
Citation: Esteve Brotons, M.J.;

Lucendo, F.J.; Javier, R.-J.;

Garcia-Rodriguez, J. Shot Boundary

Detection with 3D Depthwise

Convolutions and Visual Attention.

Sensors 2023, 23, 7022. https://

doi.org/10.3390/s23167022

Academic Editor: Stefania Perri

Received: 28 June 2023

Revised: 20 July 2023

Accepted: 31 July 2023

Published: 8 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Shot Boundary Detection with 3D Depthwise Convolutions and
Visual Attention
Miguel Jose Esteve Brotons 1,† , Francisco Javier Lucendo 1, Rodriguez-Juan Javier 2

and Jose Garcia-Rodriguez 2,*

1 Telefónica I+D, 28050 Madrid, Spain; miguel.estevebrotons@telefonica.com (M.J.E.B.);
javier.lucendodegregorio@telefonica.com (F.J.L.)

2 Computers Technology Department, University of Alicante, 03080 Alicante, Spain; jrodriguez@dtic.ua.es
* Correspondence: jgarcia@dtic.ua.es; Tel.: +34-678600796
† Current address: Distrito Telefonica, Edificio Oeste 1, Planta 7, 28050 Madrid, Spain.

Abstract: Shot boundary detection is the process of identifying and locating the boundaries between
individual shots in a video sequence. A shot is a continuous sequence of frames that are captured by
a single camera, without any cuts or edits. Recent investigations have shown the effectiveness of the
use of 3D convolutional networks to solve this task due to its high capacity to extract spatiotemporal
features of the video and determine in which frame a transition or shot change occurs. When this
task is used as part of a scene segmentation use case with the aim of improving the experience of
viewing content from streaming platforms, the speed of segmentation is very important for live and
near-live use cases such as start-over. The problem with models based on 3D convolutions is the large
number of parameters that they entail. Standard 3D convolutions impose much higher CPU and
memory requirements than do the same 2D operations. In this paper, we rely on depthwise separable
convolutions to address the problem but with a scheme that significantly reduces the number of
parameters. To compensate for the slight loss of performance, we analyze and propose the use of
visual self-attention as a mechanism of improvement.

Keywords: shot boundary detection; 3D convolution; depthwise convolution; visual attention

1. Introduction

Shot boundary detection is an important task in video processing and computer vision,
where the goal is to automatically identify the boundaries between consecutive shots in a
video sequence. One of the techniques used for shot boundary detection is 3D convolution.
Three-dimensional convolution applies a filter kernel to a three-dimensional input volume,
such as a video sequence. The kernel slides over the input volume in three dimensions,
computing a dot product at each position. The result of this operation is a new three-
dimensional volume, which can be used to detect shot boundaries. The input volume is
typically composed of a stack of video frames, where each frame is represented as a two-
dimensional image. In a simple way, a 3D convolution allows for extracting spatiotemporal
features that are relevant for shot boundary detection, such as changes in color, texture, or
motion. One common approach is to use a thresholding technique to separate regions of
the volume that correspond to different shots. Other techniques, such as clustering, can
also be used to segment the output volume and detect shot boundaries. The effectiveness
of 3D convolution for shot boundary detection depends on how the convolutional layers
are stacked, the type of convolution chosen, the number of filters utilized at each stage of
the stacks, and how additional techniques help generalization such as batch normalization,
pooling, and dropout are utilized.

Depthwise convolution is a type of convolution operation used in convolutional
neural networks (CNNs). In contrast to traditional convolution, which convolves an input
with a set of learnable filters across all input channels, depthwise convolution applies

Sensors 2023, 23, 7022. https://doi.org/10.3390/s23167022 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23167022
https://doi.org/10.3390/s23167022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8178-5983
https://orcid.org/0009-0001-0241-5221
https://orcid.org/0000-0002-7798-3055
https://doi.org/10.3390/s23167022
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23167022?type=check_update&version=1


Sensors 2023, 23, 7022 2 of 21

a separate filter to each input channel.The operation involves sliding a 3D kernel over
each channel of the input, performing an element-wise multiplication between the kernel
and the corresponding channel, and summing the resulting values to produce a single
output value for each position in the feature map. This process is repeated for each channel
in the input, resulting in a set of intermediate feature maps. Depthwise convolution
can be followed by a pointwise convolution, which applies a 1 × 1 × 1 convolution to
combine the intermediate feature maps into a new set of features. This combination is also
known as a depthwise separable convolution, and it is commonly used in architectures
that require efficient computation, such as mobile or embedded devices. The advantages
of depthwise convolution include reduced computation and memory requirements, as
well as increased model efficiency. By reducing the number of parameters in the network,
depthwise convolution can improve training speed and reduce overfitting. Depthwise
convolution has been used in various architectures, such as MobileNet [1] and Xception [2],
to achieve high accuracy on a variety of computer vision tasks with reduced computational
cost and memory usage.

Residual visual attention refers to a mechanism that enhances the ability of a con-
volutional neural network (CNN) to focus on salient features in an image, while also
maintaining the representation of the original input. This mechanism combines the concept
of residual connections, which enable the network to learn the difference between the input
and the output, with visual attention, which allows the network to selectively focus on
relevant features. In a residual visual attention block, the input is passed through a series
of convolutional layers, followed by a residual connection that adds the input back to the
output of the convolutional layers. A visual attention mechanism is then applied to the
output, which weights the importance of different spatial and temporal regions of the
feature map based on their relevance to the task at hand. The visual attention mechanism
can be implemented in different ways, such as using a spatial transformer network, which
applies an affine transformation to the feature map to focus on a specific region of interest,
or using a self-attention module, which computes attention weights based on the similarity
between different feature map locations. By combining residual connections with visual
attention, residual visual attention blocks allow the network to selectively focus on salient
features, while still preserving the representation of the original input. This can lead to
improved performance on tasks such as image classification, object detection, and segmen-
tation. Residual visual attention has been used in various deep learning architectures, such
as ResNet-SE [3], SENet [3], and SKNet [4], to achieve state-of-the-art performance on a
range of computer vision tasks.

Some novel aspects of our work include the following:

1. Modifying some state-of-the-art architectures such as Transnet [5] and Transnetv2 [6]
to utilize depthwise convolutions and analyze the impact in performance based on
the reduction of network parameters that depthwise implies.

2. The usage of a residual self-attention block with attention map computation and the
verification of the performance of the models.

3. We provide comparative results, testing the performance of the models in three
different sets of experiments. A first set with no depthwise convolutions, a second
set with only depthwise convolutions, and a third set where we combine depthwise
convolutions and residual attention blocks.

The remaining of paper is organized as follows: Section 2 reviews related works.
In Section 3, we present our motivations and some high-level considerations. Section 4
describes the general approach to decrease the number of parameters in the current state-
of-the-art 3D convolution-based models for shot boundary detection, meanwhile keeping
performance metrics. Section 5 describes our experimentation to validate our proposals.
We finish with our conclusions and further work in Section 6.



Sensors 2023, 23, 7022 3 of 21

2. Related Work

Depthwise separable convolutions. Since the development of convolutional net-
works, many studies have been carried out aimed at reducing the number of parameters to
optimize the computational load and improve the inference speed.

Flattened convolutional neural networks are presented in [7]. Those are designed
for fast feedforward execution. It consists of consecutive sequences of one-dimensional
filters across all directions in 3D space to obtain comparable performance as conventional
convolutional networks. The flattened convolution pipelines provide around two times
speed-up during the feedforward pass compared to the baseline model due to the significant
reduction of learning parameters.

Factorized Networks [8] introduce a similar factorized convolution as well as the use
of topological connections. Inspired by [9], the 3D convolution operation in a convolutional
layer can be considered as performing spatial convolution in each channel and linear
projection across channels simultaneously. By unraveling them and arranging the spatial
convolutions sequentially, the proposed layer is composed of a low-cost single intra-channel
convolution and a linear channel projection

Some Inception versions already explored ways to scale up networks with the aim of
utilizing the added computation as efficiently as possible by suitable factorized convolu-
tions and aggressive regularization. The inceptionV3 network [10] replaces the original
inception module by three variants: one where each 5 × 5 kernel is replaced by two 3 × 3,
another where nxn convolutions are factorized by 1× 1, 1× n, and n× 1, and a third where
the module is added additional depth with expanded filter banks, 1 × 3 and 3 × 1. The
InceptionV4 and Inception-Resnet networks [11], in addition to adding new blocks called
stem, located at the beginning of the network or making grid reductions of the feature
maps, as well as using residual connections such as those introduced by Resnet [12], also
replace some inception modules in InceptionV3 with new additional factorizations and
mixed-depthwise convolutions

The Xception network [2] demonstrated how to scale up depthwise separable filters
to outperform Inception V3 [10]. By using depthwise separable convolutions, Xception
reduces the number of parameters in the network and improves the accuracy by increasing
the representational power of the network. Additionally, Xception uses residual con-
nections to improve the flow of gradients through the network, which can improve the
training stability.

The work in [13] focuses on action classification evaluating state-of-the-art architec-
tures trained until the moment with small HMDB-51 and UCF-101 datasets but using
a new Kinetics Human Action Video dataset. The papers analyze 2D ConvNets with
LSTMs ([14,15]) and 2D two-stream networks ([16,17]) with different types of stream
fusion and C3D [18]. They introduce a Two-Stream Inflated 3D ConvNet (I3D), show-
ing how 3D ConvNets can benefit from ImageNet 2D ConvNet designs and from their
learned parameters.

In [19], authors take several variants of I3D in [13] and replace 3D convolutions with
spatial and temporal separable 3D convolutions, replacing filters of the form kt × k × k
by 1 × k × k followed by kt × 1 × 1, where kt is the width of the filter in time. K is the
height/width of the filter in space. The resulting model is named S3D, which stands for
“separable 3D CNN”, showing that it is more computationally efficient and with better
accuracy than the original I3D model.

Ref. [20] proposes an architecture to reduce reasonably many parameters by simu-
lating 3 × 3 × 3 convolutions with 1 × 3 × 3 convolutional filters on the spatial domain
(equivalent to 2D CNN) plus 3 × 1 × 1 convolutions to construct temporal connections
on adjacent feature maps in time. This approach is referred as the pseudo-3D convolution
and is proposed a new architecture named Pseudo-3D Residual Net (P3D ResNet) that
achieves clear improvements on a Sports-1M video classification dataset against standard
3D CNN. Pseudo 3D CNN not only reduces the model size significantly, but also enables



Sensors 2023, 23, 7022 4 of 21

the pre-training of 2D CNN from image data, endowing Pseudo 3D CNN more power to
leverage the knowledge of scenes and objects learned from images.

The difference between separable and pseudo-3D CNNs is that in the latter, up to three
types are defined depending on how the spatial and temporal convolutions are combined.
The case of the pseudo block type A in [20] vertically stacks the spatial and temporal filters
and is therefore completely equivalent to that of a separable 3D CNN.

Similar to [19,20], in [21], the authors factorize a standard 3D convolution into separate
convolutions on separate channels and a pointwise convolution on all the channels.

Based in [10], MobileNet [1] is a popular architecture for efficient image classification
that uses depthwise separable convolutions. The architecture was specifically designed for
mobile and embedded devices where computational resources are limited.

ShuffleNet in [22] is another architecture that uses depthwise convolutions for efficient
image classification. The architecture introduces a channel shuffle operation that helps to
increase the accuracy of the network while maintaining a low computational cost.

MobileNetV2 in [23] is an improved version of MobileNet that uses a combination of
depthwise and regular convolutions to achieve high accuracy on image classification tasks.
The architecture introduces a novel inverted residual block that helps to reduce the number
of parameters in the network while maintaining accuracy.

SqueezeNet in [24] is an architecture that uses a combination of depthwise and
regular convolutions to achieve high accuracy on image classification tasks with a low
computational cost. The architecture introduces a novel fire module that combines a
squeeze layer, which uses depthwise convolutions, with an expanded layer, which uses
regular convolutions.

In [5], shot detection is conducted using Dilated Convolutions, with different dilation
rates for the time dimension in order to augment the receptive field without increasing
the number of network parameters. Dilated Convolutions outputs are concatenated in
the channel dimension forming a Dilated DCNN layer. Then, multiple Dilated DCNN
layers are stacked with spatial max pooling to form a Stacked DDCNN block. The network
proposed then consists of multiple SDDCNN blocks, with the very next block operating
on a smaller resolution but a greater channel dimension. The network is trained using
3000 videos in the TRECVID IACC3 [25] dataset with the automatic creation of transitions.
Evaluation was conducted using 100 IACC3 videos different from the training set and with
testing conducted using RAI [26].

A second version of the network provided in [5] is presented in [6], which improves
by adding Convolution Kernel Factorization, Frame Similarities as Features, and Multiple
Classification Heads

Self-attention modules. Attention modules can model long-range dependencies
and have been widely applied in many tasks. In particular, the work [27] is the first to
propose the self-attention mechanism to draw global dependencies of inputs and apply it
in machine translation. The work in [28] introduces a self-attention mechanism into the
generator network of the GAN. This allows the generator to attend to different parts of the
image while generating it, making it possible to generate higher quality and more diverse
images. The generator network is augmented with a self-attention module that calculates
the importance of each spatial location in the feature maps, based on its relationship with
all other locations. The resulting attention map is then used to weight the feature maps,
allowing the generator to focus on important regions of the image while generating it. The
work in [29] integrates two types of attention mechanisms: spatial and channel attention.
Each of the attention blocks calculates an attention map, which is used to weigh the feature
maps along its respective dimension. In [30], a residual self-attention deep neural network
is proposed to capture local, global, and spatial information of magnetic resonance images
to improve diagnostic performance. In [31], a very similar self-attention block as in [30] is
proposed for complex human motion video classification.

Different from previous works, we extend the self-attention mechanism in the task
of shot boundary detection and carefully design several types of attention modules to



Sensors 2023, 23, 7022 5 of 21

capture rich contextual relationships for better feature representations with intra-class
compactness. Comprehensive empirical results in Section 5 verify the effectiveness of our
proposed method.

3. Motivation and High-Level Considerations

The most straightforward way of improving the performance of deep neural networks
is by increasing their size; this includes both increasing the depth (the number of levels)
and its width (the number of units at each level). This is an easy and safe way of training
higher quality models, especially given the ability of a large amount of labeled training
data. However, this solution comes with two major drawbacks. A bigger size typically
means a larger number of parameters, which makes the enlarged network more prone to
overfitting, especially if the number of labeled examples in the training set is limited. Sec-
ond, uniformly increased network size is the dramatically increased use of computational
resources. The fundamental way of solving both issues would be by ultimately moving
from fully connected to sparsely connected architectures, even inside the convolutions.

Sparsely connected refers to a type of neural network architecture where not all
neurons in a layer are connected to every neuron in the previous layer. In other words, some
connections between neurons are omitted or removed, resulting in a sparse connectivity
pattern. In contrast, a fully connected neural network architecture has every neuron in
one layer connected to every neuron in the next layer. This results in a dense connectivity
pattern where each neuron receives input from every neuron in the previous layer. Sparsely
connected architectures can be beneficial because they can reduce the number of parameters
in the model and improve computational efficiency, which can make training and inference
faster and more resource-efficient. However, they can also be more difficult to train than
fully connected architectures because of the reduced number of connections, and they may
require specialized techniques to be implemented effectively.

In the context of convolutional neural networks, sparsely connected architectures
can be achieved by using techniques such as dilated convolutions, depthwise separable
convolutions, and group convolutions. These techniques allow for more efficient and sparse
connectivity patterns within the convolutions, which can lead to improved performance
and efficiency. In previous works, Transnet [5] and TransnetV2 [6] dilated convolutions
have already been utilized. The main difference between standard convolutions and
dilated convolutions, also known as atrous convolutions, is the spacing between the kernel
elements. In standard convolutions, the kernel is applied to each input element in a sliding
window fashion, with adjacent elements in the input grid being processed by adjacent
elements in the kernel. In dilated convolutions, the kernel has gaps or holes between the
elements, which allows the convolution to cover a larger input area with fewer kernel
elements. This dilation factor can be adjusted, allowing dilated convolutions to have
a larger receptive field than standard convolutions without increasing the number of
parameters or sacrificing the resolution of the output. TransnetV2 [6] also employs 3D
separable convolutions by stacking a 1 × 3 × 3 convolution in the spatial domain and a
3 × 1 × 1 convolution in the temporal domain. However, both models are supported by
more than 4 million trainable parameters.

We propose the use of separable depthwise convolutions, such as those used in Mo-
bilnet [1], as well as a residual self-attention block with the dual objective of substantially
reducing the number of parameters without losing and, if possible, improving the perfor-
mance of the original model. We use three NVIDIA RTX 3090 graphic cards as GPU support
for training and inference. The computer has an i7 processor, with 96 GB RAM. Models are
reduced by a factor between ×4 and ×5 the number of parameters, with a total training
time of 6 h, using all IACC3 datasets and 30% split for test. Inference time is improved by a
factor of 2.8, leading to infer 100 input frames in 0.8 s. To the best of our knowledge, this is
the first contribution that proposes a parameter reduction without loss of performance in
these models based on the aforementioned mechanisms.



Sensors 2023, 23, 7022 6 of 21

4. Proposed Methods
4.1. Depthwise Separable Convolution

Standard 3D convolution. Similar to 2D convolution, 3D convolution applies a fil-
ter/kernel over the input data and calculates the dot product of the filter with each over-
lapping section of the input. The output of this operation is a new volume, where each
element represents the dot product of the filter with the corresponding section of the input.
In contrast to 2D convolution, where the input has two dimensions (width and height), 3D
convolution operates on a 3D tensor with the dimensions depth, width, and height. The
filter/kernel used in 3D convolution has a 3D shape and slides across the depth, width,
and height dimensions of the input tensor. The output size of 3D convolution depends
on the size of the input tensor, the size of the filter/kernel, and the stride used during the
convolution operation.

Given a 3D feature matrix with shape (l, w, h, c), where l, w, h represents length, width,
height and c denotes channels, the natural way of doing convolution operation on it would
be using a filter with size k × k × k, where k is the side length of the filter, to go over the
3D matrix.

More formally, a standard convolution layer takes an input feature tensor F with shape
(lF, wF, hF, cF) and outputs a feature matrix G of size (lG, wG, hG, cG). Notice that (cF, cG) are
the number of channels before and after the convolution. The number of parameters here
should be of size k × k × k × cF × cG, where k is the length side of the filter.

The output feature tensor for a standard 3D convolution is computed as:

Gx,y,z,n = ∑
i,j,k,m

Ki,j,k,m,n · Fx+i−1,y+j−1,z+k−1,m (1)

where x, y, z and i, j, k denote voxel’s spatial positions and m denotes the input channels
and n the output channels.

The number of parameters of a standard 3D convolution (excluding bias) is:

k · k · k · cF · cG (2)

The computation cost would be:

k · k · cF · cG · lF · wF · hF (3)

3D Depthwise Convolution. In 3D depthwise convolution, we decompose one 3D
convolution operation into two steps: first, apply separate filters for each individual
channel; second, stack the c feature maps obtained by the first step.

The output feature matrix for a 3D depthwise convolution is computed as:

G
′
x,y,z,m = ∑

i,j,k,m
K
′
i,j,k,m · Fx+i−1,y+j−1,z+k−1,m (4)

where x, y, z and i, j, k denote the spatial position of a voxel. K
′

is a depthwise convolution
kernel of size k × k × k × c (consisting of c filters). The m-th filter in K

′
would be applied to

the m-th channel in F. The output of the m-th filter becomes the m-th layer in G
′
.

The number of parameters of a standard 3D convolution (excluding bias) is:

k · k · k · cF (5)

The computation cost would be:

k · k · k · cF · lF · wF · hF (6)

3D Pointwise Convolution 3D pointwise convolution, also known as 1 × 1 × 1
convolution, is a type of convolutional operation that involves a filter/kernel with a size of



Sensors 2023, 23, 7022 7 of 21

1 × 1 × 1 applied to the input tensor. In other words, 3D pointwise convolution operates
on each individual voxel of the input tensor. Unlike regular 3D convolution, which uses a
larger filter/kernel size to capture spatial information, pointwise 3D convolution is used
to perform channel-wise operations on the input tensor. It is commonly used in deep
learning models to increase or decrease the number of channels of a given tensor. It carries
out a linear combination of layers of all depths. It is essentially fusing the split channels
back together and activating the exchange of information adequately across channels. The
number of parameters of a pointwise convolution is:

cF · cG (7)

The computation cost would be:

cF · cG · lF · wF · hF (8)

If we combine a depthwise and a pointwise convolution, the computational cost is:

k · k · k · cF · lF · wF · hF + cF · cG · lF · wF · hF (9)

We then divide with the computational cost of a standard 3D convolution to obtain
the reduction factor in computation terms:

k · k · k · cF · lF · wF · hF + cF · cG · lF · wF · hF
k · k · k · cF · cG · lF · wF · hF

=
k · k · k · cF + cF · cG

mk · k · k · cF · cG
=

1
cG

+
1
k3 (10)

Assuming channel size cG = 3 and k = 3, the reduction is about 0.44. As soon as we
increase the value of cG, the term 1

cG
tends to zero, and the reduction tends to be 10 times

the standard 3D convolution.
The effect of using a pointwise convolution after a depthwise convolution is that

it helps to increase the expressiveness of the network while maintaining computational
efficiency. The depthwise convolution captures spatial information from the input data,
while the pointwise convolution combines this information and generates new features
that can be used by the subsequent layers of the network. Using a pointwise convolution
after a depthwise convolution helps to reduce overfitting in the network by reducing the
number of parameters. This technique has been used in various successful neural network
architectures, such as MobileNet [1] and ShuffleNet [22], to achieve high accuracy with
low computational cost. The expressiveness of a network refers to its ability to represent a
wide range of functions and approximate any input–output mapping to some degree of
accuracy. In other words, the expressiveness of a network determines how well it can learn
and represent complex patterns and relationships within the input data.

4.2. Residual Self-Attention

Self-attention is a mechanism in deep learning and natural language processing that
helps the model to focus on different parts of the input when making predictions. The key,
query, and value concepts are fundamental components of self-attention. In self-attention,
the input is transformed into three vectors: key, query, and value. The key vector represents
the importance of each sample in the input, the query vector is used to retrieve information
from the key vector, and the value contains the actual information. During self-attention,
the query tensor is used to compute the similarity scores between itself and each of the key
tensors. The similarity scores are then used as weights to compute a weighted sum of the
value vectors. The weighted sum is the final output of the self-attention mechanism. In
essence, the key, query, value concept allows the self-attention mechanism to identify the
most relevant parts of the input (represented by the key vector), retrieve information from
those parts (using the query vector), and use that information to produce the final output
(represented by the value vector).



Sensors 2023, 23, 7022 8 of 21

The key, query, and value are denoted by k(x), q(x), and v(x) as follows:

Key : k(x) = Wkx (11)

Query : q(x) = Wqx (12)

Value : v(x) = Wvx (13)

In our case, x ∈ RNxTxHxWxC is the tensor that represents the entry to the residual func-
tion. N is the batch dimension, C is the number of channels, HxW represents the spatial
dimensions, and T the temporal dimension. We project x through the learnable query Wq,
key Wk, and value Wv layers. The number of filters of those layers defines the number of
feature maps that will obtain. The attention map is a square matrix whose dimension will
be equal to the number of features defined. If we define dimension “C” as the number of
filters, the attention map will have dimension CxC, equivalent to a channel attention map.
The self-attention map (aij) can be calculated as:

aij =
exp (k(xi)

Tq(xi))

∑n
i=1 exp (k(xi)Tq(xi)))

where aij indicates the correlative degree of attention between each i location and all other j
locations. The output of the attention layer is oj, where:

oj = Wu(
N

∑
i=1

aijv(xi))

Wu represents a convolution utilized with the purpose of outputting a number of
channels equal to that of the original input. The final output of the Residual Attention
Block is represented by the formula:

y = x + o(x)

where x is the feature map input to the residual self-attention block and o(x) the output of
the attention block.

4.3. Architectural Options

We use Transnet [5] and Transnetv2 [6] as base models, and we make modifications
to both in different aspects of the architecture, with a double objective: (1) to reduce and
optimize the number of model parameters as much as possible, and (2) to maintain or even
improve the same performance as the original model, using as a metric the F1 score for
Shot Boundary Detection.

We experiment with two major architectural modifications: (a) incorporating the use
of depthwise separable convolutions and (b) adding a residual self-attention block, in
which the feature map can be temporal, spatial, channel, or multiple. Within the depthwise
option, we experiment with two versions: using a shared filter for all channels (v1) and
using a different filter per channel (v2). In the residual self-attention option, we analyze
two implementations, using 3D convolutions (v1) and using 1D convolutions (v2).

4.3.1. Type of Depthwise Convolution

As in Figure 1a, it is the same filter for all channels. Without bias, the number of
parameters if the input has three channels is 36 (27 of the 3D conv 3 × 3 × 3, plus 9 of the
1 × 1 × 1 pointwise convolution). With the option described in Figure 1b, where one filter
is dedicated per input channel, we obtain 93 parameters (27 × 3 input channels, plus 9).

4.3.2. Attention Blocks on a Different Axis

We investigate the effect of the attention mechanism depending on the axis used to
generate the attention map (see Figure 2a), distinguishing three options: temporal (T),



Sensors 2023, 23, 7022 9 of 21

spatial (S), and channel (C). We also tested a fourth option, named multiple, when we apply
all three T, S, and C at once, as shown in Figure 2b.

(a)

(b)

Figure 1. Depthwise separable convolution options. (a) Shared depthwise separable convolution.
Only one filter is utilized and applied to all input channels; (b) common depthwise separable
convolution. One different filter is applied to each input channel.

(a)

Figure 2. Cont.



Sensors 2023, 23, 7022 10 of 21

(b)

Figure 2. Residual self-attention types. (a) Same architecture but with attention maps dimensions
depending on the axis selected: temporal, spatial, or channel; (b) multiple attention consists of
applying several attention types and then concat in a single output.

4.3.3. Residual Depthwise Dilated options

In the case of the Transnetv2 option, we tested with two options when applying
residual connections: (a) residual connection on a pointwise after a Depthwise Dilated
layer, Figure 3a, and option (b) residual connection on the Depthwise Dilated layer using a
pointwise convolution to adjust the dimensions, Figure 3b.

(a) (b)

Figure 3. Component blocks for Depthwise Transnetv2 with self-attention. (a) Residual 3D Depthwise
Dilated CNN block, version A. We add a residual connection around the pointwise convolution
that follows the 3DDwDCNN layer; (b) Residual 3D Depthwise Dilated CNN block, version B. We
add a residual connection around the 3DDwDCNN layer itself. We expect to mitigate the vanishing
gradient, improve optimization, and allow the model to learn more complex features, all while using
parameters more efficiently.

4.3.4. Residual Self-Attention Options

We employ two residual attention block architecture options, depending on whether
we use 3D (Figure 4a) or 1D (Figure 4b) convolutions for the key, query, and value tensors.
Both architectures therefore differ in the number of trainable parameters as well as in the
position of the architecture in which the tensors are reshaped.



Sensors 2023, 23, 7022 11 of 21

(a)

(b)
Figure 4. Residual self-attention options. (a) Residual attention block with 3D convolutions for
key, query, and value tensors; (b) residual attention block with 1D convolutions for key, query, and
value tensors.

4.4. Final Modified Networks

We apply these changes to the Transnet and Transnetv2 networks. The nomenclature
we use to name each version of the modified baseline when citing the experiments is the
following:

• Depthwisev{X}TransnetAttn{Type}v{Z} , for our DepthwiseTransnet with attention
(Figure 5)

• Depthwisev{X}Transnetv2{Y}Attn{Type}v{Z}, for our DepthwiseTransnetv2 with at-
tention (Figure 6)
where:

– X refers to the depthwise option. X = 1 for one shared convolution for all channels
option. X = 2 for the one different convolution for each channel option.

– Type refers to the Attention type, with Type ∈ (T, S, C, M), and T: temporal, S:
spatial (WxH), C: channel, M: multiple.

– Z refers to attention convolutions. Z = 1 for Conv3D; Z = 2 for Conv1D
– Y, with Y = A for ResDw3DCNN option A, and Y = A for ResDw3DCNN option

B. This option only applies for Transnetv2.

Figure 5 shows our resulting Transnet-modified network. Note that we do not stack
any dilated block as in the original. We just substitute the 3D dilated convolutions by
our depthwise separable versions, then we concat the four, add a max pooling; then,
the resulting block is stacked L times, with the best L equal to 3. After that stacks, we
then apply the residual self-attention block. Then, we add two dense layers and a final
sigmoid function that reduces the problem to a binary classification per each element of the
resulting tensor.



Sensors 2023, 23, 7022 12 of 21

Figure 5. Depthwise Transnet with self-attention. Based on [5], we substitute the 3D dilated
CNNs with 3D depthwise separable convolutions, where we set a filter per each input channel. We
then add a residual self-attention block to the output of the Depthwise Dilated DCNN blocks.

Figure 6. DepthwiseTransnetv2 with self-attention. Based on [6], we substitute the 3D dilated
CNNs with 3D depthwise separable convolutions. We do not use stacked Dilated DCNN but
Depthwise Dilated layers, with residual connections as in Figure 3a or 3b. The Depthwise Dilated
layers form part of a new layer, named Residual 3DDwCNN—Res3DDwDCNN—that is stacked L
times, before the relu and residual self-attention block. We choose L = 3 as the best value.



Sensors 2023, 23, 7022 13 of 21

Figure 6 shows our resulting Transnetv2-modified network. Note that we do not
apply any Resnet-like residual connection over dilated blocks, as in the original. We just
substitute the 3D dilated convolutions with our depthwise separable versions, resulting in a
3DDwDCNN layer. This layer is added as an average pooling after a residual connection in
two possible options, A and B, that form the blocks ResDDwDCNNA and ResDDwDCNNB,
respectively. The rest of the network keeps similar to the original, except we add a self-
residual attention block after stacking three times the chosen Res3DDwDCNN block.

4.5. Networks Parameters

Table 1 shows the number of trainable parameters of the original models compared to
the same models modified with just depthwise separable convolutions in the two versions
analyzed. Table 2 shows the number of trainable parameters of the modified versions when
using, besides depthwise separable convolutions, also a residual self-attention block of
types temporal, spatial, channel, and multiple, differentiated by the version number of the
attention block. Except when we use multiple attention, the rest of the combinations show
a noticeable reduction in the number of parameters. In the experiments that we carried out
in Section 5, we will have achieved our objectives if we match or exceed the F1 score results
of the original models.

Table 1. Parameters with depthwise options.

Depthwise
Original v1 v2

Transnet 4.614.593 895.665 902.385
TransnetV2 4.763.970 1.060.526 1.067.246 ResDw3DCNN_A

1.031.042 1.037.762 ResDw3DCNN_B

Table 2. Parameters with Self-Attention options.

Depthwisev{X}
X = 1 X = 2

Attn{Type}v2 Attn{Type}v2
T C S M T C S M

Transnet: 936.065 1.043.889 897.033 2.855.129 942.785 1.050.609 916.455 2.861.849
ResDw3DDCNN_A 1.100.926 1.208.750 1.061.894 3.019.990 1.107.646 1.215.470 1.068.614 3.026.710

TransnetV2:
ResDw3DDCNN_B 1.1071.422 1.179.266 1.032.410 2.990.506 1.078.162 1.185.986 1.038.130 2.997.226

5. Experiments

The approach we follow is the same for all experiments. Given a dataset, we obtain
the F1 score using the original Transnet [5] and Transnetv2 [6] models. We do not use data
augmentation as the author does in [6]. We use the value we obtain as a reference with
the original baseline model to later compare the performance with different architectural
variations as indicated in Section 4.3.

All Depthwisev{X}TransnetAttn{Type}v{Z} variants are trained with an Adam opti-
mizer and learning rate of 0.001, whereas Depthwisev{X}Transnetv2{Y}Attn{Type}v{Z} vari-
ants are trained with an SGD optimizer and learning rate of 0.01, except when Y = B. Then,
we use Adam and a learning rate of 0.001. Regarding the experiments in Sections 5.1 and 5.2,
all of them were conducted using a split for validation and testing of the IACC3 dataset. On
the other side, experiments in Section 5.3 were conducted using IACC3 [25] as a training
dataset but tested with Clipshots [32], BBC [26], and RAI [33]. These experiments were
conducted on a server equipped with three NVIDIA RTX 3090 as GPU support, as stated in
the Motivation section.



Sensors 2023, 23, 7022 14 of 21

5.1. Depthwisev{X}TransnetAttn{Type}v{Z} Experiments

In Figure 7, we show the results of the performance of DepthwiseTranset with the
two depthwise versions. Depthwisev2Transnet (0.9444) improves the original transnet
(0.8947). Depthwisev1Transnet gets close to the original but does not improve. We notice
the high value obtained with Depthwisev2Transnet (0.9444) without attention. Depth-
wisev2Transnet really improved the original with a fraction of the parameters with no
need for attention. In Figure 8, we test Depthwisev1Transnet with the attention block
version1 (conv3D), comparing the performance of temporal, spatial, channel, and multiple
attention. Depthwisev1Transnet, which did not improve the original, now improves with
the multiple and temporal attention schemas. In Figure 9, we test Depthwisev1Transnet
with the attention block version2 (conv1D). All attention types improve originalTransnet
and Depthwisev1Transnet. Note that attentionv2 improves attentionv1 with Depthwi-
sev1Transnet. We notice also that version 2 of attention surpasses the performance of v1. In
Figure 10, we test Depthwisev2Transnet with the attention block version2 (conv1D). This
time, as we suspected, due to the very high score obtained by Depthwisev2Transnet, none
of the attention mechanisms allow us to improve the previously obtained result. In many
cases, an attention block is able to improve the result when the model without attention
solves a score below the original one. However, this premise does not always hold true.
This leads us to think that under certain conditions, the attention block does not behave as
expected.

Figure 7. Depthwisev1Transnet vs. Depthwisev2Transnet. The F1 score obtained with the original
version of Transnet is surpassed by only Depthwise version 2 (which uses a different filter per
channel). When using version 1 (which only uses one filter for all channels) the F1 metric decreases.
The version Depthwisev1 (shared filter) does not improve the original Transnet, but Depthwisev2
(shared filter) does. From the qualitative point of view, it is expected that if using Depthwise with a
filter per channel, the model better captures the threshold patterns to differentiate short changes by
visual similarity.

Figure 8. Depthwisev1TransnetAttnTypev1 with Type ∈ (T , S, C, M) attention dimensions.
The graph shows how using several attention mechanisms affects the F1 score, using Depthwi-
sev1Transnet. In this scenario, Depthwisev1 standalone does not improve the original Transnet,
but when applying temporal and multiple attention, then it does. Notice that depthwisev1 and
depthwisev1 with channel attention obtain the same score.



Sensors 2023, 23, 7022 15 of 21

Figure 9. Depthwisev1TransnetAttnTypev2 with Type ∈ (T , S, C, M) attention dimensions.
Depthwisev1Transnet with attention v2 for all types of attention. All attention types improve
originalTransnet and Depthwisev1Transnet. Note attentionv2 improves attentionv1 attention with
Depthwisev1Transnet.

Figure 10. Depthwisev2TransnetAttnTypev2 with Type ∈ (T , S, C, M) attention dimensions.
When using Depthwisev2Transnet with attention, no attention mechanism is able to improve Depth-
wisev2Transnet without attention.

5.2. Depthwisev{X}Transnetv2{Y}Attn{Type}v{Z} Experiments

Figure 11 shows the test for DepthwiseTransnetv2B with the two Depthwise versions.
As with Figure 7, Depthwisev2Transnetv2B (0.9213) improves the original transnet (0.9).
Depthwisev2Transnetv2B gets close to the original but does not improve. In Figure 12, we
test Depthwisev1Transnetv2B with attention block, comparing the performance of temporal,
spatial, channel, and multiple attention. The version of the attention block is 2 (conv1D).
Depthwisev1Transnetv2B, which did not improve the original, now improves with the
channel and temporal attention schemas. In Figure 13, we test Depthwisev1Transnetv2B
with attention block, comparing the performance of temporal, spatial, channel, and multiple
attention. The version of the attention block is 2 (conv1D). All attention schemas still
improve the Depthwisev1Transnetv2B performance, which in turn already improved the
original. In Figure 14, we test the same as in Figure 13 but with the attention block version
1 based on Conv3D. The performance gets similar to the ones with v2. In Figure 15, we
test comparing the effect of using ResDw3dDDCNN version A versus ResDw3dDDCNN
version B. Version B of the Residual Depthwise block clearly improves version A.

5.3. Other Experiments

We experiment using the dataset IACC3 for training, and ClipshotsTests, BBC, and
RAI for tests. The results are shown in Tables 3, 4, and 5, respectively.

When we tested with ClipShotsTest, Table 3, the Depthwisev2 modification was very
similar to the original but did not improve it. If we analyze the results carefully, the results
are still similar, but they are not improved either. ClipShotsTest is a dataset with a high
number of false negatives, that is, non-annotated transitions. This is the reason for the
poor results even with the original model. The network cannot learn where a transition
is to the extent that we tell it one thing and the opposite at the same time with the same
classification. Obviously, adding an attention mechanism does not correct the basic error of
using a badly annotated dataset.



Sensors 2023, 23, 7022 16 of 21

Figure 11. Depthwisev1Transnetv2B vs. Depthwisev2Transnetv2B. The graph compares Depth-
wiseTransnetv2B for Depthwise version v1 and v2. The F1 score obtained with the original version of
transnetV2 is surpassed by Depthwise version 2. Depthwise version 2 (which uses a different filter
per channel) is better than version 1 (which only uses one filter for all channels). TransnetV3 refers to
the version with Res3DDwDCNN_B block. The version Depthwisev1 (shared filter) does not improve
the original Transnetv2 but Depthwisev2 (shared filter) does. From the qualitative point of view, it is
expected that if using Depthwise with a filter per channel, the model better captures the threshold
patterns to differentiate short changes by visual similarity.

Figure 12. Depthwisev1Transnetv2BAttnTypev2 with Type ∈ (T, S, C, M) attention dimensions.
In this graph, we show the comparison when using Depthwise option 1 (shared filter) and using
the different self-attention dimensions in its version 2 (using 1D convolutions). It is observed that
all attention mechanisms improve the metric obtained using Depthwisev1 without attention. The
temporal self-attention and channel attention versions come to improve the original model. In this
case, Depthwisev1 slightly worsens the original model, but with the use of attention (temporal or
channel), it ends up improving it significantly. Note that Depthwisev2 with no attention (0.9123) is
improved by Depthwisev1 with temporal (0.931) and spatial (0.9286) attention.

Figure 13. Depthwisev2Transnetv2BAttnTypev2 with Type ∈ (T , S, C, M) attention dimensions.
In this graph, we show the comparison when using Dephtwisev2 (separate filter per input channel)
and using the different self-attention options in its version 2 (using 1D convolutions). It is observed
that not all attention mechanisms improve the metric obtained using Depthwisev2 without attention.
Only temporal and spatial self-attention versions come to improve the original model up to 0.931.
Note that we replicate value 0.931 using temporal attention, no matter the version of Depthwise.



Sensors 2023, 23, 7022 17 of 21

Figure 14. Depthwisev2Transnetv2BAttnTypev1 with Type ∈ (T , S, C, M) attention dimensions.
In this graph, we show the comparison when using Depthwise option 2 (separate filter per input
channel) and using the different self-attention options in its version 1 (using 3D convolutions). It is
observed that temporal and channel dimensions for attention become predominant. Still, temporal
attention continues as the one that obtains the maximum F1 score. Note that we replicate value 0.931
using temporal attention, no matter the version of Depthwise and no matter the version of attention
(conv1d vs. conv3d).

Figure 15. Depthwisev2Transnetv2Y with Y ∈ (A, B) ResDw3DDCNN layers. In this graph, we
show the comparison when using Depthwisev2 (separate filter per input channel) on TransnetV2
modified with blocks Res3DDwDCNN options A and B. In option A, the residual connection is
conducted over a Pointwise conv at the output of the DepthwiseDilated layer; meanwhile, on option
B, the residual connection is conducted over the DepthwiseDilated itself. The Depthwise layer
captures features much better thanks to the concatenation of varying-size dilated convs, and therefore,
adding the residual link helps to reduce overfitting and smooth gradient flow. This is the rationale
behind the best result for option B versus A.

Table 3. Best F1 score using IACC3 for training and ClipShotsTest for the test.

Dataset/Annotations Original Depthwisev2 +Tempv2 +Spav2 +Chav2 +Mulv2

Transnet 0.661 0.650 0.625 0.627 0.656 0.649

TransnetV2 0.694 0.659 0.686 0.686 0.687 0.648

When we tested with BBC, Table 4, a much better-annotated dataset than ClipShots,
we noticed that the F1 score of the Transnet model (0.931) is higher than that of TransnetV2
(0.916). These two values are the ones we use from the start in the comparison with
our modifications. Experimentally, we verified that the multiple attention version (0.944)
improves Transnet and that the Depthwisev2 version (0.927) does the same in the case of
TrasnetV2.

When we test with RAI, the result is similar to that obtained by BBC. RAI is a dataset
that also has a high number of unannotated transitions, although not to the extent of
ClipShots. In this case, Transnet (0.897) is improved by the Depthwise version with channel
attention (0.911) and TransnetV2 (0.905) with spatial attention (0.915). That is, the original
results are improved with a fraction ×4 of the total parameters.



Sensors 2023, 23, 7022 18 of 21

Table 4. Best F1 score using IACC3 for training and BBC for test.

Dataset/Annotations Original Depthwisev2 +Tempv2 +Spav2 +Chav2 +Mulv2

Transnet 0.931 0.921 0.930 0.912 0.925 0.944

TransnetV2 0.916 0.927 0.920 0.916 0.922 0.913

Table 5. Best F1 score using IACC3 for training and RAI for test.

Dataset/Annotations Original Depthwisev2 +Tempv2 +Spav2 +Chav2 +Mulv2

Transnet 0.897 0.894 0.911 0.896 0.894 0.910

TransnetV2 0.905 0.903 0.905 0.897 0.915 0.905

In addition, and in order to test variants 1 and 2 of the attention blocks, in Figure 16,
we compare again the attention blocks v1 and v2 for the different attention schemas but
using IACC3 for training and RAI for the test. This time, version 2 of the attention blocks
always improves the corresponding schema in version 1.

Figure 16. Depthwisev1Transnetv2BAttn{Type}v{Z} with Type ∈ (T , S, C, M) and Z ∈ (1, 2). For
the same attention dimension, version 2 of the attention block, based on 1D convolutions, performs
slightly better than version 1, based on 3D convolution. Being the input to the self-attention block, a
5-rank tensor, the use of conv1D requires reshaping the input to a 3-rank tensor: batch dimension,
intermediate dimension, and channel dimension. The channel dimension acquires the value of the
dimension that is used to generate the feature map, be it T, S, or C. The intermediate one will contain
the product of the rest. In the case of using conv3d, the input tensor is not formatted, but the outputs
to K, Q, and V are formatted. The loss of resolution in the projection of 3D convolutions makes
attention map performance higher using conv1D relative to conv3d.

6. Conclusions

In this work, we present two new models for video shot boundary detection. Those are
based on modified versions of Transnet [5] and Transnetv2 [6], with the use of depthwise
separable convolution and visual self-attention. Our objective is to significantly reduce the
number of parameters used in the original models and improve the inference time of the
models. This is necessary for segmenting live streaming content, so that the segments are
generated with a minimum delay with respect to the live signal, and thus, can be used in
use cases such as viewing the content from the beginning (start-over). In order to improve
the possible loss of performance that we could find, we incorporate a residual attention
block, with different variants, which we call temporal, spatial, channel, and multiple,
depending on the dimension of the input tensor to the block on which the attention map
is conformed.

We have investigated two variants of the depthwise separable convolution. Version 1
employs only one filter for all input channels, while version two employs a different filter
per channel. In general, version 2 is better than version 1 because it is not forced to extract
features from a single shared filter for all channels. In the case of TransnetV2, one of the
modifications we made is to incorporate a block called Res3DDwDCNN, which we investi-
gated in two versions, A and B, differentiated in how a residual connection is constituted.



Sensors 2023, 23, 7022 19 of 21

We observed that option B is better than A because the residual connection is made directly
on the 3DDwDCNN layer, using a pointwise convolution for dimension adjustment.

In the case of the attention block, we investigate two versions, v1, and v2. Version
v1 uses 3D convolutions, while v2 uses 1D convolutions. This leads to having to reform
the tensors at different points in the block. We observe that version v2 works slightly
better than v1 because with the use of pointwise convolutions, no reduction of the input
tensor is performed, and therefore, the attention map is generated without losing repre-
sentative capacity, already very reduced due to the use of depthwise convolutions in the
previous stage.

All experiments have been performed using the IACC3 [25] dataset for training. For
testing, we have used the IACC3 split, as well as ClipShotsTests [32], BBC [26], and RAI [33].

When we tested with the IACC3 split, the use of the Depthwise version 2 modification
without attention block improved the F1 metric obtained with the original model. The
attention block even improved the metric obtained using Depthwise version 1 to be similar
to the one obtained using Depthwise version 2 with attention. We also verified this when
testing with BBC for the case of Depthwisev2Transnetv2B.

In the case of testing with RAI and ClipShots, the metrics obtained with the Depthwise
versions are similar to the original ones. It should be noted that the Depthwise versions are
therefore matching and even improving the F1 metrics of the original models to a fraction
between ×4 and ×5 the number of parameters of the original models.

With respect to the impact on the use of the attention block, in all cases, the F1 metric
of the original model is improved, except with Depthwisev2Transnet. The Depthwise-
Transnetv2 score was so high that none of the other types of care were able to improve
it. Besides this, we noticed that when there is an improvement, it is not always using the
same type of attention. These are relevant facts that we leave for further research and we
think are correlated. Possible improvements to address this issue in the attention block
would be to use a parametrizable dimension attention map, L = 2x, with x ∈ (7, 8, 9, 10),
so L ∈ (128, 256, 512, 1024). In reshaping the output tensor of the key and query layers, we
place on axis 1 the product of all dimensions and on axis 2, the L value that optimizes the
F1 metric. The attention map would be obtained by scaling the real one, of size LxL, to
the temporal one, of size TxT. Another possible improvement would be to use a pointwise
residual connection multiplied by a trainable α scalar value, adjusted to provide the best F1
metric by eliminating the rigidity of a direct residual connection.

Also relevant is the disparity of F1 results obtained depending on the test dataset used.
This fact is also evident in the original papers. We believe that for this task to be tackled
with better guarantees, it would be convenient to develop a single standardized benchmark
dataset for both training and testing that would serve as a reference in a similar way as
other datasets, such as Imagenet, in the image classification task. For all tests, we use three
NVIDIA RTX 3090 graphic cards as GPU support for training and inference. The computer
has an i7 processor, with 96GB RAM. Models are reduced by a factor between ×4 and ×5
the number of parameters, with a total training time of 6 h, using all IACC3 datasets and
30% split for test. Inference time is 0.8 s for an input of 100 frames.

Author Contributions: Conceptualization: M.J.E.B. and J.G.-R.; methodology: M.J.E.B. and J.G.-R.;
software: M.J.E.B. and R.-J.J.; validation: M.J.E.B.; formal analysis: M.J.E.B.; investigation: M.J.E.B.,
R.-J.J. and J.G.-R.; resources: M.J.E.B. and J.G.-R.; writing original draft, preparation: M.J.E.B.;
writing—review and editing: M.J.E.B., F.J.L. and J.G.-R.; visualization: M.J.E.B. and R.-J.J.; supervision:
J.G.-R. and F.J.L.; project administration: F.J.L. and J.G.-R.; and funding acquisition: F.J.L. All authors
have read and agreed to the published version of the manuscript.

Funding: We would like to thank “A way of making Europe” European Regional Development
Fund (ERDF) and MCIN/AEI/10.13039/501100011033 for supporting this work under the TED2021-
130890B (CHAN-TWIN) research project funded by MCIN/AEI /10.13039 /501100011033 and Euro-
pean Union NextGenerationEU/ PRTR. Additionally, the HORIZON-MSCA-2021-SE-0 action number:
101086387, REMARKABLE, Rural Environmental Monitoring via ultra wide-ARea networKs And
distriButed federated Learning.



Sensors 2023, 23, 7022 20 of 21

Data Availability Statement: Datasets and code are available under request to corresponding authors.

Acknowledgments: We would like to thank Telefonica I+D for supporting the Industrial PhD of
Miguel Esteve Brotons.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
2. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. arXiv 2017, arXiv:1610.02357.
3. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. arXiv 2019, arXiv:1709.01507.
4. Li, X.; Wang, W.; Hu, X.; Yang, J. Selective Kernel Networks. arXiv 2019, arXiv:1903.06586.
5. Souček, T.; Moravec, J.; Lokoč, J. TransNet: A deep network for fast detection of common shot transitions. arXiv 2019,

arXiv:1906.03363v1. [CrossRef]
6. Souček, T.; Lokoč, J. TransNet V2: An effective deep network architecture for fast shot transition detection. arXiv 2020,

arXiv:2008.04838. [CrossRef]
7. Jin, J.; Dundar, A.; Culurciello, E. Flattened Convolutional Neural Networks for Feedforward Acceleration. arXiv 2015,

arXiv:1412.5474.
8. Wang, M.; Liu, B.; Foroosh, H. Factorized Convolutional Neural Networks. In Proceedings of the 2017 IEEE International

Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29 October 2017; pp. 545–553. [CrossRef]
9. Liu, B.; Wang, M.; Foroosh, H.; Tappen, M.; Penksy, M. Sparse Convolutional Neural Networks. In Proceedings of the 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 806–814. [CrossRef]
10. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. arXiv 2015,

arXiv:1512.00567.
11. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on

Learning. arXiv 2016, arXiv:1602.07261.
12. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
13. Carreira, J.; Zisserman, A. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. arXiv 2018, arXiv:1705.07750.
14. Donahue, J.; Hendricks, L.A.; Rohrbach, M.; Venugopalan, S.; Guadarrama, S.; Saenko, K.; Darrell, T. Long-term Recurrent

Convolutional Networks for Visual Recognition and Description. arXiv 2016, arXiv:1411.4389.
15. Ng, J.Y.H.; Hausknecht, M.; Vijayanarasimhan, S.; Vinyals, O.; Monga, R.; Toderici, G. Beyond Short Snippets: Deep Networks for

Video Classification. arXiv 2015, arXiv:1503.08909.
16. Feichtenhofer, C.; Pinz, A.; Zisserman, A. Convolutional Two-Stream Network Fusion for Video Action Recognition. arXiv 2016,

arXiv:1604.06573.
17. Simonyan, K.; Zisserman, A. Two-Stream Convolutional Networks for Action Recognition in Videos. arXiv 2014, arXiv:1406.2199.
18. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning Spatiotemporal Features with 3D Convolutional Networks.

arXiv 2015, arXiv:1412.0767.
19. Xie, S.; Sun, C.; Huang, J.; Tu, Z.; Murphy, K. Rethinking Spatiotemporal Feature Learning: Speed-Accuracy Trade-offs in Video

Classification. arXiv 2018, arXiv:1712.04851.
20. Qiu, Z.; Yao, T.; Mei, T. Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks. arXiv 2017,

arXiv:1711.10305.
21. Ye, R.; Liu, F.; Zhang, L. 3D Depthwise Convolution: Reducing Model Parameters in 3D Vision Tasks. arXiv 2018, arXiv:1808.01556.
22. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. arXiv

2017, arXiv:1707.01083.
23. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv

2019, arXiv:1801.04381.
24. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5MB model size. arXiv 2016, arXiv:1602.07360.
25. Awad, G.; Butt, A.A.; Fiscus, J.G.; Joy, D.; Delgado, A.; Michel, M.; Smeaton, A.F.; Graham, Y.; Jones, G.J.; Kraaij, W.; et al.

TRECVID 2017: Evaluating Ad-hoc and Instance Video Search, Events Detection, Video Captioning and Hyperlinking. In
Proceedings of the TREC Video Retrieval Evaluation, Gaithersburg, MD, USA, 13–15 November 2017.

26. Baraldi, L.; Grana, C.; Cucchiara, R. A Deep Siamese Network for Scene Detection in Broadcast Videos. In Proceedings of the 23rd
ACM international conference on Multimedia, Brisbane, Australia, 26–30 October 2015; Association for Computing Machinery:
New York, NY, USA, 2015. [CrossRef]

27. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You
Need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017) , Long Beach, CA, USA, 4–9
December 2017.

http://doi.org/10.48550/ARXIV.1906.03363
http://doi.org/10.48550/ARXIV.2008.04838
http://doi.org/10.1109/ICCVW.2017.71
http://dx.doi.org/10.1109/CVPR.2015.7298681
http://dx.doi.org/10.1145/2733373.2806316


Sensors 2023, 23, 7022 21 of 21

28. Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-Attention Generative Adversarial Networks. In Proceedings of the 36th
International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019.

29. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.

30. Zhang, X.; Han, L.; Zhu, W.; Sun, L.; Zhang, D. An Explainable 3D Residual Self-Attention Deep Neural Network for Joint
Atrophy Localization and Alzheimer’s Disease Diagnosis Using Structural MRI. IEEE J. Biomed. Health Inform. 2022, 26, 5289–5297.
[CrossRef] [PubMed]

31. Zhu, M.; Bin, S.; Sun, G. Lite-3DCNN Combined with Attention Mechanism for Complex Human Movement Recognition.
Comput. Intell. Neurosci. 2022, 2022, 4816549. [CrossRef] [PubMed]

32. Tang, S.; Feng, L.; Kuang, Z.; Chen, Y.; Zhang, W. Fast Video Shot Transition Localization with Deep Structured Models. In
Asian Conference on Computer Vision; Springer: Cham, Switzerland, 2018. [CrossRef]

33. Baraldi, L.; Grana, C.; Cucchiara, R. Shot and Scene Detection via Hierarchical Clustering for Re-using Broadcast Video. In
Computer Analysis of Images and Patterns; Azzopardi, G., Petkov, N., Eds.; Springer: Cham, Switzerland, 2015; pp. 801–811.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JBHI.2021.3066832
http://www.ncbi.nlm.nih.gov/pubmed/33735087
http://dx.doi.org/10.1155/2022/4816549
http://www.ncbi.nlm.nih.gov/pubmed/36120684
http://dx.doi.org/10.48550/ARXIV.1808.04234

	Introduction
	Related Work
	Motivation and High-Level Considerations
	Proposed Methods
	Depthwise Separable Convolution
	Residual Self-Attention
	Architectural Options
	Type of Depthwise Convolution
	Attention Blocks on a Different Axis
	Residual Depthwise Dilated options
	Residual Self-Attention Options

	Final Modified Networks
	Networks Parameters

	Experiments
	Depthwisev{X}TransnetAttn{Type}v{Z} Experiments
	Depthwisev{X}Transnetv2{Y}Attn{Type}v{Z} Experiments
	Other Experiments

	Conclusions
	References

