural immunity provides protection

against reinfections for longer than a year with little, if any,

deterioration throughout this period (212–216). The majority of

patients’ persistence of anti-SARS-CoV-2 antibodies and cellular

immunity over more than a year supports the idea of long-term

protection against reinfections. It is worth mentioning that some

studies indicate that protection against reinfection reaches its highest

level around 4 to 5 months following the initial infection, and then

gradually declines. This observation could potentially be attributed to

persistent viral shedding or the misclassification of prolonged SARS-

CoV-2 infections as reinfections (215–217). In comparison to those

who get two doses of anmRNAvaccine, observational studies suggest

that natural immunity provides equivalent or higher protection

against SARS-CoV-2 infections. However, the data are not entirely

consistent, since the loss of natural immunity appears to be very

moderate, but there is substantial evidence supporting the notion that

protection against SARS-CoV-2 infections conferred by vaccination,

tends to diminish relatively quickly over time (218–220). People who

have previously contracted SARS-CoV-2 but were afterwards

immunized against it, or vice versa, are said to have “hybrid

immunity” (219–222). Although the data from the SARS-CoV-2

vaccine randomized controlled trials (RCTs) on hybrid immunity is

conflicting, it does appear to be superior to either vaccine-induced

(without a booster) or natural immunity alone. Hybrid

immunization suggests a higher level of protection when infection

and subsequent immunization occur at least 6 months apart as

opposed to a shorter gap (223).

Low vaccination rates in Africa, with a large number of countries

with less than 10% of the population with vaccination coverage, the

lifting or end of restrictions in much ofWestern countries, the possible

appearance of new variants (as it is happeningwithBQ1.1XBB variants

with higher viral scape to previous immunity) and the burst of cases in

Asia, which is experiencing the worst situation since the beginning of

2020, is a cause for concern. Therefore, the development of novel

alternative treatments is mandatory.
5 Rationale for use of MSC and
combinatorial cell therapy in severe to
critical COVID-19 patients

In both animal models and human therapeutic trials, MSC

therapy inhibited the aberrant immune-mediated inflammatory

response brought on by influenza virus infection (1, 224). There

have been several clinical studies for stem cell treatment since the

outbreak of the COVID-19 pandemic and quite a few have shown

that MSCs not only lead to noteworthy reduction of lung damage

and recovery time, but also increased patient survival and early-

stage tolerance (173, 201, 203, 204).

For patients with high mortality risk from COVID-19, a

combination of safe MSC and memory T-cells specific for SARS-

CoV-2 (CD45RA-) might be the best course of action. CD45RA-

will provide the anti-viral effect during the first days, while MSCs

will inhibit the complications of the second phase.
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6 Conclusion

MSCs have important immunoregulatory effects on

inflammation. Since the effects of SARS-CoV-2 on patients’

bodies are widespread, wherein both the release of pro-

inflammatory cytokines, severe damage of alveolar epithelial cells

(225) together with systemic effects suggest that the use of MSC

might be beneficial in severe-to-critically ill patients, promoting

their recovery period and as a result of their build-up in the lung

capillary network and repairing the damaged tissue (226).

Furthermore, the lack of TMPRSS2 and ACE2 receptors on the

MSC makes them resistant to SARS-CoV-2 infection.

Even more, the preliminary proof demonstrating the feasibility

and safety of treating COVID-19 patients with moderate to severe

symptoms using convalescent CD45RA- memory T-cells, and due to

the fact that memory T-cells can swiftly tackle the infection and offer

ongoing immune support to lessen the severity of the COVID-19

symptoms, this strategy might eradicate virally infected cells and

provide T-cell immunity to prevent recurrent reinfections. Finally,

Baricitinib and dexamethasone have proven effective while reducing

inflammation and effectively treat COVID-19 patients who are

hospitalized (227) however, Baricitinib had less side effects than

dexamethasone, and this will help clinicians choose which

immunomodulatory medication to administer to patients based on

their particular risks for dexamethasone-related side effects (228).

Despite existence of antivirals and neutralizing antibodies

specifically developed for SARS-CoV-2 with good results in

clinical trials, there is still a huge margin of improvement:

problems such as new variants of concern which scape to

antibodies or appearance of resistance to antivirals (as already

described for Paxlovid) demand the development of new

treatments as well as focusing in efficient combinational therapies

that show better treatment outcomes when administered together.
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