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Abstract 11 

Introduction: Analyzing metabolic power of horizontal movements may contribute to the 12 

understandings of physical and metabolic demands in professional handball. 13 

Purpose: To ascertain the typical metabolic power characteristics of elite handball players of different 14 

positions, and whether changes occur within matches during the European Championship 2020.  15 

Design: Prospective cohort study. 16 

Methods: 414 elite male handball players were included. During all 65 matches of the EURO 2020, 17 

local positioning system data were collected (16.6 Hz), yielding in 1853 datasets. Field players were 18 

categorized in six positional groups: centre backs (CB), left and right wings (LW/RW), left and right 19 

backs (LB/RB) and pivots (P).  Metabolic power, total energy expenditure, high-power energy and the 20 

equivalent distance index was calculated from the position data and further processed as dependent 21 

variables. We used linear mixed models with players as random and positions as fixed effects models. 22 

Intensity models included time played to account for a time-dependency of the intensity. 23 

Results: LW/RW spent most time on the pitch, expended most total energy, and most relative energy 24 

per kg body weight in the high intensity categories. CB played at the highest mean intensity (highest 25 

mean metabolic power). Playing intensity decreased with longer playing time in a curvilinear manner 26 

with a stronger decrease in the short playing time areas.  27 

Conclusion: Metabolic power intensity profiles are modulated by playing positions and players’ time 28 

on the pitch. Analysis of metabolic intensity in handball should take these parameters into account for 29 

optimizing training and performance during matches. 30 

Keywords: energy expenditure, exercise volume, intensity, external load, activity profile, local 31 

positioning system, mixed models.  32 
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Introduction 34 

Handball is a highly intermittent team sport with fast transitions between offensive and defensive 35 

phases (Manchado et al., 2013). To improve training prescriptions, it is important to understand the 36 

physical position-specific on-court demands, e.g. volume and intensity, beside technical-tactical 37 

actions (Manchado et al., 2013; Fasold & Redlich, 2018). Beside handball-specific movements like 38 

collisions, jumps, passes, and shots, physical demands include horizontal movements of the players. 39 

Previously used analyses of physical demands during handball matches mainly used distance and speed 40 

and revealed position-depending differences between players. For example, wings covered more total 41 

distance (Büchel et al., 2019; Manchado et al., 2021), spent more time and covered more distance in 42 

high speed and sprinting zones compared to backs and pivots (Cardinale et al., 2017). Total distance is 43 

important because it determines energy expenditure regardless of movement speed (Carling et al., 44 

2008), and is thus often used as an indicator for exercise volume. Movement speed has been assumed 45 

to represent exercise intensity (Bangsbo et al., 1991). 46 

To capture volume and intensity of an intermittent sports game like handball, however, it is not 47 

sufficient to only assess distance and speed. Accelerations and decelerations are also physiologically 48 

relevant in handball even at submaximal speed (Akenhead et al., 2014) and are thought to be the most 49 

energetically demanding elements in team sports directly contributing to energy cost (Polglaze et al., 50 

2018). Further, accelerating is energetically even more demanding than maintaining velocity (Varley 51 

& Aughey, 2013). Therefore, distance alone is not sufficient to represent volume and speed alone 52 

cannot signify exercise intensity in handball. The focus on accelerations alone, however, neither is 53 

sufficient, because the energetic demand for a given acceleration varies when starting speed is taken 54 

into account (Osgnach et al., 2010). Therefore, one should rather account for the interplay between 55 

velocity and acceleration when analyzing metabolic demands in handball. The respective parameter 56 

considering both is metabolic power. Metabolic power is the product of the energy cost of running and 57 

the running speed itself (instantaneous values or time courses) (Osgnach & Di Prampero, 2018). To 58 

the best of our knowledge, metabolic power has not been analyzed so far during top-level handball 59 

matches for the determination of the energetic costs of horizontal movement patterns.  60 

The specific rules in handball enable the teams to interchange their players any number of times 61 

resulting in different playing times of single players and between positions. Therefore, playing time 62 

has to be taken into account for any detailed analysis of physical demands in handball. Previous studies 63 

reported that there is a decrease in total distance covered during the second half and also that the 64 

distance covered at high speed is lower as the game went on (Michalsik et al., 2014; Büchel et al., 65 

2019). Knowledge of the time-dependency of metabolic power-derived parameters in handball is 66 

missing. 67 

Thus, the first aim of this study was to assess the volume and intensity of top-level handball match-68 

play at different positions using the energy-based metabolic power approach by Osgnach et al. (2010). 69 

The second aim was to analyze the time course of intensity in dependence of playing time. We 70 

hypothesized that (1) positional differences in the volume and intensity parameters exist and that (2) 71 

intensity decreases throughout the game. 72 

Methods 73 

Study design and ethical aspects 74 

A prospective cohort observational study was performed. Data were obtained from players 75 

participating in European Handball Federation (EHF) EURO 2020 held in Austria / Norway / Sweden. 76 



 

 

The participating players provided informed consent before inclusion. The study was planned and 77 

performed in line with the Declaration of Helsinki and approved by the Ethics Committee of the 78 

University of Alicante (registration number UA-2020-09-10). 79 

Participants 80 

Data were collected from 414 male elite handball players. A total of 1853 datasets out of 65 games 81 

were obtained. We excluded goalkeepers and observations from field players with less than 1 minute 82 

playing time. The remaining 1596 datasets from 352 players were analysed with regard to playing 83 

position (Figure 1). 84 

 85 

Figure 1 Flow diagram 86 

 87 

Instruments 88 

Position data were continuously monitored using a local positioning system (LPS) (Kinexon Precision 89 

Technologies, Munich, Germany). Nine antennas were placed around the playing field which were 90 

connected to 10 anchor antennas distributed at 3 different levels above the ground in the arena. For a 91 

closer look at the setup, the reader is referred to Manchado et al. (2021). Player’s position was recorded 92 

with a 16.6 Hz frequency by calculating the time-of-flight of ultra-wide-band radio signals from the 93 

transmitter to the base stations. These time-of-flight measurement signals are smoothed with an 94 

Unscented Kalman Filter. Subsequently, the position was determined through triangulation. Speed and 95 

acceleration are calculated subsequently and filtered with a zero-phase shifting low pass Butterworth-96 

filter of 3rd order with cut-off frequencies of 1 and 0.5 Hz, respectively. Recently the system has been 97 



 

 

validated (Hoppe et al., 2018; Fleureau et al., 2020; Alt et al., 2020) and was used for the analysis of 98 

movement patterns in ice-hockey and handball (Link et al., 2019; Manchado et al., 2020).  99 

Data processing 100 

To automate the calculation of net playing time the player’s position had to be at least 1 second and 101 

0.8 meter on the field to count as active. For substitutions, it had to be 0.4 meter outside of the field for 102 

1 second or more. The time in which the ball was not on the pitch or no team had possession of the ball 103 

was not included. Further, playing phases (offence/defence) were distinguished based on ball 104 

possession and overall player movement. The net playing time was calculated as the accumulated time 105 

of the offense and defence phases. LPS data of each single player were analysed for the periods of his 106 

individual net playing time and summed up for further analysis. Total run distance was determined 107 

accordingly.  108 

Energy costs and metabolic power data were calculated using previously outlined equations (Osgnach 109 

et al., 2010; Di Prampero et al., 2015). Instead of 3.6 J/kg/m energy cost of running at constant speed 110 

on flat terrain, which had originally been determined in endurance mountain runners (Minetti et al., 111 

2002), however, we used 4.46 J/kg/m for the handball players included in this study. Handball players, 112 

as football players and further generally active men not specialized in straight-forward running, are 113 

running in a less economic way compared to endurance runners and, therefore, need slightly more 114 

energy (Buglione & Di Prampero, 2013; Savoia et al., 2020). Further, the constant (KT) for running 115 

on a grassy terrain in analyses of football match play and training sessions (Osgnach et al., 2010; 116 

Gaudino et al., 2014) was not included.  117 

According to Osgnach et al. (2010), the following five power categories were used: low power (LP 118 

from 0 to 10 W/kg), intermediate power (IP, from 10 to 20 W/kg), high power (HP; from 20 to 35 119 

W/kg), elevated power (EP; from 35 to 55 W/kg), and max power (MP; > 55 W/kg). In order to describe 120 

high intensities in a more general manner, we additionally summarized both highest intensities 121 

(EP+MP; > 35 W/kg) and named this combined category high intensity power (HIP). For each of these 122 

power categories, time, distance, and estimated net energy expenditure (above resting) were quantified. 123 

Additionally, equivalent distance and the equivalent distance index were calculated. The equivalent 124 

distance represents the distance that the player would have run at a steady pace on the field using the 125 

total energy spent over the match. The equivalent distance index is the ratio between equivalent 126 

distance and total distance and reflects the erraticness of running (Osgnach et al., 2010). All data were 127 

processed in Matlab (R2020b). 128 

Statistical analyses 129 

All statistical analyses and plots were performed with R (4.0.4) (R Core Team, 2021).  130 

We have applied and compared different linear regression models for the analysis of the relationships 131 

between various parameters: Metabolic power, energy expenditure, equivalent distance index and 132 

summed high metabolic power energy (EP+MP) were dependent variables (DV), while position and 133 

time played were defined as independent variables. To account for the nested data structure (repeated 134 

measures for players in teams), we used linear mixed models via the {lme4} package (Bates et al., 135 

2015) (see our markdown script for dependencies and versions). Volume (DV: Energy expenditure) 136 

models did not include time because we were interested in total time-independent exertion (random 137 

intercept). Intensity distribution analysis did not include time as well (random intercept). The intensity 138 

(DV: average MP) models included time played and position as fixed effects and players nested in 139 



 

 

teams as random effects to account for multiple observations for players who played more matches 140 

(random intercept & random intercept/slope over time). Erracticness (DV: Equivalent distance index) 141 

models also included time played and position as fixed effects and player nested in teams as random 142 

effects (random slope). Sensitivity was checked via a reduced data set (preliminary round) and a spline 143 

model with the {mgcv} (Wood, 2011). We compared models via several criteria (p-value, Akaike-144 

Information-Criterion, Bayesian-Information-Criterion) and their coefficients. Further, we compared 145 

the estimated means with 95% confidence intervals of our models for the positions (and time in 146 

intensity models). Heterogeneity was inspected via random slope/intercept coefficients. Assumptions 147 

were checked graphically via model residual plots (Q-Q, residuals vs. fit) – see our repository for 148 

further details (https://osf.io/zqpt2/). 149 

Results 150 

In sum, 352 of 414 observations met our inclusion criteria (Figure 1). Descriptive values are shown in 151 

our repository (https://osf.io/zqpt2/). 152 

Wings weight the least on average, followed by Centre Backs, outer Backs and Pivots (Table 1). 153 

Additionally, there were more observations for Left Backs and Pivots. Time played seems to be higher 154 

for Wings, especially Left Wings (Table 1).  155 

Table 1 Number of players and observations included, anthropometric characteristics, and playing time for the single 156 
positions. 157 

Position npl nobs Weight (kg) Height (cm) Time (min) 

   Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Centre Back 54 245 90.6 6.9 189.7 5.8 24.9 13.6 
Left Wing 48 207 84.4 7.9 186.9 5.7 32.1 17.0 
Right Wing 48 220 83.1 6.3 184.6 5.4 30.0 18.4 
Left Back 71 315 97.1 6.5 196.1 4.2 23.8 12.6 
Right Back 50 241 95.8 8.9 194.4 5.8 24.5 13.3 
Pivot 81 368 105.4 8.4 196.8 4.6 24.5 13.8 

Total sample 352  94.3  10.5 192.4 6.7   

npl = number of players; nobs = number of observations  158 

Volume – total energy expenditure and equivalent distance 159 

Energy expenditure relative to body weight was higher in left wings, followed by right wings, centre 160 

backs and left/right backs and pivots – see Figure 2A. Neglecting body weight, absolute total energy 161 

expenditure was, still, highest in left wings followed by pivots, centre backs, right wings, and left and 162 

right backs. However, likewise in our intensity models, the interindividual variability was high.  163 

Since the equivalent distance is calculated from the energy expenditure by multiplying with a fixed 164 

value, equivalent distance was also highest in left wings, followed by right wings, centre backs, left 165 

backs, right backs and pivots. Data of mean total distances run in the matches are given in our 166 

repository (https://osf.io/zqpt2/).  167 

Intensity – Metabolic Power 168 

https://osf.io/zqpt2/
https://osf.io/zqpt2/
https://osf.io/zqpt2/


 

 

Our random intercept and slope model performed best among other models (random intercept/slope 169 

vs. random intercept, AIC: 3635 vs. 3769, BIC: 3710 vs. 3823, p<.001) and yielded a plausible 170 

distinction between positional groups: Centre Backs had the highest mean metabolic power, followed 171 

by right and left wings, left and right backs and pivots (Figure 2C).  172 

Erraticness – Equivalent distance index 173 

Wings had highest equivalent distance index values, followed by the centre backs, the pivots, the left 174 

backs and the right backs (Figure 2D). 175 

 176 

 177 

Figure 2 TIE-fighter plots of estimated means with 95% confidence intervals 178 
Relative (A) and absolute (B) total energy expenditure (random intercept), mean metabolic power (C) (random 179 
intercept/slope) and equivalent distance index (D) (random slope)  180 

Intensity distribution – metabolic power categories 181 

Intensity distribution analysis revealed that all position groups expended similar energy in low to mid 182 

intensity zones (< 35 W/kg). Position-specific differences occurred in the higher intensity zones and 183 

especially in the combined high intensity power category (> 35 W/kg). Left wings expended most 184 

energy in the high intensity category, followed by right wings, centre backs, left backs, right backs and 185 

pivots (Figure 3). 186 



 

 

 187 

Figure 3 Energy expended (J/kg) in metabolic power zones in the different playing positions; estimated means with 95% 188 
confidence intervals 189 

Time dependency of metabolic power and related parameters 190 

The linear model predicted a decrease in intensity of 2.5% (0.2 kJ/kg/s; CI95% [0.17, 0.23]) per 10 191 

minutes played. However, the decrease seems to be rather curvilinear with a stronger decrease in short 192 

playing times accompanied by higher variability (Figure 4).  The random effects for teams suggest less 193 

variability between teams (range: -0.26 to 0.25) but a rather high variability in individuals (range: -194 

3.23 to 3.84) – see our repository for details (https://osf.io/zqpt2/). 195 

https://osf.io/zqpt2/


 

 

 196 

Figure 4 Mean metabolic power in dependency of time played and position 197 

 198 

Figure 5 Energy expended in metabolic power (MP) zones in dependency of  time played and position199 
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Discussion 200 

Hypotheses verification 201 

The findings of differences (between positions and in dependence of the time on the court) in metabolic 202 

power, energy expenditure, equivalent distance index and high metabolic power energy lead to a 203 

verification of hypothesis (1) and a decrease of intensity verifies the secondary hypothesis. 204 

Comparison to the handball-relevant evidence 205 

Our results are mostly in line with other studies who reported the highest exercise volume in wing 206 

players (Cardinale et al., 2017; Büchel et al., 2019; Manchado et al., 2021) followed by centre backs 207 

(Cardinale et al., 2017; Manchado et al., 2021). In contrast to our study, Büchel et al. (2019) did not 208 

differentiate between left, right, and centre backs. Another parameter in the energy based approach 209 

reflecting volume is the equivalent distance, which represents the distance that the player would have 210 

run at a steady pace using the total energy spent over the match (Osgnach & Di Prampero, 2018). The 211 

equivalent distance shows the same ranking as metabolic power (Osgnach & Di Prampero, 2018). The 212 

total distance covered is commonly used as the parameter to describe the volume of handball match 213 

play (Póvoas et al., 2012; Cardinale et al., 2017; Manchado et al., 2021). The energy based approach 214 

uses the energy expenditure because the total distance is only a correct estimate of the volume if the 215 

speed is constant because it does not take into account acceleration and deceleration (Osgnach & Di 216 

Prampero, 2018).  217 

The centre backs showed the highest values in average metabolic power. This is in line with Manchado 218 

et al. (2021); although they used the running pace for describing the intensity of the game instead of 219 

metabolic power. However, our model yields different conclusions for other positions than centre 220 

backs.  221 

Regarding the running pace, pivots and left backs ran with higher intensity than the wing positions and 222 

the right back (Manchado et al., 2021), while the average metabolic power was higher for the wing 223 

positions, followed by Left/Right Back and then the Pivots. Further, the wing position players’ 224 

movements seems to be more erratic compared to the backs and pivots indicated by a higher Equivalent 225 

Distance Index. A higher Equivalent Distance Index indicates that activities are more intermittent in 226 

nature. Wings often reach high accelerations (Font et al., 2021) and velocities (Manchado et al., 2021). 227 

This could be due to wings having greater spatial limitation probably need those accelerating changes 228 

to succeed, in addition they run more counter-attacks.  229 

Centre Backs playing at the highest average metabolic power due to the highest number of 230 

accelerations overall (Font et al., 2021). As we were interested in the intensity throughout the whole 231 

match, we did not distinguish between offensive and defensive game phases and, thus, cannot conclude 232 

if this separation may be of explanative values for the differences observed. Metabolic power data 233 

showed that wings play at a higher intensity compared to both half back positions and the pivot backed 234 

up by a higher Equivalent Distance Index. The positional order between both intensity parameters 235 

differs because the running pace does not take into account the weight of the specific player and does 236 

not include acceleration which substantially increases energy demands (Polglaze et al., 2018). Further, 237 

our model took into account decreasing intensity throughout the game and different playing time.  238 

Left wings spent most energy over the high intensity thresholds, followed by right wings. This is 239 

consistent with the results from Manchado et al. (2021) and Cardinale et al. (2017), who used a speed 240 

based classification of determining the playing intensity. We chose to describe the high intensity 241 



 

 

volume as energy over a certain metabolic power threshold compared to the mentioned studies because 242 

a speed based classification omits activities at lower speed but very high acceleration (Polglaze et al., 243 

2018). In handball matches, athletes hardly reach their level of top speed and the ability to frequently 244 

change velocity is more important to successful performance (Upton, 2011). The metabolic power 245 

approach takes both into account.  246 

Comparison to other team sports 247 

The mean total energy expenditure (approx. 11.6 kJ kg-1 body weight) showed lower values compared 248 

to other team sports like football (61.1 kJ kg-1, Osgnach et al., 2010), Australian football (63.3 kJ kg-1, 249 

Coutts et al., 2015), rugby league (39,2 kJ kg-1, Kempton et al., 2015) and field hockey (31.8 kJ kg-1, 250 

Polglaze et al., 2018). A reason for this may be found in the fact that handball is an indoor sport with 251 

much smaller field size than football. Furthermore, the possibility to interchange (players can play only 252 

on the offensive side of the field and be substituted when the phase changes) may be another reason. 253 

In comparison, field hockey players, who also have the possibility to interchange, tend to play more 254 

(47:28 ± 5:34 min:s) (Polglaze et al., 2018).  255 

Average metabolic power showed lower values compared to other studies investigating other sports 256 

(Gaudino et al., 2014; Coutts et al., 2015; Kempton et al., 2015; Polglaze et al., 2018) Mostly, and 257 

unlike in our study, a correction factor for the surface was used. So the energy cost and average 258 

metabolic power in this study are about 29% higher compared to our data. Handball is defined by 259 

various movements which take place on a fixed point of the field like jumping, throws and passes 260 

(Póvoas et al., 2012) which are not reflected in the calculated energy expenditure and average 261 

metabolic power but require a certain amount of energy as well.  262 

Impact of the time on the field 263 

Our model shows a decrease of intensity of 2.5 % per 10 minutes played. This is in line with Büchel et 264 

al. (2019) who reported a 7% higher mean speed for low playing-time players compared to high 265 

playing-time players. Similar results were reported in changes in average speed, relative time spent 266 

running and high-intensity running between halftimes in handball (Michalsik et al., 2014; Büchel et 267 

al., 2019) and field hockey (MacLeod et al., 2007). Bradley et al. (2014) showed that substitute players 268 

in soccer covered more distance at high intensity and performed more sprints which supports the thesis 269 

that the less you play the more intense you move.  270 

Further, our model shows that for low playing time players the expended energy over the high 271 

metabolic power threshold seems to be similar in wings and centre backs but the longer the players 272 

play, the higher the volume of high intensity energy of wing players compared to centre backs. A 273 

reduction in distance or speed is considered to indicate fatigue (Polglaze et al., 2018) which we cannot 274 

support. We observed the greatest decrease in intensity for low playing time players but we also found 275 

the greatest variability in the intensity. The highest intensity for lower playing time players could also 276 

be due to the nature of substitution itself as Büchel et al. (2019) proposed. Players need to act 277 

accordingly to the situation in the match in which they are needed to rush on and off the court as quick 278 

as they can.  279 

Practical relevance 280 

The differences in intensity and volume between positions throughout handball match-play suggest 281 

that it is important to adapt the training work to the positional profile. Players change their position 282 

frequently during a match, especially, the back positions which makes it even more necessary to 283 



 

 

individualize training work based on the individual profile of movement. An implication of metabolic 284 

power in team sport match play is useful and necessary because it allows high-intensity activity to be 285 

expressed in proportion to the total energy expenditure and not playing time or distance covered (Gray 286 

et al., 2018). Especially in handball those high intensity efforts are rather short little bouts where time 287 

and distance can not reflect this bouts accurately, where adenosine triphosphate (ATP) turnover can be 288 

extremely high (Polglaze & Hoppe, 2019).  289 

Methodological considerations 290 

Although we evaluated positional differences, it has to be stated that in handball, players change their 291 

position frequently in the offense phases of the match and we did not account for different tactical 292 

behaviour, for example, players in different defensive systems (4-2; 5-1; 6-0) could have different 293 

values. Further, the metabolic power approach assumes movement of the centre mass and is neglecting 294 

any movements from the limbs. Also, the sensor device was placed in a little bag between the shoulder 295 

blades, therefore, amplified movements from the trunk from tackling or other handball specific 296 

movement patterns could overestimate metabolic power (Polglaze et al., 2018). Volume and intensity 297 

of handball match-play are characterized by many jumps, throws, passes and tacklings. All these 298 

actions could yield a certain amount of energy and therefore a higher volume and also a higher average 299 

intensity of match-play. These actions are not considered in the metabolic power approach yet and are 300 

needed to be investigated and added to the approach 301 

Perspective 302 

With our analyses, we show ways to model the physical demands (i.e., exercise volume and intensity) 303 

in handball using the metabolic power model, a phase-by-phase model to extract net playing time and 304 

linear mixed models to account for the observational character, which can be conceptionally used in 305 

other studies. However, the metabolic power model is far from being perfect in modelling the physical 306 

and physiological demands; future research should implement demands of sport-specific actions like 307 

passing, jumping, side-steps, body contact, etc. Despite this, we yet see advantages over the commonly 308 

speed/distance approach. Those metrics can give an insight into the locomotion of handball players, 309 

metabolic power seems to reflect the load and intensity more accurate because it takes into account the 310 

cost of acceleration in activity comprising perpetual changes in speed. We suggest using intensity 311 

models incorporating time to account for decreasing intensity throughout the game, especially in sports 312 

where interchange is allowed.  313 
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