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Abstract: Analysis of the oxidative stability of novel avocado chips with added natural extracts was
carried out with the aim of reducing the chemical additive content in their formulation. Two different
natural extracts were initially evaluated and characterized: one obtained from olive pomace (OE) and
other from pomegranate seed waste. OE was selected due to its better antioxidant potential according
to FRAP, ABTS, and DPPH assays as well as its higher total phenolic content. The formulations used
were 0, 1.5 wt.%, and 3 wt.% of OE. A gradual disappearance of the band found around 3009 cm−1

and related to unsaturated fatty acids was observed in the control sample in contrast to formulations
with added OE. The band observed near 3299 cm−1 widened and intensified with time due to the
oxidation degree of samples, with this effect being higher in the control chips. The observed changes
in fatty acid and hexanal content with storage time underlined the higher extent of oxidation in the
control samples. This fact could suggest an antioxidant protectant action of OE in avocado chips
during thermal treatment, which was attributed to the presence of phenolic compounds. The obtained
chips incorporating OE represent a viable option for the development of a natural, healthy, and
clean-label avocado snack at competitive cost and with low environmental impacts.

Keywords: avocado snacks; olive extract; oxidative stability; antioxidant performance; fatty acids;
hexanal; FTIR; clean label

1. Introduction

In recent times„ there has been an increasing interest in the consuming healthier natu-
ral products with functional properties and with a positive impact on human health [1,2].
One of the most promising dietary strategies is the use of natural ingredients for the devel-
opment of novel foods as there has been an increase of prevalence of different diseases as a
consequence of lifestyle changes [3]. The global consumption of ready-to-eat food snacks
has grown in the past two decades because of radical changes in eating habits [4]. Snack
food can be defined as a small portion of food eaten between regular meals [5]. According
to the Snack Food Global Market Report 2023 [6], the global snack food market grew from
USD 237.65 billion in 2022 to USD 256.5 billion in 2023 at a compound annual growth rate
(CAGR) of 7.9%, with a post-pandemic scenario that it has promoted this situation [7,8].
In this context, the Asia-Pacific region held the largest share of the snack food market in
2022, and North America the second-largest share. The snack food market comprises sales
of snacks created through different industrial processes. These snacks include nuts, seeds,
and grains such as salted, dried, roasted, buttered, or fried; chips of potato and corn; and
popped popcorn.

In recent years, there has been a growing concern about the need to reduce agro-
industrial waste in the environment. In this context, the bioeconomy, which involves mobi-
lizing biomass resources, is the key strategic innovation pillar in the European Union [9–11].
In a recent report published in 2018 [12], the European Commission estimated a total
average agricultural biomass production in the EU for the period 2006–2015 of 956 million
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tons of dry matter per year (Mt/a), with being 514 Mt (54%) of this being primary prod-
ucts (biomass produced as grains, fruits, roots, tubers, etc.), whereas the other 442 Mt of
biomass (46%) was secondary products such as dry biomass from leaves and stems (residue
production).

Olives are a widely consumed fruit with high nutritional value. They are also used
to produce extra virgin olive oil, a highly recognized product. The worldwide olive
production in 2021 showed an increase from 21 million tons (Mt) in 2017 to around 23 Mt
in 2021. Spain was the main producer with 35.8% of the total production followed by
Italy (9.8%), Turkey (7.5%), Morocco (6.9%), and Portugal (6.0%) [13] The olive oil industry
generates large amounts of waste, mainly olive pomace (skins, bones, and pulp) and
olive-mill wastewater. These residues contain high contents of lipids, organic acids, and
phenolic compounds [14]. Olive pomace is the major by-product accounting for up to
80–95 g 100 g−1 of semisolid mass in the olive oil industry, with a production estimation
higher than 2.8 million tons/year worldwide. This residue is mainly composed of fatty
acids, proteins, and polysaccharides, as well as polyphenols and pigments with antioxidant
activity [15,16]. Among these compounds, this residue is rich in hydroxytyrosol, caffeic acid,
oleuropein, vanillic acid, elenolic acid, rutin, catechol, p-coumaric acid, and verbascoside.
For this reason, the valorization of this residue through the extraction of target components
with phytochemical activity, such as polyphenols, has been extensively reported with
applications in cosmetic, pharmaceutical, and food industries [17,18]. This by-product has
been reported to be an effective antioxidant and antimicrobial active additive to be used as
a potential substitute of sulfur dioxide in winemaking and for the development of active
packaging materials [19].

Pomegranate (Punica granatum L.) fruit has been underlined in the literature with
promising activity against inflammatory and chronic diseases [20–22]. The main production
of this fruit is located in the Valencian Community, Spain, with a total annual production
of 50,000 tons [23]. The non-edible arils, seeds, and rings have been reported as showing
noticeable contents of isolariciresinol, from 5.0 to 13.6 mg kg−1, and hydrolysable tannins,
from 32 to 263 g kg−1 [21]. Until now, the use of these residues has been investigated for
film formulations [24] and the bioactive properties of extracts from pomegranate peel and
seeds were also recently reported [25–27].

Today, plant-based foods, characterized for having a cellular structure, are widely
recommended to be the cornerstone of a healthy diet. This group includes vegetables
and fruits, as well as legumes and nuts. Avocado is a fruit that contains a fat fraction of
15 wt.%. Up to 71 wt.% is based on monounsaturated fatty acids [28] and there is also a
high concentration of bioactive compounds, such as vitamins B, E, and C; dietary fiber;
pigments; lutein; and phenolic compounds—showing its great potential in the development
of healthy snacks [29]. However, the high content in unsaturated fatty acids makes these
snacks prone to lipid oxidation processes [30]. On the other hand, although ready-to-
eat snacks offer considerable market potential, they are perceived as unhealthy products
due to their high energetic value, their salt and fat content, and the presence of trans-
saturated fatty acids. Some studies reported in the literature have tested the feasibility of
different drying treatments to monitor the modifications in physicochemical parameters
of vegetable-based chips such as potato [31,32], pumpkin [33], jujube [34], or apples [35].
However, the addition of natural antioxidant extracts based on agricultural byproducts as a
natural ingredient has not been extensively reported. Commonly, to improve the oxidative
stability of food, it has been industrially treated with the addition of synthetic additives,
increasing the shelf life, or improving the sensorial perception through a specific flavor.
However, there have been some reports underlining the potential risks associated with the
consumption of foods with synthetic antioxidants [36]. Nowadays, there is an increasing
trend towards the addition of natural antioxidants extracted from animal or plant sources
as preservatives and healthier alternatives to synthetic ones for clean-label foods. Thus, the
search for new ingredients that avoid the use of chemical additives is a promising direction
for food industries [37]. The aim of this work was to study the oxidative stability of novel
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avocado chips with an added functional natural extract, at different loadings, to reduce the
content of chemical additives in their formulation. This represents a viable option for the
development of natural, healthy, and clean-label avocado snacks at competitive cost, as
well as for reducing environmental impacts. For this purpose, extracts obtained from olive
pomace and pomegranate seed wastes were characterized and considered.

2. Materials and Methods
2.1. Materials

Two naturals extracts kindly provided by Probeltebio (Murcia, Spain) were used in
the present study. One was an olive extract (OE) from Spanish olive fruit (Olea europaea)
by-products. It was obtained after water extraction standardized with up to 40% wt.% of
hydroxytyrosol. The other was an extract obtained after pressing the arils and seeds of the
pomegranate fruit (Punica granatum L.) (PS) collected as residues from the industrial juice
production. Avocado samples used to develop chips belonged to the Hass variety and were
purchased in a local supermarket. Fruits were stored at 4 ± 1 ◦C under air atmosphere.

Sigma-Aldrich provided the following reagents: the fatty acid methyl esters standards,
hexanal and 4-methyl-2-pentanone and the reagents for the antioxidant activity and total
phenolic content measurements (DPPH (2,2-Diphenyl-1-picrylhydrazyl) reagent and ABTS
(2, 2′-Azino-bis (3-Ethylbenzothiazoline-6-sulfonic acid)) diammonium salt, TPTZ (2,4,6-
Tripyridyl-s-triazine), potassium persulfate, Folin−Ciocalteu reagent (2 N), sodium acetate
trihydrate, Trolox, aluminum chloride and sodium nitrite). On the other hand, Panreac
(Barcelona, Spain) supplied the sodium carbonate, sodium hydroxide, calcium chloride,
ethanol, and iron trichloride.

2.2. Antioxidant Activity

DPPH radical scavenging assay, ABTS free-radical scavenging assay and ferric reduc-
ing antioxidant power (FRAP) were used to study the antioxidant activity of the extracts,
as described elsewhere [21]. In this study, 100 mg kg−1 was used as initial concentration of
extracts diluted in distilled water and Trolox was used as reference standard. All methods
were carried out in triplicate.

2.3. Total Phenolic Content

The Folin−Ciocalteu colorimetric method was used to determine the total phenolic
content of extracts. A Biomate-3 UV/VIS spectrophotometer (Thermospectronic, Mobile,
AL, USA) was used in this work [38]. The following method was followed: 250 µL of initial
extract at concentration of 100 mg kg−1 was mixed with 250 µL of Folin–Ciocalteu reagent
and 3500 mL of distilled water and incubated, protected from light, for 3 min. Then, 1 mL
of Na2CO3 solution at concentration of 20 wt.% was added. After 40 min at 40 ◦C in the
dark, the absorbance at 750 nm was measured. The blank used was deionized water. Trolox
was used as reference standard (50 to 500 mg kg−1).

2.4. Chip Preparation and Shelf-Life Study

A vegetable-based non-extruded snack was proposed in the present work based on
avocado as matrix. A dehydration treatment was selected in order to make the avocado fruit
more shelf-stable, without requiring any other preparation steps (e.g., washing, peeling, or
seed removal) [5]. Avocado-based chips with and without the active extract were prepared
as follows. Before analysis, avocado fruits were crushed with a domestic blender for 10 s in
order to homogenize them and reduce their size. Then, 8.000 ± 0.001 g of crushed avocado
pulp, manually formed into a dough, was covered with vegetal paper and allowed to stand
at 40 ◦C for 24 h in an oven (Memmert GmbH, Schwabach, Germany). Three formulations
were proposed in this work by adding 0, 1.5 wt.%, and 3.0 wt.% of active extract. Figure 1
shows the final product of formulations. All samples were kept inside plastic bags in air
atmosphere at room temperature (20 ± 3 ◦C) and protected from light. Three different
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times were studied, in triplicate, to evaluate the oxidative stability of avocado chips: 0, 6,
and 14 days.
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2.5. ATR-FTIR Spectroscopy Analysis

A Bruker Analitik IFS 66 FTIR spectrometer (Ettlingen, Karlsruhe, Germany) was
used to collect the FTIR spectra of samples. First, the grounded and homogenized chips
were directly put on the instrument and the spectra were recorded from 4000 to 400 cm−1,
using 64 scans and 4 cm−1 resolution. All spectra were corrected against the background
spectrum of air.

2.6. Fatty Acid Composition
2.6.1. Microwave-Assisted Extraction (MAE) Process

The oil extraction of chips was previously necessary for the quantification of the major
fatty acids. In this work, the use of a microwave-assisted extraction system following the
procedure described in Figure 1 was proposed. Ground avocado chips were extracted
into a 1000 mL flask with 60 mL of ethyl acetate at 65 ◦C for 30 min under stirring. After
extraction, the liquid phase (solvent and the oil) was obtained by vacuum filtration, and
distilled with a rotary evaporator at 50 ◦C under reduced pressure until the weight of oil
remained constant.

In this work a greener solvent to extract the oil from avocado by using MAE was
proposed due to its relatively less toxic nature than the more commonly used solvents such
as hexane, petroleum ether, or methanol [39,40]. Previous tests were carried out to select
the use of ethanol or ethyl acetate as a solvent extraction during the MAE process under the
conditions described in Figure 1. The amount of extracted oil was quantified by gravimetry
and Equation (1) was used to obtained the extraction yield of oil:

Extraction yield of oil(%) =

(
mass of extracted oil

mass of dried material

)
× 100 (1)

2.6.2. Analysis of Major Fatty Acid Composition by GC–MS

Methylation of fatty acids present in oil samples was carried out as described else-
where [41]. Analysis of FAMEs was performed by using an Agilent 7820A GC System
(Palo Alto, CA, USA) equipped with a FID detector. A TR-CN100 column (60 m × 0.25 mm
× 0.2 µm; Teknokroma, Barcelona, Spain) was used. The GC oven was programmed
from 120 to 250 ◦C (hold 15 min) at 5 ◦C min−1. Helium was used as carrier gas (1 mL
min−1) and 1 µL was injected in the split mode (1:75). The tridecanoic acid methyl ester
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(700 mg kg−1) was used as internal standard whereas analytical standards were used for
external calibration.

2.7. Hexanal Quantification

A headspace-solid-phase microextraction (HS-SPME) followed by GC–FID analy-
sis (Agilent 7820A GC System, Palo Alto, CA, USA) was proposed in this work for
the quantification of the hexanal content of chips [42]. First, 1.00 ± 0.01 g of grounded
chips was prepared and then 2 mL of saturated NaCl and 20 µL of the internal standard
(4-methyl-2-pentanone, 8 mg kg−1) was added into the SPME vial with a micro-stirring
bar. In accordance with the literature, a DVB/CAR/PDMS SPME fiber for the adsorption
of polar and nonpolar volatile compounds was used (Supelco, Bellefonte, PA, USA) [43].
The sample vial was placed in a water bath at 50 ◦C with a stirring of 500 rpm. First, 10
min of equilibration under these conditions was required. Then, the extraction was carried
out during 30 min in which the fiber was exposed before its desorption during 12 min into
the GC injector port at 250 ◦C. The splitless mode was selected in this step. The GC–FID
equipment was an Agilent 7820 AGC System (Palo Alto, CA, USA) equipped with a SPB-5
column programmed in two ramps: (a) from 50 ◦C to 70 ◦C (hold 1 min) at 5 ◦C min−1 and
(b) from 70 ◦C to 200 ◦C (hold 10 min) at 35 ◦C min−1. The carrier gas was helium at 1 mL
min−1 and the FID temperature was 300 ◦C. Working solutions obtained from an hexanal
stock prepared at 30 mg kg−1 in distilled water were used for the external calibration.

2.8. Statistical Analysis

Statistical analysis of experimental data was performed with SPSS commercial software
(Version 15.0, Chicago, IL, USA). ANOVA and Tukey test were assessed for p < 0.05.

3. Results and Discussion
3.1. Antioxidant Activity and TPC of Active Extracts

In order to select the active extract with the highest antioxidant properties to be used
as the active additive in the preparation of avocado chips, the antioxidant activity and TPC
of the two studied extracts, OE and PS, were evaluated. The obtained results are shown in
Table 1.

Table 1. Antioxidant activity and TPC results obtained for the studied active extracts (n ± SD; n = 3).

Property PS OE

IC50 (µg Trolox g−1 extract) 0.66 ± 0.03 a 0.59 ± 0.05 b

FRAP (mg Trolox g−1 extract) 58 ± 1 a 71 ± 8 b

ABTS (mg Trolox g−1 extract) 67 ± 9 a 56 ± 6 a

TPC (mg Trolox g−1 extract) 36 ± 1 a 53 ± 1 b

Different superscripts (a,b) within the same row and parameter indicate statistically significant different values
(p < 0.05). ABTS, 2, 2-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid); FRAP, ferric reducing antioxidant power;
IC50,: extract concentration required to cause 50% reduction in the initial DPPH concentration.

Both studied extracts showed an adequate antioxidant content according to the litera-
ture, between 56–71 mg Trolox g−1 extract, and TPC values ranging 36–53 mg Trolox g−1

extract [44,45]. OE was mainly composed of hydroxytyrosol whereas PS was rich in puni-
calagin, which is the main ellagitannin present in pomegranate fruit [46]. The edible part of
pomegranate fruit corresponds to the arils which constitute 52 wt.% of the total weight of
the fruit, comprising 78 wt.% juice and 22 wt.% seeds of its weight [47]. Phytochemically
speaking, pomegranate arils and seeds are characterized by the presence of anthocyanins
(glycosides made up of aglycones, the most common of which are delphinidin, pelargoni-
din, peonidin, petunidin, cyanidin, and malvidin, among others) and phenolic acids (ellagic
acid, gallic acid, chlorogenic acid, caffeic acid, and p-coumaric acid). Both arils and seeds
have been demonstrated to have important activities such as hypolipidemic activity, and
antimutagenic, antioxidant, apoptotic, and antimicrobial potential [46,48–50].
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All studied antioxidant methods, except ABTS, showed statistically significant differ-
ences in results between OE and PS. OE showed higher antioxidant activity and total phe-
nolic content. This behavior was also supported by IC50 values obtained for both extracts
by DPPH assay, since a lower IC50 value was obtained for OE (0.59 ± 0.05 µg Trolox g−1

extract) compared to PS (0.66 ± 0.03 µg Trolox g−1 extract). OE is a natural extract obtained
from the fruit of the olive tree (Olea europaea L.) cultivated in the Mediterranean region
of Spain through sustainable agriculture and extracted with a patented process which
maintains the natural profile of the fruit. The olive pomace is rich in hydroxytyrosol, but
also has a significant content in phenolic acids (caffeic acid, p-coumaric acid, vanillic acid,
cinnamic acid, ferulic acid, gallic acid, and syringic acid), secoiridoids (oleuropein, tyrosol,
verbascoside), and flavonoids (luteolin, hesperidin, quercetin, apigenin, among others) [51].
Currently, there is much research supporting the beneficial health effects of olive oil by-
products. A search in Scopus using the terms “olive by-products AND health” or “olive
pomace AND health” produced 176 and 129 results, respectively, (updated on 21 April
2023). The beneficial properties of olive pomace have been recently reported, including an
improvement in the blood lipid profile [52], enhancement of cardiometabolic status, with a
potentially positive effect on the vascular tone [53], and improvement in neurodegenerative
disorders [54]. Regarding the food industry, the efficacy of adding bioactive compounds
from olive pomace in food packaging applications was also reported [55]. Among olive po-
mace phenolics, hydroxytyrosol is known to exert advanced antiradical properties similar
to vitamins E and C [51]. As a result, OE was selected in this work as active additive to be
used for the processing of avocado-chip snacks since it is generally recognized as having
safe (GRAS) status (by the Food and Drug Administration (FDA) in the United States) [56].
An initial characterization of the OE was previously published and is detailed elsewhere in
which the addition of this extract was evaluated as an active antioxidant additive in corn
starch-based films [22].

3.2. Oxidative Stability Study of Packaged Avocado Chips
3.2.1. Structural Characterization by ATR-FTIR

Figure 2 shows the ATR-FTIR spectra of the studied avocado-chip formulations (0,
1.5 wt.%, and 3 wt.% of OE) obtained at day 0 of the study, showing the characteristic bands
of carbohydrate, fat, and protein fractions of avocado composition (Table 2). Avocado
pulp is a good source of various nutrients, with an average content of 15 wt.% fat, 9 wt.%
carbohydrate, 6 wt.% g fiber, and 2 wt.% protein, in 100 g of fresh pulp [57,58].
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Table 2. Characteristic FTIR peaks of avocado-chip samples.

Wavenumber (cm−1) Functional Group Fraction [59,60]

3299 Symmetric and asymmetric
stretching -O-H, stretching N-H

Hydroperoxides, amylose,
amylopectin, and amide A

3009 Stretching C=C Lipids
2923 Stretching asymmetric CH2 Lipids
2853 Stretching symmetric CH2 Lipids

1744 Stretching C=O Triglycerides, phospholipids,
and aldehydes

1559 Bending N-H Amide II
1328 Bending N-H Amide III
1034 Stretching C-O Triglycerides

Statistically significant differences (p < 0.05) were found for some bands in the
studied formulations with time, considering wavenumber and absorbance values
(Table 3). Seven parameters related to protein fraction (wavenumber near 1559 cm−1),
lipids (wavenumber near 2853 and 2953 cm−1 and absorbance values of the bands
near 2923 and 3009 cm−1), and hydroperoxides, amylose, amylopectin, and amide A
(wavenumber and absorbance values of the band near 3299 cm−1) showed significant
differences at 0, 6, and 14 days of oxidative treatment. The presence of the band near
1559 cm−1 was due to the bending vibration of N-H bonds, which are typical of all
proteins. The wavelength of this band slightly decreased with time in all samples. As
was expected, noticeable differences were observed between samples with time for
the bands linked to the fat fraction. Avocado fruit is rich in oleic (56 wt.%), palmitic
(21 wt.%), linoleic (14 wt.%), and palmitoleic (9 wt.%) acids [61,62]. The absorptions of
the bands appearing at 2923 and 2853 cm−1 were attributed to tensile vibrations of CH2
for asymmetric and symmetric vibrations, respectively. High-frequency values in this
absorption range indicate a sample rich in unsaturated and polyunsaturated acids [60].
The stretching vibration of CH cis-olefinic groups appeared around 3009 cm−1. The
isomerization, cis to trans, of double bonds of unsaturated fatty acids has been reported
in oxidative treatment progresses [63]. Therefore, a gradual disappearance of this band
was expected with time. In this study, the absorbance of this band in the control
sample decreased with time in contrast to formulations with 1.5 wt.% and 3 wt.% of
the extract. This fact could be related with the lower oxidative degree of samples with
OE in their composition. Finally, wavenumber and absorbance values of the band
observed near 3299 cm−1 also showed statistically significant differences between
samples at days 0 and 6. The protein fraction and carbohydrate constituents such
as fiber, hemicellulose, and starch are significant compounds present in the seed but
not in the pulp of avocado [61,64]. Thus, it can be supposed that this band widened
and intensified with time due to the oxidation degree of the samples. Some authors
have underlined that increases observed in this band may be due to hydroperoxide
formation which generated occurs during the first stage of the oxidation process [43].
At the end of the shelf-life study, all samples showed similar absorbance values for
band observed near 3299 cm−1, which could be related with the increased oxidation of
all studied samples with time due to their degradation.

3.2.2. Fatty Acid Composition
Selection of Solvent in MAE

The effect of different solvents on yield extraction of oil by MAE were studied. Ethanol,
ethyl acetate, and the mixture of both (1:1, v/v) was chosen as potential candidate for
greener extraction of the avocado-chip oil. The highest extraction yield was obtained for
ethyl acetate followed by the mixture and, finally, the ethanol solvent with extraction yield
values of 50± 4, 38± 2 and 19± 1%, respectively. The reason for this difference was mainly
that the type of solvent plays an important role in MAE. Generally, the choice of solvent in
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MAE should be based on its solubility of the target compound [40,65]. Ethanol has more
polarity with limited solubility of the oil whereas ethyl acetate has a better solubility for oil
due to its lower polarity. Thus, the ethyl acetate was finally chosen for the oil extraction of
avocado chips by the MAE process.

Table 3. Average values of wavenumber (cm−1) and absorbance of bands showing statistical differ-
ences (n ± SD; n = 3). Abs, absorbance; Wv, wavenumber.

Parameter 0 Days 6 Days 14 Days

Control 1.5 wt.% 3 wt.% Control 1.5 wt.% 3 wt.% Control 1.5 wt.% 3 wt.%

Wv at
1559 cm−1 1584 ± 3 a 1563 ± 4 b 1556 ± 3 c 1553± 15 bc 1557 ± 3 c 1553 ± 2 c 1568 ± 9 b 1554 ± 1 c 1542 ± 5 d

Wv at
2853 cm−1 2855 ± 1 ab 2856 ± 1 b 2855 ± 1 ab 2854 ± 1 ac 2853 ± 1 c 2853 ± 1 c 2854 ± 1 ac 2853 ± 1 c 2851 ± 1 d

Abs at
2923 cm−1 0.20± 0.01 a 0.16± 0.02 b 0.21± 0.01 a 0.20± 0.02 a 0.16± 0.02 b 0.21± 0.01 a 0.19± 0.01 a 0.16± 0.01 b 0.21± 0.01 a

Wv at
2923 cm−1 2924 ± 1 a 2827 ± 1 b 2924 ± 1 a 2923 ± 1 a 2925 ± 2 a 2922 ± 1 c 2924 ± 1 a 2920 ± 2 c 2920± 5 abc

Abs at
3009 cm−1 0.06± 0.01 a 0.08± 0.02 a 0.07± 0.02 a 0.04± 0.02 a 0.08± 0.03 b 0.07± 0.03 b 0.05± 0.01 a 0.09± 0.01 b 0.10± 0.02 b

Abs at
3299 cm−1 0.08± 0.03 ab 0.09± 0.02 a 0.05± 0.06 b 0.06± 0.03 b 0.10± 0.02 a 0.06± 0.02 b 0.13± 0.02 c 0.15± 0.02 c 0.14± 0.01 c

Wv at
3299 cm−1 3304 ± 1 a 3303 ± 1 a 3303 ± 3 a 3302 ± 2 a 3302 ± 2 a 3296 ± 1 c 3297 ± 1 c 3294 ± 1 d 3286 ± 1 e

Different superscripts for each parameter within the same row indicate statistically significant different values
(p < 0.05).

Analysis of Major Fatty Acid Composition by GC–MS

In this work, the major fatty acids of avocado were determined. According to the
literature, oleic, palmitic, linoleic, and palmitoleic are the predominant fatty acids in avo-
cado pulp [58,61,66]. The initial content (day 0) of monounsaturated oleic fatty acid (C18:1),
linoleic (C18:2), and linolenic (C18:3) polyunsaturated fatty acids and saturated palmitic
acid (C16:0) in the studied samples were (Table 4): 55.3, 27.2, 16.6, and 1.2 wt.%, respectively,
for the control sample; 56.5, 27.4, 14.9, and 1.2 wt.%, respectively, for chips incorporating
1.5 wt.% of OE; and 56.4, 27.6, 14.8, and 1.2 wt.%, respectively, for formulations with 3 wt.%
of added OE. Different fatty acid compositions of Hass avocado pulp reported previously
in the literature are in line with these results [61,62,66,67].

It is well known that the oxidative rate of lipids is related to the ratio of poly- and
mono-unsaturated fatty acids [68–70]. Under the proposed treatment, a general decrease
in all studied fatty acids with time was observed for the control and formulations of OE,
except for the saturated palmitic fatty acid. These results are in line with data previously
reported for different foods with high fat content [43,68]. In relative terms, the reduction
in fatty acid content for the control sample during storage followed the order linoleic
(16.7 wt.%) > linolenic (15.2 wt.%) > oleic (2.0 wt.%) acids, whereas palmitic acid increased
with time (12.1 wt.%). This fact could be explained by considering the number of double
bonds in the molecule. According to the literature, the oxidation rate of fatty acids increases
with the number of these double bonds because it is easy to remove the hydrogen atom
attached to the carbon between two double bonds [71,72]. Chips with added OE showed a
different behavior with time, underlining different oxidative stages in samples. In general,
as OE increased, a higher decrease in oleic fatty acid content (Figure 3A) was observed
in formulations incorporating 1.5 wt.% and 3 wt.% of the extract (4.9 wt.% and 6.7 wt.%,
respectively), whereas a higher increase in palmitic acid content was observed for chips
with 3 wt.% of OE (16.1 wt.%) (Figure 4B). Regarding linoleic fatty acid (Figure 3B), a
noticeable decrease in this fatty acid was observed between 0 and 14 days of storage for the
formulation with 3.0 wt.% (22.2 wt.%) followed by chips with 1.5 wt.% and the control with
15.4 and 16.6 wt.%. This different behavior was also observed for linolenic acid (Figure 4A),
showing no statistical differences between control and 1.5 wt.% chips whereas a decrease
was observed in formulations with 3.0 wt.% from 6 to 14 days of storage.
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Table 4. Oleic, palmitic, linoleic, and linolenic fatty acid contents of chips (%), C18:2/C16:0 ratio and
hexanal content (µg g−1) at 0, 6, and 14 days (n ± SD; n = 3).

Formulation Parameter
Time (Days)

0 6 14

Control Oleic 55.31 ± 1.29 ab 56.50 ± 0.34 a 54.21 ± 0.54 b

1.5 wt.% 56.68 ± 0.34 a 55.18 ± 0.87 a 53.93 ± 0.47 b

3.0 wt.% 56.41 ± 0.54 a 53.35 ± 0.48 b 52.62 ± 0.60 b

Control Palmitic 27.18 ± 1.30 a 27.39 ± 0.63 a 30.94 ± 0.46 b

1.5 wt.% 28.90 ± 1.30 a 31.91 ± 0.26 b 31.51 ± 1.31 ab

3.0 wt.% 27.57 ± 0.74 a 34.14 ± 0.90 b 32.88 ± 0.63 b

Control Linoleic 16.64 ± 0.75 a 14.91 ± 0.76 a 13.84 ± 0.12 b

1.5 wt.% 13.80 ± 0.58 a 13.58 ± 0.83 a 11.67 ± 0.84 b

3.0 wt.% 14.78 ± 1.29 a 14.52 ± 0.74 a 11.50 ± 0.45 b

Control Linolenic 1.20 ± 0.27 a 1.20 ± 0.05 a 1.02 ± 0.03 a

1.5 wt.% 1.19 ± 0.13 a 1.68 ± 0.08 a 1.65 ± 0.12 a

3.0 wt.% 1.24 ± 0.05 a 1.68 ± 0.17 a 0.97 ± 0.04 b

Control C18:2/C16:0 0.614 ± 0.052 a 0.544 ± 0.017 a 0.447 ± 0.006 a

1.5 wt.% 0.479 ± 0.034 a 0.426 ± 0.025 a 0.371 ± 0.033 b

3.0 wt.% 0.537 ± 0.060 a 0.426 ± 0.032 b 0.350 ± 0.009 c

Control Hexanal 525 ± 62 a 521 ± 93 a 494 ± 59 a

1.5 wt.% 446 ± 73 a 588 ± 33 a 499 ± 72 a

3.0 wt.% 458 ± 84 a 405 ± 62 a 465 ± 78 a

Different superscripts for each parameter within the same row indicate statistically significant different values
(p < 0.05).
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According to Chen et al. [73], changes observed in (C18:2/C16:0) ratio can also be used
to assess the oxidative degradation of fats, with a greater reduction in this ratio indicative
of a higher deterioration of polyunsaturated fatty acids [62,70]. At day 0 of storage (Table 4),
control chips showed the highest ratio compared to samples with added extract. This fact
could indicate a role of OE as a protectant agent against oxidation processes. This ratio
significantly decreased with storage time from 0 to 14 days, with the lowest decrease in
control chips (up to 27.20 wt.%) compared to formulations with added OE, which showed
a decrease of 22.55 wt.% and 34.82 wt.% for chips with 1.5 wt.% and 3 wt.% of the extract,
respectively. These differences were evident after 6 days of storage, with the control sample
having the highest oxidation followed by the chip incorporating 1.5 wt.% and 3 wt.% of
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OE; the latter being the more resistant to degradation. Thus, it could be stated that control
samples showed a higher extent of oxidation due to more evident fatty acid changes with
time compared to that observed for samples with added OE [70]. This fact could be related
to the positive antioxidant activity found for OE in this study, as was previously detailed.
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3.2.3. Hexanal Content

Fatty acids are precursors of aroma volatile compounds [74], which have a well-
established role in determining the characteristic flavor of a wide variety of food prod-
ucts [67]. Lipid oxidation processes (auto-oxidation and enzymatic) result in rancidity,
which can be defined as the formation of off-flavors and odors from lipids. Hydroperoxides
formed during the oxidation of linoleic acid, the most abundant and oxidation-susceptible
fatty acid in avocado, quickly break down to produce many secondary compounds causing
rancid odor and taste, such as aldehydes and ketones [75]. Among all volatiles reported for
avocado samples, hexanal compounds have been described some of the main compounds
providing a particular ‘grassy aroma’ with a low aroma threshold [76,77]. The 6-carbon
aldehyde, hexanal, which is produced from the degradation of linoleic and linolenic acids,
has also been reported to be inherent of food with high fat content [78–80]. In the present
study, hexanal was quantified as an indicator of rancidity in avocado chips as, according
to other studies, it has a very good correlation with sensory evaluations of lipid oxida-
tion, [70,75,77,78].

Figure 5 shows an increase in hexanal content between 0 and 6 days, because of sample
oxidation, for samples with OE. The formulation with 1.5 wt.% of OE showed noticeable
increase of this aldehyde in contrast to the rest of studied formulations. A decrease in
the hexanal was observed between 6 and 14 days of study underlying the depletion of
headspace oxygen in the closed vial where sample was contained. This fact has been
explained in literature as being due to the reaction between the oxygen in the headspace
and the unsaturated fatty acids of samples [68]. It is interesting to underline that a constant
decrease was observed in control samples from the beginning of storage. This fact could
be related to a higher extent of oxidation in these samples in contrast to the other ones.
According to Galvao et al. [77], hexanal levels are generally lower in avocado due to the
presence of a high oleic acid content, in agreement which our results. At day 0, a higher
oleic acid content was found for chips with 3 wt.% added, followed by 1.5 wt.%, and
the sample without the extract was less rich in this fatty acid. This fact could suggest an
antioxidant protectant action of OE in avocado chips during the thermal treatment in the
oven, which could be attributed to the antioxidant capacity of phenol compounds present
in the studied extract [75]. After 6 days of storage, the formulation with 3 wt.% added
showed higher content in oleic fatty acid compared to the 1.5 wt.% formulation, in line with
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the hexanal results. Therefore, the concentration of the studied extract directly affected the
oxidative degradation of avocado chips.
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4. Conclusions

The present work allowed us to increase the scientific knowledge about chemical
changes occurring during the storage of avocado chips with the added natural antioxidant
extract, OE, obtained from Spanish olive fruit (Olea europaea) by-products, and processed
following a dehydration process in the oven at moderate temperatures. The addition of OE,
as a strategy to improve the oxidative stability of the developed products, had different
effects on the response variables evaluated in this study. In general, the formulation with 3
wt.% of added OE showed the best results, with no pronounced degradation process in
these samples. Control chips without the addition of OE were less stable to the oxidative
treatment. The elucidation of the degradation mechanism of fatty acids was linked to
the production of hexanal volatile compounds and FTIR results, helping researchers to
understand how the different technological practices available during avocado thermal
processing (e.g., dehydration, frying, and roasting) could affect the overall oxidative degra-
dation of ‘Hass’ avocado chips. Further work will be needed to evaluate the sensorial
behavior of the developed chips to improve the functional properties of the obtained
formulations and their possible commercialization in the real market.
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