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In this work we solve a problem that has been open for 
more than 110 years (see [21]). We prove that a real normed 
space (X, ‖ · ‖) of dimension greater than or equal to three 
is an inner product space if and only if, for every three 
points a1, a2, a3 ∈ X, the set of points at which the function 
x ∈ X → γ(‖x −a1‖, ‖x −a2‖, ‖x −a3‖) attains its minimum, 
intersects the convex hull of these three points, where γ is a 
symmetric monotone norm on R3.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Location problems have a long history. If we restrict ourselves to the Euclidean plane, 
we start with the following the classical problem posed by P. Fermat [9, page 153] “Given 
three points in the Euclidean plane, to find a fourth point such that the sum of its distances 
to the three given points is minimal”. Indeed Fermat’s dual problem was originally stated 
by Sylvester in 1857 (see [19]), in the following form: “Given three points in the Euclidean 
plane, to determine a fourth point such that the Euclidean distance from this point to 
the farthest point to be minimum”. In 1909, Weber posed the economic problem (see 
[21]), also called the minisum problem, consists in “Finding the location of a market in 
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a territory such that the sum of the distances traveled from different sources of material 
supply to said market is minimal”.

Let us now leave aside what happens in the Euclidean plane, since, naturally, the 
versions of this problem that have been studied in recent years refer to arbitrary norms, 
arbitrary dimensions, and to more and more general functions to be minimized, see [1], 
[4], [5], [8], [10], [12], [13], [18] and [20].

In the paper we consider the case where X is a real normed linear space endowed 
with a norm ‖ · ‖. Let A = {a1, . . . , an} be a finite subset of X, with n ≥ 2, a family of 
positive weights ω = (ωi)1≤i≤n, and let γ be a norm on Rn.

The aim of the paper is to study minimizers of the objective function F γ
A,ω defined on 

X by

F γ
A, ω(x) = γ

(
ω1‖x− a1‖, ω2‖x− a2‖, . . . , ωn‖x− an‖

)
, for each x ∈ X. (1)

The minimizers of the function F γ
A, ω are called γ-centers of A and the value

rγ(A) := inf
x∈X

F γ
A, ω(x)

is the γ-radius of A. The set (possible empty) of γ-centers (or set of optimal locations) 
of A, will be denoted by Mγ

ω (A). Thus

Mγ
ω (A) :=

{
x ∈ X : F γ

A, ω(x) = inf
z∈X

F γ
A, ω(z)

}
.

If ω is such that ω1 = · · · = ωn = 1, F γ
A, ω will be denoted by F γ

A and Mγ
ω(A) by Mγ(A).

Within the problem we can consider several parts: is there a solution? is it unique? Can 
we guarantee that some solutions are found in some given set? (i.e. Location problems). 
In relation to the last of the previous questions, there is a first conjecture that seems 
natural in principle:

(C) If in a normed space X the problem (1) has solution, then there is at least a solution 
in conv(A) i.e. convex hull of the set A ⊂ X.

Naturally, (C) is true when we work with a Euclidean norm, that is, when our normed 
space X is a prehilbert (or IPS, Inner Product Space). Really, this conjecture (C) does 
not hold as soon as the normed space has a dimension at least three and is not an inner 

product space. For instance, if X = R3 with the norm ‖(x1, x2, x3)‖1 =
3∑

i=1
|xi| for each 

(x1, x2, x3) ∈ R3, we have

M �1
(
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}

)
= {(0, 0, 0)},

but (0, 0, 0) is not in the convex hull of {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. We commented above 
that, of course, (C) is true if X is an IPS. What is most surprising for us is that it has 
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been clearer and clearer over time that (C) is true only if X is an IPS. For this reason 
we can say that this entire line of work has become characterizations of the IPS spaces. 
In fact, we can already find this in part in the famous characterization of Jordan and 
Von Neumann (see [12]) which can be stated as follows (see section 1 of [1]):

Theorem 1.1 (Jordan-Von Neumann 1935). Let (X, ‖ · ‖) be a real normed linear space 
of dimension at least three, if for every three points a1, a2, a3 in X the function

x ∈ X −→ ‖x− a1‖2 + ‖x− a2‖2 + ‖x− a3‖2

attains its minimum at 1
3 (a1 + a2 + a3), then X is an IPS.

Also, the famous Theorem of Garkavi [10] and Klee [13], where can see very clearly the 
relationship between conjecture (C) and characterizations of IPS by means of Chebyshev 
centers, by the way, is here enunciate as follows:

Theorem 1.2 (Garkavi 1964–Klee 1960). Let X be a real normed linear space of dimen-
sion at least three. Then X is an IPS if and only if the following condition holds: Every 
three point subset of X has a Chebyshev center in its convex hull.

In [4,5], we can see other relations between conjecture (C) and characterizations of 
IPS by means of Fermat centers and barycenters. Some results connected with various 
types of γ-centers (characterizations, properties,...) appeared, for example, in [2], [7], 
[15], [20].

In the present paper we reduce the relationship between conjecture (C) and an IPS, to 
the classical Brunn-Blaschke-Kakutani theorem, which states that a real normed space of 
dimension at least three is an inner product space if and only if there are norm-1 linear 
projections of X onto any of its 2-dimensional subspaces (see, [1, page 99 ]).

2. Definitions and auxiliary results

In this paper we suppose that γ is a monotone norm on Rn, i.e. γ(u) ≤ γ(v) for every 
u = (u1, . . . , un) and v = (v1, . . . , vn) in Rn satisfying |ui| ≤ |vi| for each i = 1, . . . , n. 
We will say that γ is symmetric if γ(u1, . . . , un) = γ

(
up(1), . . . , up(n)

)
whenever p is 

a permutation of {1, . . . , n} and (u1, . . . , un) ∈ Rn. For more properties of monotone 
norms, see [3], [11] and [14].

Definition 2.1. Let A = {a1, . . . , an} be a finite subset of X, with n ≥ 2, a family of 
positive weights ω = (ωi)1≤i≤n, and let γ be a norm on Rn.

(i) If γ(t) = ‖t‖∞ = sup
1≤i≤n

|ti|, we denote rγ(A) := r∞(A) and Mγ
ω(A) := Mω(A) is 

called the set of Chebyshev centers of A.
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(ii) If γ(t) = ‖t‖1 =
n∑

i=1
|ti|, we denote rγ(A) := r�1(A) and Mγ

ω (A) := M �1
ω (A) is called 

the set of Fermat centers of A.

(iii) If γ(t) = ‖t‖2 =
(

n∑
i=1

|ti|2
) 1

2

, we denote rγ(A) := r�2(A) and Mγ
ω(A) := M �2

ω (A)

is called the set of barycenters of A.

Since γ(‖x1‖, . . . , ‖xn‖) defines a norm on Xn =
n times︷ ︸︸ ︷

X ×X × · · · ×X (see [14]), we can 
present a procedure based on the theory of best approximation. We denote by �nγ(X) the 
space Xn equipped with the norm

‖|(x1, . . . , xn)‖| := γ(‖x1‖, . . . , ‖xn‖).

We define a subspace diag
(
�nγ, ω(X)

)
of �nγ (X) by

diag
(
�nγ, ω(X)

)
:=

{
u = (ω1x, . . . , ωnx) : x ∈ X

}
.

The point v = (ω1a1, . . . , ωnan) does not belong to diag
(
�nγ, ω(X)

)
, because a1 �= · · · �=

an. We have

inf
u∈diag

(
�nγ, ω(X)

) ‖|v − u‖| = inf
x∈X

γ(ω1‖x− a1‖, . . . , ωn‖x− an‖).

We can use a classical characterization of the set

Pdiag
(
�nγ, ω(X)

)(v) :=
{
u ∈ diag

(
�nγ, ω(X)

)
: ‖|v − u‖| = inf

z ∈ diag
(
�nγ, ω(X)

) ‖|v − z‖|
}
,

of best approximants to v from diag
(
�nγ, ω(X)

)
(see [18]). To this end we mention that 

the dual space �nγ (X)∗ of �nγ (X) is �nγ (X∗), endowed with the norm

‖|f‖|◦ = ‖|(f1, . . . , fn)‖|◦ = γ◦(‖f1‖, . . . , ‖fn‖),

where ‖ · ‖ is the norm on X∗, the dual of X, and γ◦ is the dual norm of γ. The pairing 
between �nγ (X) and �nγ (X)∗ is given, for f = (f1, . . . , fn) ∈ �nγ (X)∗ and x = (x1, . . . , xn), 
by

f(x) =
n∑

i=1
fi(xi).

The following lemma is a direct consequence of the definitions of best approximation 
and γ-center.
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Lemma 2.2. Let γ be a monotone n-norm. Let A be a subset of X with n elements, and ω a 
positive n-family. For x0 ∈ X, we have x0 ∈ Mγ

ω (A) if and only if u0 = (ω1x0, . . . , ωnx0)
is a best approximation to u = (ω1a1, . . . , ωnan) from diag

(
�nγ, ω(X)

)
in �nγ (X), i.e.

x0 ∈ MN
ω (A) if and only if u0 ∈ Pdiag

(
�nγ, ω(X)

)(u).

Lemma 2.3. Let γ be a monotone n-norm. Let A be a subset of X with n elements, and 
ω a positive n-family. For x0 ∈ X, we have

x0 ∈ Mγ
ω (A) if and only if there exists f = (f1, . . . , fn) withfi ∈ X∗ such that

γ◦(‖f1‖, . . . , ‖fn‖) = 1,
n∑

i=1
ωifi(x) = 0 for all x ∈ X, and

n∑
i=1

ωifi(ai − x0) = F γ
A,ω(x0).

Proof. By the Lemma 2.2, we have x0 ∈ Mγ
ω (A) if and only if u0 = (ω1x0, . . . , ωnx0) is 

a best approximation to u = (ω1a1, . . . , ωnan) from diag
(
�nγ, ω(X)

)
in �nγ (X). Which is 

equivalent to saying that, by Hahn-Banach theorem (see [18, page 18]), there exists

f = (f1, . . . , fn) with fi ∈ X∗ such that γ◦(‖f1‖, . . . , ‖fn‖) = 1
n∑

i=1
ωifi(x) = 0 for all x ∈ X, and

n∑
i=1

ωifi(ai − x0) = F γ
A,ω(x0). �

To describe the set Mγ
ω (A), set of γ-centers of A = {a1, . . . , an} ⊂ X, we intro-

duce some specific notations. For f = (f1, . . . , fn) ∈ �nγ (X)∗ with fi ∈ X∗ such that 
γ◦(‖f1‖, . . . , ‖fn‖) = 1. Let

C(f) =
{
x ∈ X : fi(ai − x) = ‖fi‖‖ai − x‖ for all i = 1, . . . , n

}
,

and

D(A) =
{
x ∈ X :

n∑
i=1

ωi‖fi‖‖ai − x‖ = γ
(
ω1‖a1 − x‖, . . . , ω1‖an − x‖

)}
.

Proposition 2.4. Let γ be a monotone n-norm. Let A = {a1, . . . , an} be a subset of X
with n elements, and ω a positive n-family. Let x0 ∈ X. Then

x0 ∈ Mγ
ω (A) if and only if there exists f = (f1, . . . , fn) with fi ∈ X∗ satisfying

γ◦(‖f1‖, . . . , ‖fn‖) = 1,
n∑

i=1
ωifi(x) = 0 for all x ∈ X,



6 T. Pakhrou / Journal of Functional Analysis 285 (2023) 110078
such that

x0 ∈ C(f) ∩D(A).

Proof. Let x ∈ X, by the Lemma 2.3, we obtain that, if x ∈ Mγ
ω (A) then it exists 

f = (f1, . . . , fn) with fi ∈ X∗ satisfying γ◦(‖f1‖, . . . , ‖fn‖) = 1, 
n∑

i=1
ωifi(x) = 0 for all 

x ∈ X, such that

n∑
i=1

ωifi(ai − x) = γ(ω1‖a1 − x‖, . . . , ωn‖an − x‖).

On the other hand, by the definition of the dual norm, we have

n∑
i=1

ωifi(ai − x) ≤
n∑

i=1
ωi‖fi‖‖ai − x‖

≤ γ◦(‖f1‖, . . . , ‖fn‖)γ(ω1‖a1 − x‖, . . . , ωn‖an − x‖),

and as γ◦(‖f1‖, . . . , ‖fn‖) = 1, we get

n∑
i=1

ωifi(ai − x) =
n∑

i=1
ωi‖fi‖‖ai − x‖ = γ(ω1‖a1 − x‖, . . . , ωn‖an − x‖) (2)

thus x ∈ D(A). From the first part of equality (2), we got

n∑
i=1

ωi

(
‖fi‖‖ai − x‖ − fi(ai − x)

)
= 0,

as ωi > 0 for all i = 1, . . . , n, and fi(ai − x) ≤ ‖fi‖‖ai − x‖, we have

fi(ai − x) = ‖fi‖‖ai − x‖ for all i = 1, . . . , n

thus x ∈ C(F ). Therefore x ∈ C(f) ∩D(A). The other implication is evident from the 
Lemma 2.3. �

By a simple application of the Hahn-Banach theorem we obtain the following result, 
that describes the set of γ-centers.

Theorem 2.5 ([7, Theorem 4.3]). Let γ be a monotone n-norm. Let A be a subset of X
with n elements, and ω a positive n-family.
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(i) If Mγ
ω (A) is nonempty, then there exists f = (fi)1≤i≤n with fi ∈ X∗ satisfying

γ◦(‖f1‖, . . . , ‖fn‖) = 1,
n∑

i=1
ωifi = 0,

such that

Mγ
ω (A) = C(f) ∩D(A).

(ii) If there exists f = (fi)1≤i≤n with fi ∈ X∗ satisfying

γ◦(‖f1‖, . . . , ‖fn‖) = 1,
n∑

i=1
ωifi = 0,

such that

C(f) ∩D(A) �= ∅,

then

Mγ
ω (A) = C(f) ∩D(A).

Proof. We prove part (i). If Mγ
ω (A) �= ∅, there exists f = (fi)1≤i≤n with fi ∈ X∗

satisfying

γ◦(‖f1‖, . . . , ‖fn‖) = 1,
n∑

i=1
ωifi = 0,

such that Mγ
ω(A) ⊆ C(f) ∩D(A). Beginning be x ∈ Mγ

ω (A) and f = (fi)1≤i≤n associated 

to x, according to the Proposition 2.4. Let y �= x. Using x ∈ C(f) ∩D(D) and 
n∑

i=1
ωifi = 0, 

we got

F γ
A, ω(x) =

n∑
i=1

ωifi(ai − x) =
n∑

i=1
ωifi(ai − y + y − x)

=
n∑

i=1
ωifi(ai − y) +

n∑
i=1

ωifi(y − x) =
n∑

i=1
ωifi(ai − y).

Since fi(ai − y) ≤ ‖fi‖‖ai − y‖ and γ◦(‖f1‖, . . . , ‖fn‖) = 1, we have

F γ
A, ω(x) =

n∑
i=1

ωifi(ai − y) ≤
n∑

i=1
ωi‖fi‖‖ai − y‖

≤ γ◦(‖f1‖, . . . , ‖fn‖)γ(ω1‖a1 − y‖, . . . , ωn‖an − y‖) = F γ
A, ω(y).
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If y ∈ Mγ
ω (A), then

F γ
A, ω(x) = F γ

A, ω(y) =
n∑

i=1
ωifi(ai − y) =

n∑
i=1

ωi‖fi‖‖ai − y‖. (3)

Thus y ∈ D(A), and from the last equality (3) we have y ∈ C(f). Therefore

Mγ
ω (A) ⊆ C(f) ∩D(A).

To finish the proof of part (i) of the theorem, we have by the Proposition 2.4,

C(f) ∩D(A) ⊆ Mγ
ω (A).

For the proof of part (ii), we observe that if f satisfies the conditions of part (ii), 
then by the Proposition 2.4, we have C(f) ∩D(A) ⊆ Mγ

ω (A). For the other inclusion let 
x ∈ C(f) ∩D(A) and y ∈ Mγ

ω (A) such that x �= y, then

F γ
A, ω(x) = F γ

A, ω(y) =
n∑

i=1
ωi‖fi‖‖ai − x‖ =

n∑
i=1

ωifi(ai − x),

using 
n∑

i=1
ωifi = 0, fi(ai − y) ≤ ‖fi‖‖ai − y‖ and N0(‖f1‖, . . . , ‖fn‖) = 1 we have

F γ
A, ω(y) =

n∑
i=1

ωi‖fi‖‖ai − y‖ =
n∑

i=1
ωifi(ai − y).

This implies that y ∈ C(f) ∩D(A). �
Corollary 2.6 ([7, Corollary 5.1]). Let A be a subset of X with n elements, and ω a 
positive n-family.

(i) If M �1
ω (A) is nonempty, then there exists f = (fi)1≤i≤n with fi ∈ X∗ satisfying

max
1≤i≤n

‖fi‖ = 1,
n∑

i=1
ωifi = 0,

such that

M �1
ω (A) = C(f).

(ii) If there exists f = (fi)1≤i≤n with fi ∈ X∗ satisfying

max
1≤i≤n

‖fi‖ = 1,
n∑

ωifi = 0,

i=1
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such that

C(f) �= ∅,

then

M �1
ω (A) = C(f).

Corollary 2.7 ([7, Corollary 5.2]). Let γ be a monotone n-norm. Let A be a subset of 
X with n elements, and ω a positive n-family. If Mγ

ω(A) is nonempty, then there exists 
f = (fi)1≤i≤n with fi ∈ X∗ such that

Mγ
ω (A) = M1

λ(A) ∩D(A)

with λi = ωi‖fi‖ for each i = 1, . . . , n.

Let SX and SX∗ be the unit spheres of X and its topological dual X∗, respectively. 
For a ∈ X denote

Ja = {f ∈ SX∗ : f(a) = ‖a‖}.

We now present two already known results using the subdifferential concept, see [4]
and [5]. In this work we are going to demonstrate these results using the Hahn-Banach 
theorem.

Proposition 2.8 ([5, Proposition 1]). Let A be a subset of X with n elements, ω a positive 
n-family. Then we have

0 ∈ M �1
ω (A) ⇐⇒ exist fi ∈ Jai for i = 1, . . . , n such that

n∑
i=1

ωifi = 0.

Proof. By Lemma 2.3, we have 0 ∈ M �1
ω (A) if and only if there exist f1, . . . , fn ∈ X∗

satisfying

‖|(f1, . . . , f3)‖|∞ = max{‖f1‖, . . . , ‖f3‖} = 1, (4)
n∑

i=1
ωifi(x) = 0 for all x ∈ X, (5)

n∑
i=1

ωifi(ai) =
n∑

i=1
ωi‖ai‖. (6)

For the equalities (4) and (6) we have,
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n∑
i=1

ωifi(ai) =
n∑

i=1
ωi‖ai‖ ≤

n∑
i=1

ωi‖fi‖‖ai‖ ≤
n∑

i=1
ωi‖ai‖,

thus

n∑
i=1

ωi‖ai‖
(
1 − ‖fi‖) =

n∑
i=1

ωi

(
‖ai‖ − fi(ai)

)
= 0.

Therefore

fi(ai) = ‖ai‖ and ‖fi‖ = 1,

for each i = 1, . . . , n. This shows that these two equalities are equivalent to fi ∈ Jai for 
each i = 1, . . . , n. �

Using the Hahn-Banach theorem, we give a new simple proof of the following Lemma 
of Benítez-Fernández-Soriano.

Proposition 2.9 ([4, Lemma 1]). Let A be a subset of X with n elements, μ a positive 
n-family and p a real number > 1. Then we have

0 ∈ M �p
μ (A) ⇐⇒ exist fi ∈ Jai for i = 1, . . . , n such that

n∑
i=1

μp
i ‖ai‖p−1fi = 0.

Proof. By the Lemma 2.3, we have 0 ∈ M
�p
ω (A) if and only if there exist g1, . . . , gn ∈ X∗

satisfying

‖g1‖q + · · · + ‖gn‖q = 1 where q = p

p− 1 , (7)

n∑
i=1

μigi(x) = 0 for all x ∈ X, (8)

n∑
i=1

μigi(ai) =
(

n∑
i=1

μp
i ‖ai‖p

) 1
p

. (9)

Beginning by the equalities (7), (9) and Hölder’s inequality to get that

(
n∑

i=1
μp
i ‖ai‖p

) 1
p

=
n∑

i=1
μi‖ai‖‖gi‖ =

n∑
i=1

μigi(ai). (10)

Case 1: We assume that gi �= 0 for each i = 1, . . . , n. We denote fi = gi
‖gi‖ for each 

i = 1, . . . , n. Therefore, equality (8) is equivalent to



T. Pakhrou / Journal of Functional Analysis 285 (2023) 110078 11
n∑
i=1

μi‖gi‖fi = 0, (11)

where fi ∈ SX∗ for each i = 1, . . . , n. We want to show,

fi ∈ Jai and ‖gi‖ = μp−1
i ‖ai‖p−1(
n∑

i=1
μi‖ai‖p

) 1
q

for each i = 1, . . . , n.

For the second part of the equality (10), we obtain that

n∑
i=1

μi‖gi‖‖ai‖ =
n∑

i=1
μi‖gi‖fi(ai).

So

n∑
i=1

μi‖gi‖
(
fi(ai) − ‖ai‖

)
= 0.

Beginning by μi‖gi‖
(
fi(ai) − ‖ai‖

)
≤ 0 for each i = 1, . . . , n so, we have

fi(ai) = ‖ai‖ for each i = 1, . . . , n.

On the other hand, since we have the equality in Hölder’s inequality for the sequences (
μi‖ai‖

)
1≤i≤n

and 
(
‖gi‖

)
1≤i≤n

, then there is a α > 0 such that μp
i ‖ai‖p = α‖gi‖q, for 

each i = 1, . . . , n. Thus

‖gi‖ = 1
α

1
q

μp−1
i ‖ai‖p−1 for each i = 1, . . . , n.

Beginning by the first part of the equality (10), we obtain that α =
n∑

i=1
μp
i ‖ai‖p. Therefore

‖gi‖ = μp−1
i ‖ai‖p−1(
n∑

i=1
μi‖ai‖p

) 1
q

for each i = 1, . . . , n.

We substitute the value of ‖gi‖ in (11) to obtain that

n∑
i=1

μp
i ‖ai‖p−1fi = 0, (12)

where fi ∈ Jai for each i = 1, . . . , n.
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Case 2: Without loss of generality, we can assume for example g1 = 0. Then equality 
(10) is expressed as follows

(
n∑

i=1
μp
i ‖ai‖p

) 1
p

=
n∑

i=2
μi‖ai‖‖gi‖ =

n∑
i=2

μigi(ai). (13)

We now apply Hölder’s inequality to (13) to obtain that,

(
n∑

i=1
μp
i ‖ai‖p

) 1
p

≤
(

n∑
i=2

μp
i ‖ai‖p

) 1
p

.

So a1 = 0. Therefore, if in the hypotheses we have a1 �= 0, then what is assumed is false. 
However, if in the hypotheses we have that a1 = 0, then the equality (12) simplifies to

n∑
i=2

μp
i ‖ai‖p−1fi = 0, (14)

where fi ∈ Jai for each i = 2, . . . , n. �
Lemma 2.10 ([8, Lemma 5.2]). Let A be a subset of X with n elements, μ a positive 
n-family, and p a real number > 1. Suppose that 0 /∈ A. Then we have

0 ∈ M �p
μ (A) ⇐⇒ 0 ∈ M �1

ω (A),

where ω is the positive n-family defined by ωi = μp
i ‖ai‖p−1 for i = 1, . . . , n.

Proposition 2.11 ([8, Proposition 3.2]). Let γ be a monotone n-norm. Let A be a subset 
of X with n elements, and ω a positive n-family.

(i) If X is an inner product space, then we have always Mγ
ω(A) ⊂ conv(A) (convex hull 

of the set A).
(ii) If X is two-dimensional, then we have always Mγ

ω(A) ∩ conv(A) �= ∅.

3. Characterizations by means of Chebyshev centers

To prove our first theorem we need some previous results. The following lemma is 
inspired by Lemma 1 and 2 of [17].

Lemma 3.1. Let (X, ‖ · ‖) be a real normed linear space, dim(X) ≥ 3, and let u, v ∈ SX . 
Then there exists w ∈ SX such that the triple (u, 0, w) form equilateral triangle.
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Proof. Assume first that v �= −u and define u0 := u+v
‖u+v‖ . We have

∥∥u · ‖u + v‖ + (u + v)
∥∥ =

∥∥u(‖u + v‖ + 1
)
− (−v)

∥∥
≥ ‖u‖

(
‖u + v‖ + 1

)
− ‖v‖ = ‖u + v‖,

whence ∥∥∥∥u + u + v

‖u + v‖

∥∥∥∥ ≥ 1,

so

‖u + u0‖ ≥ 1.

Consider the function ϕ : S(u, 1) ∩ S(u0, 1) −→ R given by ϕ(x) = ‖x‖ − 1. We have 
ϕ(0) = −1 < 0 and ϕ(u + u0) ≥ 0. So, there exists w ∈ S(u, 1) ∩ S(u0, 1) such that 
ϕ(w) = 0 and so ‖w‖ = 1. This means that the triple (u, 0, w) form equilateral triangle 
and the proof is finished.

Now consider the case v = −u and take u0 ∈ SX such that

‖u0 − u‖ = ‖u0 − v‖.

Suppose, that ‖u0 + u‖ < 1 or ‖u0 − u‖ < 1. If ‖u0 + u‖ < 1, then

‖u0 − u‖ = ‖u0 − v‖ = ‖u0 + v‖ < 1,

we have

2 = ‖2u0‖ ≤ ‖u0 + u‖ + ‖u0 − u‖ < 2,

so we have got a contradiction. Similarly if ‖u0−u‖ < 1. Which finishes the proof of the 
lemma. �
Theorem 3.2 ([16, Theorem 3]). Let X be a real normed linear space of dimension at least 
three. Then X is an IPS if and only if every three point subset of SX has a Chebyshev 
center in its convex hull.

Lemma 3.3 ([16, Lemma 1]). Let (X, ‖ · ‖) be a real normed linear space, let � =
{a1, a2, a3} be a three point subset of X and suppose that � has a Chebyshev center 
s ∈ X. Then the maximum F �∞

� (s) = max
1≤i≤3

‖ai − s‖ is attained at least at two points.

The following theorem is inspired by Lemma 15.1 of [1].
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Theorem 3.4. Let (X, ‖ · ‖) be a real normed linear space of dimension at least three and 
let � = {a1, a2, a3} be a three point subset of X such that M �∞(�) is non-empty. Then 
at least one of the following holds:

(a) The triangle � = {a1, a2, a3} has a Chebyshev center which is equidistant to the 
three points a1, a2, a3.

(b) The triangle � = {a1, a2, a3} has a Chebyshev center in its convex hull.

Proof. Assume that (a) does not hold. Take s ∈ M �∞(�) and write r = F �∞
� (s). By the 

preceding lemma, we may suppose, without loss of generality, that

‖s− a1‖ < ‖s− a2‖ = ‖s− a3‖ = r.

Our aim now is to show that m = 1
2(a2 + a3) is a Chebyshev center of Δ. This will 

complete the proof.
Notice first that

‖a2 − a3‖ ≤ ‖a2 − s‖ + ‖s− a3‖ = 2r.

Next let us show that ‖a2 − a3‖ = 2r. Assume this is not the case. Then, since m is the 
midpoint of the segment [a2, a3], we have

‖m− a2‖ = ‖m− a3‖ < r.

In other words, if we denote by 
◦
B (a, r) the open ball centered at a with radius r, we 

have m ∈
◦
B (a2, r)∩ 

◦
B (a3, r). Therefore

[m, s) ⊂
◦
B (a2, r)∩

◦
B (a3, r).

Since ‖s − a1‖ < r, there exists s ∈ [m, s) satisfying

‖s− a1‖ < r.

On the other hand, we have s ∈ [m, s) ⊂
◦
B (a2, r)∩ 

◦
B (a3, r). Thus

‖s− a2‖ < r and ‖s− a3‖ < r.

So we have r(s, �) < r = r(s, �), which contradicts the fact that s is a Chebyshev 
center of �. This shows that

‖a2 − a3‖ = 2r,

and so
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‖m− a2‖ = ‖m− a3‖ = 1
2‖a2 − a3‖ = r.

Let us now show that m ∈ conv(�) is a Chebyshev center of �. If ‖m − a1‖ ≤ r, this 
is clear. Hence we assume ‖m − a1‖ > r, and try to get a contradiction. The equality 
‖a2 − a3‖ = 2r implies that

B(a2, r) ∩B(a3, r) ⊂ {x ∈ X : ‖x− a2‖ = ‖x− a3‖ = r}.

Therefore, since m and s belong to B(a2, r) ∩B(a3, r), it follows that

[m, s] ⊂ B(a2, r) ∩B(a3, r) ⊂ {x ∈ X : ‖x− a2‖ = ‖x− a3‖ = r}.

The function x �→ ‖x − a1‖ takes at m, the value ‖m − a1‖ that is greater than r, and 
at s the value ‖s − a1‖ that is smaller than r. Therefore (Bolzano’s theorem) at some 
point s0 ∈ [m, s], we have ‖s0−a1‖ = r. But [m, s] ⊂ {x ∈ X : ‖x −a2‖ = ‖x −a3‖ = r}
implies that ‖s0 − a1‖ = ‖s0 − a2‖ = ‖s0 − a3‖ = r. This is the desired contradiction 
because we are assuming that condition (a) does not hold. �
Lemma 3.5 ([2, Theorem 4.7]). Let (X, ‖ · ‖) be a real normed linear space and let � =
{a1, a2, a3} ⊂ X be an equilateral set. If c is a Chebyshev center for Δ, then

‖c− a1‖ = ‖c− a2‖ = ‖c− a3‖.

We can now give our first characterization of inner product spaces by means of Cheby-
shev centers.

Theorem 3.6. Let X be a real normed linear space of dimension at least three. Then X is 
an IPS if and only if every equilateral triangle of X has a Chebyshev center in its convex 
hull.

Proof. On the one hand, it is well known and easy to see that an inner product space, 
then every equilateral triangle of X has a Chebyshev center in its convex hull (see for 
instance Proposition 2.11).

Taking into account the fact that X is an inner product space if and only if so is every 
3-dimensional subspace of it, we can suppose that dim(X) = 3. Let us suppose that X
is not an IPS. By the Theorem 3.2, there exists a three point subset � = {a1, a2, a3} of 
SX such that

M �∞(�) ∩ conv(�) = ∅.

By the Lemma 3.1 there exists b2 ∈ SX such that the triple (a1, b2, 0) form equilateral 
triangle. Let x0 by a Chebyshev center of {a1, b2, 0}, then by the Lemma 3.5, we have
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‖x0 − a1‖ = ‖x0 − b2‖ = ‖x0‖.

By the Theorem 3.4, we have x0 /∈ conv({a1, b2, 0}). Therefore

M �∞({a1, b2, 0}) ∩ conv({a1, b2, 0}) = ∅. �
4. Fermat centers of an equilateral triangle

We recall here some results of Fermat centers is due to Durier see [6].

Definition 4.1 ([6, page 307]). Let ω1, ω2 and ω3 be a positive weights satisfying (D) if:

ω1 ≤ ω2 + ω3, ω2 ≤ ω1 + ω3, and ω3 ≤ ω1 + ω2. (D)

Remark 4.2 ([6, Remark, page 307]). Let X be a real normed linear space of dimension 
at least two. Let A = {a1, a2, a3} be a subset of X. Let ω1, ω2 and ω3 be a positive 
weights.

(i) If (D) is not true, then M �1
ω (A) is nonempty. If for example ω1 > ω2 + ω3, then 

M �1
ω (A) = {a1}.

(ii) If M �1
ω (A) is not reduced to one point of A, then inequalities of (D) hold true.

Lemma 4.3 ([6, Lemma, page 307]). Let X be a real normed linear space of dimension 
at least two. Let A = {a1, a2, a3} be a subset of X such that ‖a1 − a2‖ = ‖a2 − a3‖ =
‖a3−a1‖ = d. Let ω1, ω2 and ω3 be a positive weights satisfying (D) and ω1+ω2+ω3 = 1. 
Then for every x ∈ X we have

F �1
A,ω(x) ≥ d

2 and

F �1
A,ω(x) = d

2 if and only if ‖x− a1‖ = ‖x− a2‖ = ‖x− a3‖ = d

2 .

5. Characterizations by means of γ-centers

To obtain our intended characterization we need a result is due to Veselý see [20].

Lemma 5.1 ([20, Lemma 2]). Let γ be a symmetric monotone norm on Rn, u =
(ui)1≤i≤n, v = (vi)1≤i≤n ∈ Rn, |ui| ≤ |vi| for all i = 1, . . . , n and ‖u‖∞ < ‖v‖∞. 
Then

γ(u) < γ(v).

Lemma 5.2. Let (X, ‖ · ‖) be a real normed linear space and γ be a symmetric monotone 
norm on R3. Let � = {a1, a2, 0} ⊂ X be an equilateral set and ‖a1 − a2‖ = ‖a1‖ =
‖a2‖ = d �= 0. Then 0 is not γ-center of �.
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Proof. We assume that 0 is a γ-center of �. By the Theorem 2.5, there exists f =
(fi)1≤i≤3 with fi ∈ X∗ satisfying

γ◦(λ) = 1,
3∑

i=1
ωifi = 0,

such that

Mγ(A) = C(f) ∩D(�).

So we have

‖f1‖‖a1‖ + ‖f2‖‖a2‖ = γ(‖a1‖, ‖a2‖, 0) = dγ(1, 1, 0).

On the other hand we have

F γ(�)(a1) = γ(0, ‖a1 − a2‖, ‖a1‖) = dγ(0, 1, 1),

and

F γ(�)(a2) = γ(‖a1 − a2‖, 0, ‖a2‖) = dγ(1, 0, 1).

Since the γ is a symmetric norm, we obtain

0, a1, a2 ∈ Mγ(�).

Therefore

‖f1‖ = ‖f2‖ = ‖f3‖ �= 0.

By the Corollary 2.7, we have 0 ∈ M �1
λ (�), where λi = ‖fi‖ is constant for i = 1, 2, 3, 

then 0 ∈ M �1(�) contradiction with the fact that

r�1(�) = 3
2d. �

The following theorem is inspired by the Proposition 5.1 of [2].

Theorem 5.3. Let (X, ‖ ·‖) be a real normed linear space and γ be a symmetric monotone 
norm on R3. Let � = {a1, a2, a3} ⊂ X be an equilateral set and ‖ai − aj‖ = d for i �= j. 
Then the conditions r∞(�) = 1

2d and rγ(�) = d
2γ(1, 1, 1) are equivalent. In these cases, 

if � has Chebyshev centers and γ-centers, then both centers coincide.
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Proof. For � = {a1, a2, a3} ⊂ X as above. Suppose r∞(�) = 1
2d; then for any ε > 0, 

there exists xε ∈ X such that

max
1≤i≤3

‖xε − ai‖ <
1
2d + ε,

thus

γ
(
‖xε − a1‖, ‖xε − a2‖, ‖xε − a3‖

)
≤

(1
2d + ε

)
γ(1, 1, 1);

since ε is arbitrary, then we have

rγ(�) = inf
x∈X

γ
(
‖x− a1‖, ‖x− a2‖, ‖x− a3‖

)
≤ d

2γ(1, 1, 1).

On the other hand we have

d = ‖a1 − a2‖ ≤ ‖a1 − x‖ + ‖x− a2‖,
d = ‖a2 − a3‖ ≤ ‖a2 − x‖ + ‖x− a3‖,
d = ‖a3 − a1‖ ≤ ‖a3 − x‖ + ‖x− a1‖,

for any x ∈ X. Thus

dγ(1, 1, 1) ≤ 2γ
(
‖x− a1‖, ‖x− a2‖, ‖x− a3‖

)
for any x ∈ X. Therefore

d

2γ(1, 1, 1) ≤ rγ(Δ) = inf
x∈X

γ
(
‖x− a1‖, ‖x− a2‖, ‖x− a3‖

)
.

Now we assume rγ(Δ) = d
2γ(1, 1, 1); given ε > 0, there exists xε ∈ X such that

γ
(
‖xε − a1‖, ‖xε − a2‖, ‖xε − a3‖

)
<

d

2γ(1, 1, 1) + ε.

We want to show, by contradiction

max
1≤i≤3

‖xε − ai‖ ≤ d

2 + 3
γ(1, 1, 1) ε.

Suppose there exists i0 ∈ {1, 2, 3} such that

d

2 + 3
γ(1, 1, 1) ε < ‖xε − ai0‖,

assume, for simplicity, that i0 = 1. As
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d ≤ ‖xε − a2‖ + ‖xε − a3‖,

we have

3
2d + 3

γ(1, 1, 1) ε ≤ ‖xε − a1‖ + ‖xε − a3‖ + ‖xε − a3‖.

Since γ is a symmetric monotone norm on R3, we have

(
3
2d + 3

γ(1, 1, 1) ε
)
γ(1, 1, 1) ≤ 3 γ

(
‖xε − a1‖, ‖xε − a2‖, ‖xε − a3‖

)
,

which is a contradiction, proving that

r∞(�) ≤ max
1≤i≤3

‖xε − ai‖ ≤ d

2 + 3
γ(1, 1, 1) ε.

Since ε is arbitrary, we have

r∞(�) ≤ d

2 .

On the other hand we have

γ
(
‖x− a1‖, ‖x− a2‖, ‖x− a3‖

)
≤ max

1≤i≤3
‖x− ai‖γ(1, 1, 1),

for any x ∈ X. Therefore

inf
x∈X

γ
(
‖x− a1‖, ‖x− a2‖, ‖x− a3‖

)
≤ γ(1, 1, 1) inf

x∈X

(
max
1≤i≤3

‖x− ai‖
)
,

hence

d

2 ≤ r∞(�).

Now we assume that x0 ∈ M �∞(�)
(
Chebyshev center of �

)
and we shall prove that 

x0 ∈ Mγ(�)
(
γ-center of �

)
. We can assume without loss of generality that x0 = 0. Let 

z0 ∈ Mγ(�), then

γ(‖z0 − a1‖, ‖z0 − a2‖, ‖z0 − a3‖) = d

2γ(1, 1, 1).

Since 0 ∈ M �∞(�), we have

max ‖ai‖ = d
,

1≤i≤3 2
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which implies that

γ(‖z0 − a1‖, ‖z0 − a2‖, ‖z0 − a3‖) =
(

max
1≤i≤3

‖ai‖
)
γ(1, 1, 1) ≤ γ(‖a1‖, ‖a2‖, ‖a3‖)

≤
(

max
1≤i≤3

‖ai‖
)
γ(1, 1, 1).

Hence

γ(‖z0 − a1‖, ‖z0 − a2‖, ‖z0 − a3‖) = γ(‖a1‖, ‖a2‖, ‖a3‖).

Therefore 0 ∈ Mγ(�).
To finish the proof, we assume that x0 ∈ Mγ(�)

(
γ-center of �

)
and we shall prove 

that x0 ∈ M �∞(�)
(
Chebyshev center of �

)
. We can assume without loss of generality 

that x0 = 0. Then we have

γ(‖a1‖, ‖a2‖, ‖a3‖) = d

2γ(1, 1, 1).

By the Corollary 2.7 there exist fi ∈ X∗ for each i = 1, 2, 3, such that

Mγ(�) = M �1
λ (�) ∩D(�)

with λi = ‖fi‖, for each i = 1, 2, 3, are not all null. Hence 0 ∈ M �1
λ (�). By the Lemma 5.2, 

we can assume that 0 /∈ � since 0 ∈ Mγ(�).

Case 1: If, for simplicity, ‖f1‖ = ‖f2‖ = 0 and ‖f3‖ �= 0. Then

F �1
λ (�)(0) = ‖f3‖‖a3‖ ≤ F �1

λ (�)(x) = ‖f3‖‖x− a3‖, ∀x ∈ X,

with λ = (0, 0, ‖f3‖). Which is a contradiction with a3 �= 0.
Case 2: If, for simplicity, ‖f1‖ = 0, ‖f2‖ �= 0 and ‖f3‖ �= 0. Then

F �1
λ (�)(0) = ‖f2‖‖a2‖ + ‖f3‖‖a3‖ ≤ F �1

λ (�)(x) = ‖f2‖‖x− a2‖‖f3‖‖x− a3‖,

for each x ∈ X, with λ = (0, ‖f2‖, ‖f3‖). By the Proposition 2.8, exist g2 ∈ Ja2 and 
g3 ∈ Ja3 such that

‖f2‖g2(x) + ‖f3‖g3(x) = 0, for all x ∈ X.

Then we have ‖f2‖ = ‖f3‖. As the points 0 ∈ M �1({a2, a3}), by the Lemma 2.10, we 
have 0 ∈ M �2

μ ({a2, a3}), where μ2
1 = 1

‖a2‖ and μ2
2 = 1

‖a3‖ . By the Proposition 2.9, we 
obtain that

‖a2‖ = ‖a3‖.
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Since 0 ∈ M �1({a2, a3}), then we have

‖a2‖ + ‖a3‖ = ‖a2 − a3‖ = d,

i.e. ‖a2‖ = ‖a3‖ = d
2 . On the other hand

d = ‖a1 − a2‖ ≤ ‖a1‖ + ‖a2‖ = ‖a1‖ + d

2 ,

thus d2 ≤ ‖a1‖. If d2 < ‖a1‖, then

max
{d

2 ,
d

2 ,
d

2

}
= d

2 < max
{
‖a1‖,

d

2 ,
d

2

}
= ‖a1‖,

by Lemma 5.1 we have

d

2γ(1, 1, 1) = γ
(d

2 ,
d

2 ,
d

2
)
< γ

(
‖a1‖,

d

2 ,
d

2

)
,

contradiction with

d

2γ(1, 1, 1) = γ
(
‖a1‖,

d

2 ,
d

2

)
.

Therefore

‖a1‖ = ‖a2‖ = ‖a3‖ = d

2 = r∞(�).

Which implies that 0 ∈ M �∞(�).
Case 3: If ‖f1‖ �= 0, ‖f2‖ �= 0 and ‖f3‖ �= 0. We define ωi = ‖fi‖

‖f1‖+‖f2‖+‖f3‖ , for 
each i = 1, 2, 3. Then we have 0 ∈ M �1

ω (�). We can assume that the positive weights 
ω1, ω2 and ω3 satisfying (D), since otherwise, if for example, ω1 > ω2 +ω3, we obtain 
that 0 = a1 ∈ M �1

ω (�), contradiction with what 0 /∈ �. Let x0 be a Chebyshev center 
of �, then by the Lemma 3.5, we have ‖x0 − a1‖ = ‖x0 − a2‖ = ‖x0 − a3‖ = d

2 , so

ω1‖x0 − a1‖ + ω2‖x0 − a2‖ + ω3‖x0 − a3‖ = d

2(ω1 + ω2 + ω3) = d

2 .

By the Lemma 4.3, we have, 0, x0 ∈ M �1
ω (�), namely

3∑
i=1

ωi‖ai‖ =
3∑

i=1
ωi‖x0 − ai‖ = d

2 ,

and

‖a1‖ = ‖a2‖ = ‖a3‖ = d

2 .

Therefore 0 is a Chebyshev center of �. This concludes the proof of our Theorem. �
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Now we can solve the classical problem posed by A. Weber in [21] and give our more 
general characterization of the inner product spaces by means of γ-centers.

Theorem 5.4. Let (X, ‖ ·‖) be a real normed linear space of dimension at least three and γ
be a symmetric monotone norm on R3. Then X is an IPS if and only if every equilateral 
triangle of X has a γ-center in its convex hull.

Proof. On the one hand, it is well known and easy to see that an inner product space, 
every equilateral triangle of X has a γ-center in its convex hull (see for instance Propo-
sition 2.11).

Taking into account the fact that X is an inner product space if and only if so is every 
3-dimensional subspace of it, we can suppose that dim(X) = 3. Let us suppose that X
is not an IPS. By the Theorem 3.6, there exists a equilateral triangle � = {a1, a2, a3} of 
X such that

M �∞(�) ∩ conv(�) = ∅.

Let x0 ∈ Mγ(�)
(
γ-center of �

)
, we can assume without loss of generality that x0 = 0. 

By the Theorem 5.3 we have 0 ∈ M �∞(�)
(
Chebyshev center of �

)
, thus 0 /∈ conv(�). 

Therefore

Mγ(�) ∩ conv(�) = ∅. �
Corollary 5.5. Let (X, ‖ · ‖) be a real normed linear space of dimension at least three and 
γ be a symmetric monotone norm on R3. Then the following are equivalent:

(i) X is an IPS.
(ii) Every three point subset of X has a γ-center in its convex hull.
(iii) Every equilateral triangle of X has a γ-center in its convex hull.

The following result, Benítez-Fernández-Soriano Theorem, is an immediate conse-
quence of the previous theorem in the case γ = ‖ · ‖1.

Corollary 5.6 ([5, Theorem 15]). Let X be a real normed linear space of dimension at 
least three. Then X is an IPS if and only if every equilateral triangle of X has a Fermat 
center in its convex hull.

Data availability

No data was used for the research described in the article.
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