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Abstract: Slope failures, subsidence, earthworks, consolidation of waste dumps, and erosion are
typical active deformation processes that pose a significant hazard in current and abandoned mining
areas, given their considerable potential to produce damage and affect the population at large. This
work proves the potential of exploiting space-borne InSAR and airborne LiDAR techniques, combined
with data inferred through a simple slope stability geotechnical model, to obtain and update inventory
maps of active deformations in mining areas. The proposed approach is illustrated by analyzing the
region of Sierra de Cartagena-La Union (Murcia), a mountainous mining area in southeast Spain.
Firstly, we processed Sentinel-1 InSAR imagery acquired both in ascending and descending orbits
covering the period from October 2016 to November 2021. The obtained ascending and descending
deformation velocities were then separately post-processed to semi-automatically generate two active
deformation areas (ADA) maps by using ADATool. Subsequently, the PS-InSAR LOS displacements
of the ascending and descending tracks were decomposed into vertical and east-west components.
Complementarily, open-access, and non-customized LiDAR point clouds were used to analyze surface
changes and movements. Furthermore, a slope stability safety factor (SF) map was obtained over
the study area adopting a simple infinite slope stability model. Finally, the InSAR-derived maps, the
LiDAR-derived map, and the SF map were integrated to update a previously published landslides’
inventory map and to perform a preliminary classification of the different active deformation areas
with the support of optical images and a geological map. Complementarily, a level of activity
index is defined to state the reliability of the detected ADA. A total of 28, 19, 5, and 12 ADAs were
identified through ascending, descending, horizontal, and vertical InSAR datasets, respectively, and
58 ADAs from the LiDAR change detection map. The subsequent preliminary classification of the
ADA enabled the identification of eight areas of consolidation of waste dumps, 11 zones in which
earthworks were performed, three areas affected by erosion processes, 17 landslides, two mining
subsidence zone, seven areas affected by compound processes, and 23 possible false positive ADAs.
The results highlight the effectiveness of these two remote sensing techniques (i.e., InSAR and LiDAR)
in conjunction with simple geotechnical models and with the support of orthophotos and geological
information to update inventory maps of active deformation areas in mining zones.

Keywords: active deformation area; InSAR; LiDAR; stability model; mining area; landslide;
earthworks; consolidation of waste dumps; south-eastern Spain
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1. Introduction

Mining areas are usually affected by active deformations caused by subsidence and
slope instabilities phenomena, as well as other processes such as erosion and consolidation
of mining waste dumps, which may appear both during operation and after closure. Mining
earthmoving operations (i.e., excavations and waste dumps) also alter the topography of
the ground surface.

Ground movements in mining areas are usually monitored using surface (e.g., level-
ing) and subsurface techniques (e.g., surveying, settlement cells, or inclinometers), which
require in situ measurements and represent a costly solution [1]. Optical remote sensing
has the ability to detect and map some ADAs based on their geomorphological features
(e.g., tension cracks), although it is highly susceptible to external factors such as the subjec-
tive opinion of experts and their expertise, and very time-consuming [2]. Interferometric
Synthetic Aperture Radar (InSAR) is a technique that has been proven very effective for the
detection, the delineation of boundaries, and the assessment of ADAs [3–5]. InSAR can pro-
vide displacement time series estimations up to submillimeter accuracy [6]. However, the
interferometric quality is often affected by the inherent presence of temporal decorrelation
when the SAR images are collected in the repeat-pass mode, which leads to interferometric
coherence loss, especially in forested and anthropogenically modified areas.

In contrast, multi-temporal LiDAR (Light Detection and Ranging) datasets used to
produce an inventory map are not only conducive to a loss of resolution but also allow
a better capture of subtle changes on quick deformation [7–9]. In fact, previous studies
have demonstrated the capability of differential LiDAR to measure changes caused by earth-
quakes [10–12], coastal processes [13,14], mining subsidence [12], and landslides [7,12,15],
among other events [9]. LiDAR enables us to obtain of high-quality three-dimensional ter-
rain data in terms of density and accuracy [16]. Typically, the accuracy of LiDAR can reach
a very few centimeters of root-mean-square error and a pulse density of 0.5–1 pulses per
square meter [16–18]. Similar to LiDAR, unmanned aerial vehicle (UAV) photogrammetry
enables monitoring ground displacements based on the high-resolution differential DEMs
(digital elevation models) [19–21].

Consequently, to improve the ability to detect and update the active deformation
inventory maps, the application of LiDAR has been adopted as a complementary technique
for the updating of active areas in this work. Consequently, the complementarities between
both techniques enable to increase the capability to automatically map changes on the
ground surface. In the case of landslides, the phenomenon is controlled by geotechnical
processes. Then, the addition of external information derived from the implementation of
slope stability models permits the identification of the areas prone to landslides (i.e., the
areas exhibiting a safety factor lower than one) and thus contributes to the improvement of
the identification of potentially unstable slopes. Finally, the use of geological maps and the
expert analysis of orthophotos enables the identification of geomorphological features and
landforms for the preliminary classification of the ADAs.

The Sierra de Cartagena-La Union (Murcia) has been intensively exploited since the
Roman period. From the 19th century up to 1991, the area was intensively exploited
using both underground and open-pit mining. Currently, the mining activity has ceased,
although multiple deformational processes remain active, constituting a threat to the closest
urban areas and becoming an important drawback for the economic and environmental
recuperation of this mining area [4].

Previous studies have addressed some issues related to the study of active deformation
areas (ADAs), such as stability analyses of abandoned open pit mines and waste dumps [22],
ground movements mapping [23], and mining subsidence analysis [24–29] in specific areas
of the Sierra de Cartagena-La Union. Thus, this work not only updates the existing ADA
datasets for the whole Sierra de Cartagena-La Union but also proposes a comprehensive
systematic methodology for the automatic mapping and preliminary classification of the
ADAs affecting the region.
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Therefore, the aim of this paper is to propose a methodology to exploit synergies of
LiDAR and InSAR remote sensing techniques to detect active deformation areas in mining
areas. This information, jointly with the external geotechnical stability model, the geological
map, and the support of orthophotos used to identify geomorphological features, will
enable us to update existing inventory maps and to perform a preliminary classification of
the phenomena over wide areas. It should be highlighted that the proposed method not only
enables the identification of landslides but also the mapping and preliminary classification
of other phenomena which usually develop in mining areas, such as consolidation of waste
dumps, earthworks, subsidence, and erosion.

The paper is organized as follows. Section 2 provides a general overview of the Sierra
Minera and a summary of the datasets used in this study. Section 3 includes a detailed
explanation of the proposed methodology. Section 4 shows the main results. Section 5
discusses in detail the obtained results, the classification of the ADAs, and the differences
between both technologies for the detection and classification of ADAs. Finally, Section 6
provides the most relevant conclusions of this work.

2. Study Area and Datasets
2.1. Study Area

The Sierra de Cartagena-La Union (Murcia) belongs to the Internal Zones of the Betic
Cordillera, in the convergence margin between the African and the Iberian plates, in the
south-eastern part of Spain, which is a coastal mountain region [22] (Figure 1).
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Figure 1. Geological map of the study area adapted from [22].

The geology of the study area is composed of three tectonically superimposed complex
nappes, which are from bottom to top the Nevado-Filábride, the Alpujárride, and the
Maláguide complexes. The Nevado-Filábride complex is mainly comprised of Paleozoic
to Permo-Triassic marbles, schists, mica schists, and quartzites. The Alpujárride complex
is mostly represented by Permian quartzites and phyllites and by a carbonate series of
Triassic age containing igneous intrusions [30]. Following, the Maláguide complex, which
constitutes the topmost tectonic complex, is composed of Neogene sedimentary rocks (e.g.,
limestone, sandstone, silt, and conglomerate) [31]. These geological units are covered by
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thin, loose alluvial Quaternary deposits of gravel, clay, silt, and sand. Figure 1 summarizes
the geological units of the study area.

The geological and structural complexity of the region leads to a complex hydrological
relation between the different units. Although most of the geological units are not perme-
able, the Alpujárride marbles, the detritic Miocene rocks, and the Quaternary formations
(sand, silt, and clays) are permeable. Yet the permeability values of these units are low
according to pumping tests developed by the Spanish Geological and Mining Institute
(IGME) in some good points [25].

The Pb and Zn ore deposits, which are associated with the mantle and seam structural
setting of the region, have been exploited from the Iberian period [32] and were intensively
mined from 1940 to 1990 [29]. This was first carried out by underground mining using
the room-and-pillar method. Later, starting in the 1960s, several open-pit mines were
developed. Finally, the mining activity in the region ceased in 1991. Currently, there exist
some landfills for inert waste in the area.

2.2. Datasets

An original landslide inventory map and a geological map, including the mining
facilities (e.g., open pit mines and waste dumps), obtained through photo interpretation
and fieldwork, were provided by IGME [23,33] (Figure 1). It should be noted that the
landslide inventory map was first elaborated in 1996 and updated in 2010 with the aid of
InSAR data and fieldwork [25].

The geo-mechanical properties (i.e., density, friction angle, and cohesion) of the domi-
nant lithologies used for the slope stability analysis presented herein were derived from
the work published by López-Vinielles et al. [22]. These values were, in turn, derived from
laboratory tests performed by IGME [33].

Elevation normally relates to the potential energy of a slope, being the slope angle a
key factor for stability. To determine the dip angle of a slope, the most common strategy
is to use a digital terrain model (DTM). In this work, the slope angle values used for the
stability analysis performed were derived from a freely available DTM with 5 m grid
spacing from the National Geographical Institute of Spain (IGN) [34].

Additionally, two open-access non-specifically acquired, and non-customized LiDAR
point cloud datasets covering the study area were downloaded from the online Geoportal
of the National Plan for Aerial Orthophotography (PNOA) of Spain [35]. As shown in
Table 1, the point clouds were captured with a density of 0.5 points/m2 and automatically
classified and colored by RGB (red, green, and blue) obtained from orthophotos of the
PNOA with a pixel size of 25 or 50 cm [36].

Table 1. Basic parameters of the LiDAR datasets from La Unión used in this study [37,38].

Processing
Year

Flight
Start Date
(mm/yyyy)

Flight End
Date

(mm/yyyy)

Density
(p/m2)

Flight
Relative

Height (m)

RMSE z
(m)

Main
Sensor

2009 10/2009 11/2009 0.5 2727 0.113 LEICA
ALS50

2016 08/2016 09/2016 0.5 3317 0.083 LEICA
ALS60

Finally, two stacks of descending and ascending Sentinel-1 Single Look Complex (SLC)
SAR images were utilized to generate ground deformation maps using InSAR along the
line of sight (LOS). A total of 131 Sentinel-1 images in ascending orbit (track No. 103) and
131 in descending orbit (track No. 8) spanning the time interval from 7 October 2016 to
10 November 2021 were processed. A digital surfaces model (DSM) with a 5 m grid spacing
from the National Geographical Institute of Spain (IGN) [34] was also employed for the
standard Differential- InSAR (D-InSAR) processing.
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3. Methodology

This paper introduces a straightforward methodology based on the joint exploitation
of InSAR and LiDAR datasets to update inventory maps of active deformation areas and to
perform their preliminary classification. The application of the proposed methodology in
the study area was carried out as follows (Figure 2).
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Figure 2. Flowchart of the proposed methodology.

Firstly, the Line of Sight (LOS) displacement velocity maps and time series were de-
rived both in ascending and descending geometry. Subsequently, InSAR LOS displacements
derived from images acquired in ascending and descending orbits were converted into ver-
tical and horizontal components by means of the module LOS2HV from ADATools [39–41].

Secondly, LiDAR-derived velocity was calculated, comparing both available point
clouds with the multiscale model-to-model cloud comparison (M3C2) algorithm, as de-
scribed in [8,42].

Third, different sets of ADAs were automatically mapped using the module ADAfinder
from ADATools [39–41]. To this aim, five different inputs were used to generate different
maps: the ascending LOS velocity that provided the ascending ADA dataset (ADAA),
the descending LOS velocity map, which enabled the mapping of the ADAD, the InSAR-
derived horizontal and vertical velocity maps which provided the ADAH and ADAV,
respectively, and the LiDAR velocity map, from which the ADAL was derived.

Once the ADAs were identified and mapped using the different techniques, the
frequency ratio method was used to calculate the number of times that every ADA was
detected by the different approaches. This index can be considered as a “reliability” index
of the mapped ADAs since a higher index indicates that an ADA has been detected by
different techniques. In addition, the different ADAs obtained were cross-compared to
build a series of confusion matrices that define the performance of the different approaches.

Finally, the ADAs were classified into different types of phenomena using ancillary
information.

A detailed description of the above-described steps of the methodology is provided in
the following subsections.
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3.1. InSAR Processing

After data collection, the two stacks of Sentinel-1 images described in Section 2.2,
covering the period from 2016 to 2021, were processed using the Sentinel Application
Platform (SNAP) [43] to carry out the co-registration of the images and the generation of
the interferograms. LOS displacement velocity maps of the ascending and descending
orbits were processed by the Stanford Method for Persistent Scatterers (StaMPS) PSI-InSAR
processing chain [44,45]. The image acquired on 6 June 2019 was selected as the reference
image to process the ascending stack of images, featuring a mean-looking angle of 38.720◦

and a mean heading angle of 350.095◦. The calculated interferograms presented a maximum
spatial baseline of 130.12 m and a maximum temporal baseline of 972 days. On the other
hand, the SAR image captured on 20 December 2018 was selected as the reference image
to process the descending stack, featuring a mean-looking angle of 33.875◦ and a mean
heading angle of 190.046◦. The calculated interferograms had a maximum spatial baseline
of 138.36 m and a maximum temporal baseline of 1056 days. A reference point located in
[−0.986836W, 37.612156N] was chosen in the city of Cartagena, which was considered a
stable region.

Horizontal and vertical components were computed using a reference grid with a grid
spacing of 80 m, which corresponds to four times the PS size and considering the average
incidence angle of the master image.

To automatically delineate the ADAs with ADAfinder, a displacement rate threshold
of 3 mm/year was used in all cases. It is worth noting that the displacement rate threshold
was judged according to the standard deviation of all PS velocities of the deformation map.
Finally, the extent of the InSAR-derived ADAs was delineated for the four InSAR ADA
maps using ADAfinder [39–41]. Then the four InSAR velocity maps (i.e., LOS descending,
LOS ascending, horizontal, and vertical) were used to derive four ADA maps (i.e., ADAA,
ADAD, ADAH, and ADAV).

3.2. LiDAR Processing

Prior to the generation of the LiDAR displacement velocity map, both point clouds
were separated into ground and non-ground points. This classification was carried out by
selecting a conservative ground detection method by means of the “Classify LAS ground”
tool in ArcGIS [46]. Then, both point clouds were aligned in the stable area by using
the iterative closest point (ICP) algorithm, which allowed obtaining the transformation
matrix. It should be noted that hard rocks (e.g., dolomite, marble, dacite, and andesite)
outcrops were selected as stable areas in view of the geotechnical information collected.
Subsequently, the two entire point clouds were aligned by using the transformation matrix
obtained in the previous step. Then, the changes between the two LiDAR acquisitions were
vertically estimated from the two point clouds by means of the multiscale model-to-model
cloud comparison (M3C2) in CloudCompare v2.12 software [47], which allows avoiding
the need for interpolation or gridding. Finally, ground velocity values were calculated by
dividing the obtained displacement by the time interval between the two acquisitions. A
detailed description of the LiDAR processing method can be found in Hu et al. [8]. The
resulting ground velocity map was then used to delineate the corresponding ADAs by
setting a rate threshold of 3 mm/year using ADAfinder. As a result, a new ADAs map was
derived from LiDAR data (ADAL).

3.3. Infinite Slope Stability Model

Slope stability is modeled in this work using an infinite slope stability model [48].
This is a simple and traditional slope stability limit equilibrium method [49] that enables
to evaluate of the slope stability of a translational landslide on the soil along a planar
rupture surface by means of a safety factor (SF). Despite its simplicity, the method offers
the advantage that it can be easily implemented at a regional scale in a geographical
information system, providing a reasonable approximation to the slope stability problem.



Remote Sens. 2023, 15, 996 7 of 21

If we ignore the effect of vegetation on the stability of the slope, the expression for the
calculation of the SF can be simplified from Escobar-Wolf et al. [50] as follows:

SF =
Cs + [γm·D + (γsat − γw − γm)Hw·D] cos2 β· tan ϕ

[γm·D + (γsat − γw − γm)Hw·D] sin β· cos β
(1)

where:
CS is the cohesive strength of the soil.
ϕ is the internal friction angle of the soil.
γm is the unsaturated or moist (above the phreatic surface) soil unit weight.
γsat is the saturated (under the phreatic surface) soil unit weight.
γw is the water unit weight, a constant equal to 9.81 kN/m3 in SI units.
D is the depth of the slip surface.
HW is the height of the phreatic surface above the slip surface, normalized relative to

soil thickness.
β is the terrain slope.
Note that a slope is considered unstable when SF is lower than 1.0. Moreover, we will

consider the slopes poorly stable when SF varies between 1.0 and 1.2, moderately stable
when SF varies between 1.2 and 1.5, and stable when SF is higher than 1.5.

In the absence of information on the depth of the slip surface, which seriously affects
the slope stability, we adopted variable values from 5 to 100 m according to the range
of plausible values obtained by López-Vinielles et al. [22]. Additionally, the height of
the water table, which varies from completely dry (HW = 0) to completely saturated
(HW = 1), represents another important factor influencing slope stability. Although previous
studies [22,51] suggest that most of the time, the slopes of the study area are completely
dry, we also considered the situation of saturation that might be reached in some slopes
during extremely rainy weather conditions typical in this area [52]. It should be noted that
although the study area presents a relatively high seismic activity [53], we only considered
static conditions since no important earthquakes have struck this area during the studied
period [54].

3.4. Calculation of the Level of Activity

Once the InSAR ADA maps (i.e., ADAD, ADAA, ADAH, and ADAV), the LiDAR
ADA map (ADAL), and the original landslides’ inventory map were obtained, the six
maps were jointly superimposed to calculate the level of activity of every ADA. The level
of activity of an ADA indicates the number of times that the considered ADA has been
detected by the different techniques. It ranges from 1 to 6, being 1 for those ADAs detected
by only one ADA map or the original landslides’ inventory map. In contrast, for those
ADAs identified in all ADA maps, including the original landslides’ inventory map, the
level of activity assigned is 6. Consequently, the higher the level of activity, the higher
the number of sources in which the deforming area was detected and the reliability of the
active deformation area.

To evaluate the similarity and accuracy between different ADAs, the ADAs and
the areas exhibiting an unstable condition in terms of safety factors were superimposed
to derive two confusion matrices. The first confusion matrix analyzes the number of
overlapping polygons, while the second one aims to analyze the percentage of overlap
between polygons. It should be noted that only those areas with an unstable condition
(i.e., with SF < 1) were taken into account for the analysis. Such areas were determined
considering only the two extreme scenarios (in terms of depth of the slip surface) defined for
the stability analyses, both in saturated (i.e., HW = 1 and D = 10 m; HW = 1 and D = 100 m)
and unsaturated conditions (i.e., HW = 0 and D = 10 m; HW = 0 and D = 100 m). The
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confusion matrix that evaluates the number of times that an ADA has been detected by the
different techniques can be expressed as follows:

A =


a11a12 · · · a1n
a21a22 · · · a2n
...

...
. . .

...
am1am2 · · · amn

 (2)

where n is the number of ADA types (which in this case is 6, taking into account the original
landslides’ inventory), m is the number of ADA types and the four different SF cases, aij is
the overlapping number of the ADAs from the i-th ADA map with the ADAs from the j-th
ADA map (i = 1, 2, . . . , n; j = 1, 2, . . . , m). If i = j, the value of aij is the number of ADAs of
the corresponding ADA map.

The confusion matrix aimed to analyze the percentage of overlap between polygons
can be expressed as follows:

R =


r11r12 · · · r1n
r21r22 · · · r2n
...

...
. . .

...
rm1rm2 · · · rmn

 (3)

where rjj(when, i = j) = 1, and rij =
aij
ajj

.

3.5. Classification of ADA

The classification of the ADAs has been performed considering the capability of the
remote sensing techniques to measure the displacements (e.g., large displacements, as those
caused by earthworks, cannot be measured by InSAR due to the important changes in re-
flectivity that cause decorrelation), the characteristics of the phenomena (e.g., consolidation
of waste dumps causes slow and low-magnitude displacements) and ancillary information
(e.g., the original landslides’ inventory map and the SF map) (Table 2).

Table 2. The ability of the different remote sensing techniques and the slope stability model to detect
different phenomena.

Phenomena
Original Landslides’
Inventory Map LiDAR

InSAR Slope Stability
Model

Optical
ImagesAscending Descending Horizontal Vertical

Inactive
landslides Yes No No No No No No Yes **

Consolidation
of waste dump No No Yes Yes No Yes No No

Earthworks No Yes No No No No No Yes

Erosion No Yes No No No No No Yes

Landslides Yes Yes Yes Yes Yes Yes Yes Yes

Subsidence No Yes Yes Yes Yes * Yes No No

(*) Subsidence displacements are predominantly vertical, although small horizontal displacements can also
develop. (**) Some geomorphological features and landforms enable the identification of inactive landslides.

Therefore, firstly, if an ADA was only included in the original landslides’ inventory
map, it was classified as an inactive landslide. It was active in the past or when it was
mapped by photointerpretation, but currently, it is inactive and consequently, the remote
sensing techniques are not capable of capturing it.

Secondly, those ADAs that totally or partially overlapped with the original landslides’
inventory map were classified as landslides. Since they were mapped in the past and have
been currently detected by remote sensing techniques, we can conclude that these ADAs
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are active landslides. These areas usually present a low SF in the slope stability map and
important horizontal displacements.

Thirdly, if an ADA is detected by remote sensing techniques but is not mapped in
the original landslides’ inventory map, then we do not have previous information about
the underlying phenomenon. Then, we can perform a preliminary classification of the
ADA using the available ancillary information (i.e., the SF map, the geological map, and
the orthophotos), considering the capability of remote sensing techniques to measure the
displacements expected for every different phenomenon (Table 2).

Those ADAs derived from InSAR, LiDAR, or both, partially placed over areas ex-
hibiting SF values lower than one in the slope stability map, can be classified as probable
landslides. These areas usually exhibit important horizontal displacements. We also should
take into account that landslides can develop on waste dumps (i.e., tailing dumps), slopes
of open pit mines, and natural slopes mapped in the geological map.

When an ADA is only detected by LiDAR (i.e., it is included in the ADAL map) but not
by InSAR, a high or quick mass loss or gain (e.g., erosion or earthworks) could be the cause
of the loss of the interferometric coherence, which prevents their monitoring by means of
InSAR. More specifically, erosion mainly develops in steep areas, and the magnitude of the
phenomenon is usually a few centimeters or decimeters in the study area. It can develop
on the open pit slopes, waste dump slopes, and natural slopes represented in the geological
map. Complementarily, earthworks cause very big changes (even of several meters). Both
erosion and earthworks are easily recognizable in the optical images.

Those ADAs not mapped in the ADAL but in the ADAs derived from InSAR, or those
ADAs mapped by both techniques which exhibit a high SF, correspond to small magnitude
gradual processes such as waste dump consolidation or subsidence. The main difference
between both phenomena is that consolidation develops on areas of accumulated soil,
as waste dumps or areas of the previous filling (after earthworks), which can be easily
identified in optical images and are mapped in the geological map.

Finally, some of the above-mentioned processes can overlap in space and time. For
example, mining waste deposits can be affected by consolidation processes, as well as
landslides and erosion near the slopes. In these cases, differentiating the extent of the
different processes is not possible, and then, they are pre-classified as compound processes.

It should be noted that there is a probability that the ADAs, which theoretically should
be detected by InSAR and LiDAR, are missing due to different issues (e.g., atmospheric,
and unwrapping errors or insensitivity to northwards and southwards displacements for
InSAR), which will affect the judgment.

Furthermore, some ADAs detected by LiDAR can be associated with changes in
the vegetation cover or in the water level of mining lakes but not with a deformational
geological-geotechnical process. Consequently, these ADAs are classified as false ADAs.

Moreover, it is worth mentioning that this methodology must be considered as a
pre-classification procedure for wide areas and thus, further expert analysis and in situ
work is necessary to confirm the deformation process underlying each ADA.

4. Results and Analyses
4.1. InSAR-Derived ADA Maps

As described in the previous section, four ADA maps were directly derived from the
InSAR-derived ground deformation results. Thus, an ascending LOS ADA map (ADAA),
a descending LOS ADA map (ADAD), a horizontal ADA map (ADAH), and a vertical
ADA map (ADAV) were obtained (Figure 3). Note that negative values (red color) in
Figure 3a,b,d represent the movements away from the sensor, whereas positive values (blue
color) represent the movements toward the radar. In contrast, negative values (red color)
in Figure 3c represent westward movement, whereas positive values (blue color) indicate
eastward movement. Furthermore, the LOS velocity thresholds selected to represent the
stable points in Figure 3 were set at +5 and −5 mm/year.
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Figure 3. InSAR ascending LOS velocity map (a), descending LOS velocity map (b), horizontal (east-
west) velocity map (c) and vertical velocity map (d) for the period from October 2016 to November
2021. The pink solid polygons, blue solid polygons, green solid polygons and yellow solid polygons
indicate the boundaries of the ADAA, ADAD, ADAH and ADAV, respectively.

As shown in Figure 3a,b, 28 and 19 active areas were derived from the ascending
(ADAA) and descending (ADAD) ground velocity maps, respectively.

Although both LOS velocity maps allow us to define the location and the spatial extent
of each of the mapped ADAs, it is hard to determine the contributions of the horizontal
and vertical components of the displacements by using LOS displacement velocities. In
order to overcome this limitation, the two LOS velocity maps were used to generate both
a horizontal and a vertical velocity map, from which two sets of ADAs were derived.
Figure 3c,d show the two-dimensional (2D) displacement velocity maps obtained in an
east-west and vertical direction, respectively. A total of 5 and 12 ADAs were derived from
the horizontal and vertical ground deformation maps (ADAH and ADAV), respectively.
It should be noted that since the LOS InSAR data were gridded in order to calculate the
vertical and horizontal components, there are some ADAs not detected by ADAA and
ADAD, which, however, have been detected in ADAH and ADAV.

4.2. LiDAR-Derived ADA Map

Figure 4 shows the LiDAR vertical velocity map calculated for the whole area as de-
scribed in Section 3.2. Note that negative values (red color) represent downward movement,
whereas positive values (blue color) indicate upward movement. It should also be noted
that the velocity thresholds selected to represent the stable points in Figure 4 were likewise
set at +5 and −5 mm/year. A total of 58 ADAs derived from this map (ADAL) are also
depicted in Figure 4 as black polygons.



Remote Sens. 2023, 15, 996 11 of 21

Remote Sens. 2023, 15, 996  11  of  22 
 

 

Although both LOS velocity maps allow us to define the location and the spatial ex‐

tent of each of the mapped ADAs, it is hard to determine the contributions of the horizon‐

tal and vertical components of the displacements by using LOS displacement velocities. 

In order to overcome this limitation, the two LOS velocity maps were used to generate 

both a horizontal and a vertical velocity map, from which two sets of ADAs were derived. 

Figures 3c,d show the two‐dimensional (2D) displacement velocity maps obtained in an 

east‐west and vertical direction, respectively. A total of 5 and 12 ADAs were derived from 

the horizontal and vertical ground deformation maps (ADAH and ADAV), respectively. It 

should be noted  that since  the LOS  InSAR data were gridded  in order  to calculate  the 

vertical and horizontal  components,  there are  some ADAs not detected by ADAA and 

ADAD, which, however, have been detected in ADAH and ADAV. 

4.2. LiDAR‐Derived ADA Map 

Figure 4 shows the LiDAR vertical velocity map calculated for the whole area as de‐

scribed in Section 3.2. Note that negative values (red color) represent downward move‐

ment, whereas positive values (blue color) indicate upward movement. It should also be 

noted that the velocity thresholds selected to represent the stable points in Figure 4 were 

likewise set at +5 and −5 mm/year. A total of 58 ADAs derived from this map (ADAL) are 

also depicted in Figure 4 as black polygons. 

 

Figure 4. LiDAR vertical velocity map for the period 2009–2016 and detected ADAs. 

4.3. Safety Factor Map 

The safety  factor (SF), which  is calculated by means of Equation  (1)  for an  infinite 

slope failure, indicates how close the analyzed slopes are to the threshold for a failure to 

occur.  It  depends  on  several  geometrical,  hydrological,  and  geomechanical  variables. 

These include, among others, variables such as the depth of the slip surface and the nor‐

malized height of  the phreatic surface above  the slip surface, whose values were com‐

pletely unknown in the investigated case study. In this work, in order to address these 

uncertainties, the safety factor maps were computed considering a variable range of val‐

ues of depth of the slip surface derived from the available literature and two extreme sce‐

narios of pore water pressure (a fully saturated scenario, and a completely dry scenario, 

the former corresponding to an extreme rainfall situation). 

Thus, stability analyses were conducted using a thickness of the soil layer varying 

from 5 to 100 m. The results obtained using a depth of the slip surface of 5 m reveal that 

Figure 4. LiDAR vertical velocity map for the period 2009–2016 and detected ADAs.

4.3. Safety Factor Map

The safety factor (SF), which is calculated by means of Equation (1) for an infinite slope
failure, indicates how close the analyzed slopes are to the threshold for a failure to occur. It
depends on several geometrical, hydrological, and geomechanical variables. These include,
among others, variables such as the depth of the slip surface and the normalized height
of the phreatic surface above the slip surface, whose values were completely unknown
in the investigated case study. In this work, in order to address these uncertainties, the
safety factor maps were computed considering a variable range of values of depth of
the slip surface derived from the available literature and two extreme scenarios of pore
water pressure (a fully saturated scenario, and a completely dry scenario, the former
corresponding to an extreme rainfall situation).

Thus, stability analyses were conducted using a thickness of the soil layer varying
from 5 to 100 m. The results obtained using a depth of the slip surface of 5 m reveal that the
whole area is stable (i.e., SF > 1), as shown in Table 3 and Figures S1 and S2. This suggests
that the area is not susceptible to suffering shallow planar failures. However, as revealed
by the analyses conducted using higher soil thickness values, the number of unstable areas
(SF < 1) gradually increases with the increase in the depth of the slip surface (Table 3 and
Figures S1 and S2).

As previously mentioned, the height of the phreatic surface above the slip surface
(HW), normalized relative to soil thickness, was set at either 0 (dry) or 1 (saturated) in order
to account for the two extreme hydrological scenarios. Although La Union is a very dry
area [52], HW could be increased during the rainy seasons and extreme weather. Therefore,
two different groundwater conditions were considered by fixing a phreatic ratio value of
either 0 or 1. As shown in Table 3 and Figures S1 and S2, the average SF is considerably
reduced when HW = 1 and the total unstable area (i.e., that exhibiting an SF < 1) is much
greater than that calculated for HW = 0. In addition, the spatial variation of the safety factor
results with D can be clearly seen for HW = 0 and HW = 1 in Figure 5a,b.
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Table 3. Distribution of areas featuring an unstable (safety factor SF < 1.0), a poorly stable
(1.0 ≤ SF < 1.2), a moderately stable (1.2 ≤ SF < 1.5), and a stable (SF ≥ 1.5) behavior for the two
groundwater scenarios considered (HW equal either to 0 or 1) and for depth values of the slip surface
(D) varying from 5 to 100 m.

Variables
Area Derived from SF Results (m2)

SF < 1.0 1.0 ≤ SF < 1.2 1.2 ≤ SF < 1.5 SF ≥ 1.5

HW = 0, D = 5 m 0 0 0 12,617,290
HW = 0, D = 10 m 26,300 16,094 412,856 12,162,040
HW = 0, D = 20 m 303,962 974,971 1,810,970 9,527,387
HW = 0, D = 30 m 1,070,080 1,241,430 2,019,440 8,286,340
HW = 0, D = 40 m 1,533,610 1,412,850 2,020,880 7,649,950
HW = 0, D = 50 m 1,873,040 1,481,620 1,981,760 7,280,870

HW = 0, D = 100 m 2,670,680 1,554,280 1,843,700 6,548,630
HW = 1, D = 5 m 0 0 0 12,617,290

HW = 1, D = 10 m 26,850 364,933 1,785,020 10,440,000
HW = 1, D = 20 m 2,330,850 1,809,920 2,071,410 6,405,110
HW = 1, D = 30 m 4,128,320 1,689,200 1,601,240 5,198,530
HW = 1, D = 40 m 5,115,180 1,487,110 1,351,900 4,663,100
HW = 1, D = 50 m 5,657,730 1,389,630 1,253,030 4,316,900

HW = 1, D = 100 m 6,800,150 1,073,360 990,816 3,752,964
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Figure 5. Distribution of areas exhibiting a safety factor lower than 1 in dry conditions (HW = 0) (a)
and in saturated conditions (HW = 1) (b) considering depth values of the slip surface (D) varying
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Figure 5 shows the spatial distribution of the areas exhibiting a safety factor lower
than 1 (i.e., the unstable areas). According to these results, it was spatially confirmed that
the deeper the depth of the slip surface (D), the larger the unstable region, regardless of the
value of HW. Moreover, the results revealed that failures are more likely to be triggered
with increasing values of HW.

4.4. Level of Activity Map

As previously described, the level of level activity map activity map was generated by
superimposing and merging the five ADA maps obtained (ADAA, ADAD, ADAH, ADAV,
and ADAL) on the original landslides’ inventory map. The map thus obtained yielded
100 ADAs (Figure S3), out of which 2 correspond to level 6, 4 to level 5, 4 to level 4, 4
to level 3, 10 to level 2, and 76 to level 1 (Figure 6a). Note that the higher the level of
activity of instability, the higher number of maps in which the active deformation area was
detected. Therefore, as explained above, this parameter can be considered as a proxy of the
probability that such instability is not a false positive. Consequently, the higher the level of
activity, the more reliable the detected active deformation area.
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4.5. Classification and Updated ADA Map

After this performance assessment, the detected instabilities were classified into dif-
ferent types of deformation phenomena (Figure 6b and Table 4) on the basis of the results
derived from the ADA maps, the SF maps, and some ancillary information, basically
consisting of a geological map and a series of optical images. Figures S4–S8 show some
examples of different ADAs mapped on the study area.

Table 4. Statistical distribution of the type of phenomena causing displacements.

Phenomena Number
Number of Different Type Phenomena Found from ADAs

Original Landslides’
Inventory Map ADAA ADAD ADAH ADAV ADAL

Inactive landslides 29 29 0 0 0 0 0
Consolidation of waste dump 8 0 5 4 0 3 0
Earthworks 11 0 1 0 0 0 11
Erosion 3 0 0 0 0 0 3
Mining subsidence 2 0 1 0 0 0 2
Landslides 17 14 14 8 4 6 9
Compound processes 7 3 4 3 1 4 4
False positive 23 0 0 0 0 0 23

A total of 29 out of the instabilities included in the original inventory map were
neither detected by InSAR nor by LiDAR, which suggests that such instabilities were active
between 1996 and 2010 (the period covered by the original inventory map), remaining stable
for the time periods covered by the ADA maps. Instabilities detected by either the InSAR
or the LiDAR ADA maps were classified as described in the methodology (Section 3.5).

5. Discussion
5.1. Comparison of the Results Obtained Using the Different Techniques

In order to evaluate the performance of the different ADAs, two confusion matrices
were derived by superimposing the inventoried landslides, the ADAs, and the areas
exhibiting an unstable condition (i.e., with SF < 1). The two confusion matrices were
generated considering only the two extreme case scenarios (in terms of depth of the slip
surface) defined for the stability analyses, both in saturated and unsaturated conditions.
Four different scenarios (i.e., HW = 0, D = 10 m; HW = 1, D = 10 m; HW = 0, D = 100 m; and
HW = 1, D = 100 m) were thus taken into account. First, a confusion matrix was obtained
to analyze the overlapping number of polygons (Table 5). Then, an additional confusion
matrix was derived from the former to analyze the overlapping rate of polygons (Table 6).
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Table 5. Confusion matrix to analyze the overlapping number of polygons.

Number of Overlapping ADAs

Original Inventory Map ADAA ADAD ADAH ADAV ADAL

Original inventory map 82 16 14 5 9 15
ADAA 34 28 14 5 12 11
ADAD 17 10 19 3 8 5
ADAH 12 6 4 5 4 5
ADAV 31 14 12 4 12 8
ADAL 23 10 4 3 4 58

SF < 1 (HW = 0, D = 10 m) 13 6 3 2 5 14
SF < 1 (HW = 1, D = 10 m) 13 6 3 2 5 14
SF < 1 (HW = 0, D = 100 m) 66 26 16 5 12 42
SF < 1 (HW = 1, D = 100 m) 66 26 17 5 12 45

Table 6. Confusion matrix to analyze the percentage overlap between polygons.

Rate of Overlapping ADAs (%)

Original Inventory Map ADAA ADAD ADAH ADAV ADAL

Original inventory map 100.00 57.14 73.68 100.00 75.00 25.86
ADAA 41.46 100.00 73.68 100.00 100.00 18.97
ADAD 20.73 35.71 100.00 60.00 66.67 8.62
ADAH 14.63 21.43 21.05 100.00 33.33 8.62
ADAV 37.80 50.00 63.16 80.00 100.00 13.79
ADAL 28.05 35.71 21.05 60.00 33.33 100.00

SF < 1 (HW = 0, D = 10 m) 15.85 21.43 15.79 40.00 41.67 24.14
SF < 1 (HW = 1, D = 10 m) 15.85 21.43 15.79 40.00 41.67 24.14
SF < 1 (HW = 0, D = 100 m) 80.49 92.86 84.21 100.00 100.00 72.41
SF < 1 (HW = 1, D = 100 m) 80.49 92.86 89.47 100.00 100.00 77.59

It is worth noting that the original landslides’ inventory map, the LiDAR-derived
ADAs, and the InSAR-derived ADAs cover slightly different time periods with short
common time periods. Consequently, only those active deformation areas remaining active
between 2010 (i.e., the date in which the original inventory map was updated) and 2022
(i.e., the last date covered by InSAR) can be commonly mapped by the three approaches
considered in this work (i.e., photointerpretation and field work performed for the mapping
of the landslides’ inventory map, InSAR processing, and LiDAR processing). On the other
hand, it has to be taken into account that some of the ADAs detected are related to processes
other than landslides (e.g., waste dump consolidation, earthworks, etc.), and thus they
are not mapped in the original landslides’ inventory map leading to differences between
the compared maps. In contrast, the use of information from different temporal periods
presents the benefit of offering the possibility of evaluating the activity of the landslides
mapped in the original landslides’ inventory map as well as detecting new active processes
not included in the original inventory.

As shown in Tables 5 and 6, the comparison of the original landslides’ inventory map
with the five ADA maps obtained by applying the proposed methodology shows that
the ADAA map features the largest number of overlaps, with 34 matches and a match
rate of 41.46%. In addition, the comparison of the ADA maps with the original landslides’
inventory indicates that although the ADAA map features the maximum number of matches
(a total of 16) as well, in this case, the ADAH map features the highest match rate, with a
value of 100%. Table 5 also shows that the ADAL map yields the highest number of ADAs,
with a total of 58. Considering only the ADAs, the maximum overlapping number of
polygons is obtained by comparing the ADAD map with the ADAA, a total of 14 overlaps.
Furthermore, the highest overlapping rate (100%) is obtained by comparing the ADAH map
with the ADAA, whereas the lowest overlapping rate (8.62%) is obtained by comparing
ADAL with ADAD and ADAH.
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As previously mentioned, the difference observed among the different ADA maps
obtained through the application of the proposed methodology are related not only to the
fact that the five maps cover different time periods but also to the different acquisition
geometries and special coverages associated with maps. In addition to the reasons men-
tioned above for the different time periods, there are other reasons. Firstly, SAR data are
acquired along the ascending or descending LOS, while LiDAR data are always acquired
in the vertical direction. For this reason, in mountainous areas, the InSAR results obtained
in ascending geometry often considerably differ, in terms of spatial coverage, from those
obtained in descending geometry. This constitutes an important limitation in relation to the
application of ADAfinder since the algorithm implemented by the tool applies an aggrega-
tion procedure that delineates the ADAs using a minimum number of points, which must
be defined by the user. Thus, when the number of active points in a given area is lower
than the selected value, the points are ignored by ADAfinder, and no ADA is obtained.

Finally, the comparison of the original landslides’ inventory map with the unstable
areas reveals that the overlapping number of polygons obtained for D = 100 m far exceeds
the one obtained for D = 10 m. On the other hand, the comparison of the ADA maps
with unstable areas reveals that ADAL features the maximum overlapping number. As
shown in Table 5, the number of overlaps between the original landslides’ inventory map
and the unstable areas results in 13 and 66 for D, equal to 10 and 100 m, respectively
(regardless of the value of HW). When focusing on the ADAs, the results also show that
overlapping numbers of polygons obtained with D = 10 m for each of the ADA maps are
identical, regardless of the value of HW. In any event but except for ADAD and ADAL,
the overlaps obtained with D = 100 m show a negligible difference, which means that the
results obtained for each ADA map are identical regardless of the value of HW. These
results suggest that the depth of the slip surface D plays a key role in the stability of the
slopes, while the soil phreatic ratio HW seems to act as a triggering factor.

5.2. Characteristics of the Different Technologies for the Detection and Classification of ADAs

In this section, the main advantages and drawbacks of the techniques used to map
and classify the active deformation areas summarized in Table 7 are discussed in detail.

Table 7. Comparison of the main features of the different techniques used for the detection and
classification of ADAs.

Features LiDAR InSAR Slope Stability Model Optical Images

Detection advantages Rapid and large
movements

Slow and small
movements

Potential landsliding areas
with a SF < 1

Geomorphological
features and landforms

Noise High Low

Very high due to the
uncertainties in the input
data (e.g., ru and
geotechnical parameters)

Low (cloud and fog free,
abnormal bands and color,
texture clarity, and so on)

Delineation of the
ADA contour Fine Rough -

Dependent on the
resolution of the
orthophoto and the
expert criteria

Temporal sampling Years Days - Years

Direction of detection Vertical Vertical, horizontal
and LOS - -

Influence of point density
on detection/resolution High High High High

Time consumed High High High Very high

Usability Detection and
classification of ADAs

Detection and
classification of ADAs Classification of ADAs Classification of ADAs

Type of phenomenon
detected

Earthworks, landslides,
subsidence, erosion

Consolidation of waste
dumps, landslides,
subsidence, erosion

Landslides Earthworks, landslides
and erosion
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LiDAR is characterized by its ability to delineate rapid and large-gradient movements
(e.g., erosion and earthwork) in a detailed way due to the high density of points (i.e.,
0.5 points per square meter) acquired through a vertical geometry (see, for example,
Figures S4 and S8). In contrast, InSAR enables the detection of slow and small displace-
ments (e.g., consolidation of the waste dump) along the LOS of the satellite and in the
vertical and east-west directions, with high accuracy and a wide number of images due
to the high temporal sampling (Figures S5–S7). It should be highlighted that both re-
mote sensing techniques are time-consuming due to the wide number of processes that
should be performed to obtain the final datasets. Furthermore, by analyzing the results
obtained, it was found that the boundaries of the LiDAR-derived ADAs matched much
better (compared to those obtained with InSAR) the actual boundaries of the originally
mapped instabilities. Thus, the use of LiDAR data not only leads to an increase in the
number of mapped ADAs but also to a more detailed delineation of the actual boundaries
of the instabilities.

LiDAR has the ability to penetrate vegetation, but there are still many spots reflecting
from the vegetation surface [55]. The dense vegetation is mostly located in mountainous
areas, in which it is more difficult to distinguish between ground points and vegetation
surface points. Therefore, LiDAR is sensitive to changes in dense vegetation. Although the
study area is scarcely vegetated and non-ground points were removed from the original
point clouds, LiDAR datasets have captured some possible ADAs (e.g., 4, 5, 8, and 16 in
Figure S3) that could be related to vegetation changes instead of ground surface displace-
ments leading to false positives (Figure S8). Similarly, a false positive related to the variation
of water level changes due to groundwater rise and the contribution of surface water from
streams in a mining lake resulting in an abandoned open pit mine [56] has been found
in ADA 19. In these cases, in situ inspection is crucial to confirm the ADAs. In contrast,
InSAR datasets decorrelate on vegetated and flooded areas, and thus, no ADAs have been
detected in these places.

The slope stability model is not a detection technique itself but provides very useful
ancillary information for the classification of potential landslide areas exhibiting an SF
lower than 1 (Figures S7 and S8). However, it should be noted that this information is
strongly affected by the uncertainties in the input data (e.g., geotechnical parameters, failure
depth, or hydrological conditions), although it is easy and simple to apply, providing a
valuable simplification of the slope instability problem.

Optical images can be effectively used for the identification and mapping of geomor-
phological features (e.g., tension cracks and scarps of a landslide) and landforms (e.g.,
earthworks as the construction of a filling or an excavation) associated with active defor-
mations areas. They complement the information of the geological map, which contains
different mining facilities (Figures S5 and S6). However, the interpretation of optical images
is a very time-consuming task that requires important expertise. Furthermore, cloud and
fog, abnormal bands and color, texture clarity, and other image quality issues strongly
affect their quality and even sometimes obstruct the view of the ground surface, preventing
the mapping of the geomorphological features and landforms.

5.3. Uncertainties of the Method

As described above, mining areas constantly change and evolve. A lot of different
processes develop at the same time and can overlap in time and space. The methodology
established in this work enables the identification and mapping of active deformation areas
in mining regions exploiting the complementarities of LiDAR and InSAR techniques.

As it is well known, InSAR data are affected by different sources of error (e.g., at-
mospheric delay, topographic residuals, processing approximations, timing errors, and
hardware issues) [57]. Similarly, LiDAR datasets are also affected by distinct error sources
(e.g., cloud co-registration, georeferencing, and editing) [58]. Furthermore, changes due to
non-geological-geotechnical causes (e.g., the growth of vegetation or water level changes in
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mining lakes) can induce false positives. Consequently, all these sources of error can lead
to the identification of unreliable deforming areas in mining areas.

Therefore, the joint use of LiDAR and InSAR exploits the complementarities and
similarities of both techniques to update ADAs maps in mining areas, making the process
of identification more robust and reliable when the mapped active deformation areas are
redundant. In contrast, in those ADAs only captured by one of the techniques, the degree
of uncertainty will strongly depend on the quality of the LiDAR or InSAR dataset (i.e.,
of the inherent uncertainties of the input datasets). In these cases, further ancillary data
and/or in situ information can allow the confirmation of the reliability of the detected ADA.
Consequently, we recommend using the level of activity of the ADAs as a reliability index.

Some uncertainties can also arise during the process of preliminary classification
of the ADAs. When the ADAs are compared to the original landslides’ inventory map,
the classification is straightforward since the landslides that overlap the ADA have been
previously confirmed on the field and through optical images. However, for the rest of the
ADAs, ancillary information must be used, and some conditions are assumed, introducing
some uncertainties in the classification. Optical images can play an important role in
reducing the uncertainties that arise during the classification process since they enable the
identification of key geomorphological features and landforms.

We should also take into account that different processes can overlap over time and
space, hampering the classification of ADAs. For example, in Figure S8c,d, surface erosion
and a landslide seem to be affecting a waste dump in which an ADA was detected by
LiDAR. In these cases, the subsequent fieldwork and in situ monitoring are necessary to
state the actual underlying phenomena causing the measured displacements.

In summary, this method allows the exploitation of the synergies between the different
techniques to detect and delineate active areas (i.e., areas that are moving) to update existing
inventory maps. Then, the ADAs are pre-classified by analyzing the LiDAR and InSAR
datasets, the landslides’ inventory map, the safety factor map, and the optical images.
However, fieldwork and even in situ monitoring would be necessary to definitively confirm
the previous classification and reduce the uncertainties that arose during the identification
and classification processes since only the ADAs overlapped with the original landslides’
inventory map could be confirmed as reliable.

6. Conclusions

The mining area of Sierra de Cartagena-La Union has been affected by multiple
deformation processes (e.g., slope deformation, waste dump consolidation, and soil erosion)
since the mining activity in the region ceased in 1991. These processes are potentially
hazardous for populations and infrastructures and, therefore, require early identification.

In this work, we propose a novel multi-technique approach combining InSAR-derived
and LiDAR-derived ground velocity maps together with a slope safety factor map, a
geological map, and aerial images to identify active deformation areas and update inventory
maps in mining areas. It is worth stressing that this is the first time that ADA methodology
is applied to automatically analyze LiDAR-derived change detection maps, expanding this
type of analysis to the field of LiDAR.

The proposed methodology enabled the generation of five comprehensive ADAs
maps. A total of 28, 19, 5, and 12 ADAs were mapped using InSAR deformation results
derived from ascending and descending datasets, and horizontal and vertical deformation
components, respectively. Additionally, 58 ADAs were derived from LiDAR vertical
velocity data. The joint analysis of the ADAs derived from the different remote sensing
techniques and an existing landslides’ inventory map enabled the calculation of a map of the
level of activity, which is a proxy for the evaluation of the reliability of the mapped ADAs.

Then, the slope stability was systematically analyzed over the study area for different
depths of the slip surface (D) and soil phreatic ratio (HW) values by adopting an infinite
slope stability modeling approach. Finally, all instabilities detected were classified into
different types of deformation processes considering the original landslides’ inventory
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map, the SF map, the geological map, and the photointerpretation aerial images. A total of
8, 11, 3, 17, 2, and 7 ADAs were classified as consolidation of the waste dump, earthworks,
erosion, landslides, mining subsidence, and compound processes, respectively.

The general conclusions drawn from this work can be summarized as follows: (i) The
joint use of InSAR and LiDAR techniques to map ADAs improves the capability to detect
different types of phenomena in mining areas due to the exploitation of the complementari-
ties of both techniques. LiDAR can play a significant role in the detection of rapid and huge
ground movements, such as those induced by earthworks and erosion. In contrast, the
InSAR technique presents an advantage in the detection of smaller and slow vertical and
horizontal movements. (ii) The infinite slope stability modeling approach is an effective
means to generate SF maps, which can be used as complementary information, jointly with
the geological maps and optical images, for the identification and classification of ADAs
prone to landslides. (iii) Some unavoidable uncertainties arise during the identification and
classification of the ADAs. Consequently, the InSAR-derived maps, the LiDAR-derived
maps, and the original landslides’ inventory map were used to build a map of the level of
activity that considers the overlapping number of ADAs, providing an estimation of the
reliability of every ADA.

Finally, it should be highlighted that the methodology established enables the semiau-
tomatic identification and mapping of active deformation areas in mining regions using
huge remote sensing datasets and their preliminary classification. However, the final con-
firmation of the underlying processes will require the availability of field information and
expert opinion. The results derived through the proposed methodology will considerably
facilitate the management and the subsequent analysis of a huge amount of information
and data available in mining areas.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15040996/s1, Figure S1: Safety factor map computed by the
infinite slope stability model in dry conditions (height of phreatic surface above slip surface, normal-
ized relative to soil thickness, HW equal to 0) for depth values of the slip surface (D) varying from 10
to 100 m. Figure S2: Safety factor map computed by the infinite slope stability model in saturated
conditions (height of phreatic surface above slip surface, normalized relative to soil thickness, Hw
equal to 1) for depth values of the slip surface (D) varying from 10 to 100 m. Figure S3: Map of
distribution of updated ADAs. Figure S4: ADA associated to earthworks: (a,c) Optical images of
the ADA 24 (see location in Figure S3) from 2007 and 2016, respectively, in which the earthworks
performed are clearly recognized. (b) LiDAR changes and contour of the ADAL. Note that the
magnitude of the changes reach up to −3 m in some areas of the ADA. (d) Shaded relief map with
the updated contour of ADA 24. Figure S5: ADA associated to the consolidation of a waste dump:
(a,c) Optical images of the ADA 69 (see location in Figure S3) from 2016 and 2020, respectively.
(b) InSAR displacements map and contour of the ADAA and ADAV. (d) Geological map of the
ADA. (e) Time series of the ADA in which the gradual attenuation of the settlements is clearly recog-
nized. Figure S6: ADA associated to mining subsidence: (a) 3D view of the ADA 76 (see location in
Figure S3). (b) LiDAR results between 2009 and 2016 including the updated ADA contour. (c) Picture
of a headframe placed within ADA 76. (d) Picture of an earth fissure identified on the ground surface
of ADA 76 related to mining subsidence. (e) InSAR displacements map and contour of the updated
ADA. (f) Geological map of the ADA. (g) Shaded relief map of the ADA 76 with the contours of the
ADAs detected by LiDAR (ADAL) and InSAR (ADAA). Figure S7: ADA associated to a landslide:
(a) 3D view of the ADA 66 (see location in Figure S3). (b) InSAR time series of some points placed
within and out of the ADA. See location of the points in Figure S7d. (c) Shaded relief map with the
contour of the ADAs detected by InSAR (ADAA), the landslide mapped in the original landslides’
inventory map, and the safety factor calculated by means of the infinite slope model. (d) InSAR
displacements map and contour of the updated ADA. Figure S8: Safety factor map and landslide con-
tour of ADA 47 (see location in Figure S3) (a) and InSAR ascending and descending results mapped
in the original landslides’ inventory map (b). 3D view with indication of some geomorphological
features of the underlying processes (c) and LiDAR results (d) of ADA 3 (see location in Figure S3)
affected by a landslide and erosion. 3D view of a possible false positive ADA (e) and its LiDAR
results (f) (ADA 16; see location in Figure S3).
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