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Featured Application: It is often difficult to subjectively determine subjects’ uncorrected visual
acuity given their age, lack of cooperation with subjective measurement, etc. In other cases, it
would be desirable to be able to predict this visual acuity prior to any type of ocular intervention.
The proposed method allows such a determination to be objectively made by determining the
degradation of the eye’s optical system from a set of natural images.

Abstract: This work addresses the objective prediction of human uncorrected decimal visual acuity,
an unsolved challenge due to the contribution of both physical and neural factors. An alternative
approach to assess the image quality of the human visual system can be addressed from the image
and video processing perspective. Human tolerance to image degradation is quantified by mean
opinion scores, and several image quality assessment algorithms are used to maintain, control,
and improve the quality of processed images. The aberration map of the eye is used to obtain the
degraded theoretical image from a set of natural images. The amount of distortion added by the eye
to the natural image was quantified using different image processing metrics, and the correlation
between the result of each metric and subjective visual acuity was assessed. The correlation obtained
for a model based on a linear combination of the normalized mean square error metric and the
feature similarity index metric was very good. It was concluded that the proposed method could
be an objective way to determine subjects’ monocular and uncorrected decimal visual acuity with
low uncertainty.

Keywords: visual acuity; aberration; image quality assessment

1. Introduction

The quality of the optical system, the quality of the retinal image, and subjective visual
quality are three highly related concepts in the visual optics field. They are approached
by objective functions, such as the modulation transfer function (MTF) of the system, the
Zernike decomposition of the wavefront, or by subjective parameters, such as subjects’
decimal uncorrected visual acuity (VA). The relation among these three concepts is clear: if
the quality of the human visual system (HVS) is poor, the quality of the resulting image
will also be bad and, as a result, VA will be poor.

The retinal image is affected by aberrations of the system, scattering and diffraction of
light, and retinal sampling. Nevertheless, the vision process is not simple because it results
from the proper combination of physical, optical, physiological, neural, and psychological
aspects. Thus, it is relatively normal to find people who indicate they “correctly view”
a certain image because they recognize the structure of the object, but not its details.
Therefore, they pose no need for refractive correction. Guirao and Williams [1] suggested
that the visual quality metrics obtained on the retinal plane are more consistent with
subjective measurements than those calculated on the pupil plane. Presently, the most
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widespread objective criterion to predict visual quality is the visual Strehl ratio (VSOTF).
Cheng et al. [2] obtained a correlation between defocus and astigmatism, and 31 different
visual quality metrics. They concluded that the VSOTF might be a good objective parameter.
They also concluded that the value of the root mean square (RMS) wavefront error, or other
parameters like the Strehl ratio (SR), are not reliable indicators of the subjective quality
of the retinal image. Thus, they chose a metric that combined the point spread function
(PSF) of the system with a spatial sensitivity function. Marsack et al. [3] demonstrated the
need for single-value metrics other than RMS to assess the VA effects of low aberration
levels. Later, Watson and Ahumada [4] proposed a model for VA that incorporates the set
of ocular aberrations, optical and neural filtering, and neural noise.

An alternative approach to assess the image quality of the HVS can be addressed from
the perspective of the image and video processing field. On the one hand, human tolerance
to image degradation is quantified with mean opinion scores (MOS) [5]. On the other hand,
a series of image quality assessment (IQA) algorithms are used to maintain, control, and
improve the quality of processed images. Early works focused on comparing the degraded
image to the initial one by using two objective parameters: peak signal-to-noise ratio
(PSNR) and mean square error (MSE) or its square root (RMSE). MSE is the standard
method applied in image comparisons because it is simple and fast but is not usually
a good estimator of subjective perception because it does not consider HVS characteristics.
It is also an unbounded metric, which makes it difficult to correlate with VA [6]. The PSNR
metric is also based on pixel-by-pixel by comparing the reference image to the distorted
image through MSE, and it is still one of the most popular ways to assess the quality
difference between images [7]. Its disadvantages are that it is not a bounded metric, and it
does not consider HVS properties. Thus, it does not correlate well with subjective tests. In
the last few years, one of the most commonly used metrics has been the structural similarity
index (SSIM) [8] because of the good correlation with MOS.

IQA objective methods can be classified into three types, full-reference, reduced-
reference, and non-reference, depending on the use of a reference image, some of the
information of that image, or no available reference image to make the comparison, respec-
tively. In this paper, we focus on studying seven metrics that derive from full-reference
algorithms to objectively determine subjects’ VA. They are MSE, PSNR, SSIM, the Multi-
scale Structural Similarity Index (MSSSIM) [9], the peak signal-to-noise ratio based on
the HVS (PSNR-HVS) [10], gradient magnitude similarity deviation (GMSD) [11] and the
Feature Similarity Index (FSIM) [12]. These metrics were chosen because they are fast, easy
to implement, and sufficiently confirmed.

We establish a relation between image quality metrics, hitherto restricted to the field of
signal and image processing, and the quality of vision concept, quantified by monocular VA.
As far as we know, no works use static image or video quality metrics to study the quality
of human vision, and only two references that link both aspects appear in the literature.
Iskander [13] discussed a possible relation between some image processing metrics and
subjects’ visual quality. The study was performed for two sets of metrics: those based on
comparing images and those based on the optical transfer function. The metric that best
correlated with the evaluation of subjects’ ametropia was entropy. Later in [14], some of
the authors adapted the MSSIM metric to the visual process (VMSSIM) with two subjects
(one myopic and another hyperopic), both before and after being treated by LASIK surgery,
to objectively predict their visual quality.

Several studies have been recently published on quantifying the quality of an image,
but by combining several full reference metrics [15–17]. Their results reveal that these
combinations seem to exceed individual metrics when predicting the quality of an image.
We approached the problem of assessing HVS quality from the same point of view and
proposed combining metrics to predict VA. Most psychophysical experiments are per-
formed with relatively simple patterns, such as blobs, sinusoidal bars or grids, letters, etc.
For example, the contrast sensitivity function is usually obtained from thresholds with
global sinusoidal images. However, all these patterns are simpler than real-world images,
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which can be considered as a superposition of a larger number of simple patterns. VA
measures in some ways the degradation of a subject’s optimal visual quality. The objective
of this work is to relate digital image processing metrics, that use natural images, with VA,
since there must be a relationship between them. Subjective VA tests measured using opto-
types comprises both physical and neural factors. Natural images are necessary to quantify
in some manner for human tolerance to image degradation because using optotypes as
images (not natural images) and the wavefront aberration (only physical factors) would
not be able to model neural or even subjective factors that in some manners are present in
natural images evaluated with MOS.

The manuscript is structured as follows. Section 2 describes the procedure. First,
an image database is defined from existing ones. Next, details of the subjects participating
in the study and measurements are provided. Then, the calculation of the PSF and the image
of the eye are explained. The method section ends by describing the metrics calculation
and defining the fitting to subjective VA and conditions. The results appear in the third
section and the conclusions are finally stated. The metrics are described in Appendix A.

2. Materials and Methods

This section describes the method proposed to obtain an objective evaluation of
subjects’ VA based on the application of image processing metrics and the physical data of
eyes. Figure 1 shows the flow chart of the whole process. For a distant object, a hyperopic
eye is supposed to use crystalline lens accommodation to focus the image on the retina and
thus, obtaining the maximum quality of vision. Such accommodation changes the value of
the Zernike coefficient related to the Z0

2 [18] following:

Z0
2 =

Rp
2 (S−Ac)+ C
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3
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2
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2
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√

3
; i f S < Ac

(1)

where S and C are the values, in diopters, of the sphere and cylinder of the studied eye.
Thus, to obtain PSF in hyperopic subjects, the possible accommodation of the eye was
considered through the adjustment of the average monocular accommodation of a subject
as a function of age provided by Duane [19] to a third-degree polynomial.
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Figure 1. Flow chart of the proposed approach.

2.1. Image Database

The image databases commonly used in image processing are available on the World
Wide Web. They are composed of reference natural images, the corresponding degraded
images, and the mean MOS and/or differential mean opinion score (DMOS) values for
a significant number of subjects. We randomly chose a set of 49 different reference images
that belong to three distinct image databases: 29 to the LIVE base from the image and
video engineering laboratory of the University of Texas [20]; 10 from the IVC database of
the research group of communication of images and video of the Research Institute on
Communications and Cybernetics [21]; the last 10 images belong to the Toyama-MICT
base [22].
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2.2. Subjects

We studied 52 randomly selected eyes of 52 subjects of both sexes (50% women,
50% men) who had not suffered any eye disease or trauma. Their age range was wide
(18 to 62 years old). The study did not present any invasive action. The tests to perform,
their nature, and their purpose were explained to all the subjects. They agreed to undergo
them and provided their consent. Experiments were conducted with the approval of the
Ethics Committee of the University of Alicante and in accordance with the Declaration of
Helsinki. Non-cycloplegic subjective test refractions and subjective monocular logMAR VA
without correction for distant vision under photopic lighting conditions (85 cd/m2) were
conducted by optometrists. Visionix VX-120 was used to capture corneal topographies by
Placido’s ring-based technology, aberration maps of the eye, and tonometry, pachymetry,
and anterior chamber data. All these measurements were taken three times per subject
during sessions separated by a 24 h time interval. LogMAR VA values were converted
to decimal VA for convenience reasons following the relation VAdecimal = 10(−logMAR).
Pupillary diameters were not measured during the VA assessment. Photopic conditions
establish natural pupil diameters ranging between 2 and 4 mm [23] and it is assumed that
VA does not vary within that pupil diameter range.

In Figure 2, we represent the characteristics of the studied eyes. Figure 2A shows the
refractive errors associated with each examined age group. The prevalence of nearsight-
edness over farsightedness, with a maximum spherical equivalent refraction of 0.75 D, is
evident in most subjects. Figure 2B illustrates the average spherical equivalent of the eyes
associated with each age range. Finally, Figure 2C depicts a histogram of the number of
eyes with different subjective VA ranges.
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2.3. The Point Spread Function and the Image of the Eye

The monochromatic PSF of the subject was computed from the wave aberration func-
tion W(x, y) reconstructed from the Zernike coefficients measured with Visionix VX-120.
In this calculation, the first three Zernike coefficients corresponding to the aberration com-
ponents of piston, tilt X and tilt Y were not considered because they constitute translations
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and tilts of the reference system, which can be naturally compensated with eye movements.
The PSF is obtained as the squared module of the Fourier transform of the generalized
pupil function [24]:

PSF(x, y) = |FT(P(x, y))|2 (2)

We considered the Stiles–Crawford effect due to the anatomical structure of photore-
ceptors [25], which can be modeled by an apodizing filter located at the entrance pupil [26].
Then, the generalized pupil function is given by [27]:

P(x, y) = e−0.116 R2
p(x2+y2)e−ikW(x,y), (3)

where Rp is the pupillary radius, which was provided by the Visionix VX-120 system. In
the work of Prakash et al. [28], it is shown that under photopic conditions the pooled pupil
diameter is 4.07± 0.63 mm so the Zernike expansion coefficients provided by Visionix were
transformed into new ones [29,30] for pupil diameters above 4.07 mm.

Finally, we considered that the eye’s image of an object could be obtained through the
convolution of the function that represents the object O(x, y) with the PSF of the optical
system. By applying the convolution theorem [24], this image can be obtained as the inverse
Fourier transform of the product of the convoluted functions, i.e.,

I(x, y) = F−1{F [O(x, y)]·F [PSF(x, y)]} (4)

2.4. The Point Spread Function and the Image of the Eye

Having defined how to obtain the degraded eye’s image of an object, the values of the
seven studied metrics were determined. We established the metrics result for each eye as
the average of the metrics values for the 49 object images.

Subjects’ subjective VA and the results obtained from calculating the metrics and linear
combinations of metrics were fitted with a monotonous logistic function that is commonly
used to study image quality [15]. It comes as follows:

VA(Q) = a
(

1
2
− 1

1 + exp[b(Q− c)]

)
+ dQ + e, (5)

where Q represents any of the used metrics or a linear combination QL, and (a, b, c, d, e) are
the parameters to determine.

The first issue to address in the proposal of the linear combinations of full reference
metrics is collinearity. Collinearity is a regression analysis problem; if predictors are in
a linear combination, the influence of each one on the criterion cannot be distinguished by
overlapping them with one another. In that case, the confidence intervals of the estimating
coefficients are often wide, which indicates that the obtained estimates are imprecise and
probably unstable. The difficulty of assessing the existence of collinearity lies in determining
the maximum degree of the permissible relation between independent variables. No
consensus on this issue has been reached. Neter et al. [31] considered a series of indicators
to analyze the degree of multicollinearity among the regressors of a multivariate linear
model. The simplest is the variance inflation factor (VIF) between two of the regressive
variables, which is defined as:

VIF =
1

1− R2 , (6)

where R2 is the coefficient of determination between the two variables. According to these
authors, if VIF is higher than 10, it can be concluded that the collinearity between the
two selected variables is high and will affect multilinear fit by increasing the variance value.

Implementing regression fits requires compliance with a series of assumptions to
reach conclusive results. These are the homoscedasticity, normality, and independence
of residuals. The homoscedasticity hypothesis establishes that the variability of residuals
is independent of the explanatory variables. Failure to comply with this condition may
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result in the fitted parameters varying according to sample size. Regarding normality,
residuals should follow a normal distribution with a zero average. Last but not least, the
Durbin–Watson (DW) [32] statistic can be used to verify the independence of residuals, ri :

DW =
∑n

i=2(ri − ri−1)
2

∑n
i=1 r2

i
; , (7)

where n is the number of eyes. The null hypothesis (no statistical evidence that residuals
are positively self-correlate) is rejected if the DW value is less than a lower critical value
DW(L,α), where α represents the significance level (in this work, α = 0.05). If DW is
higher than an upper DW(U,α) critical value, it is accepted that there is no correlation. In
intermediate cases, the test is not conclusive. If the value (4− DW) is less than DW(L,α),
there is statistical evidence that residuals negatively self-correlate. If the value (4− DW) is
higher than DW(U,α), there is no statistical evidence for a negative self-autocorrelation [33].

Besides fulfilling the above assumptions, it is necessary to establish a criterion to select
the metric model that best predicts VA. Wei et al. [34] introduced an objective index (WI) to
evaluate the performance of an estimation model. In general, the more accurate the model
is, the bigger R is and the smaller the mean of the squares of residuals. The WI index is
defined as:

WI =
R

1
n ∑n

i=1 r2
i

, (8)

Another descriptive statistic, which measures the dispersion of a dataset and can be
used to compare models’ performance, is the quartile coefficient of dispersion (QCD) [35].
It is defined by:

QCD =
1
n ∑n

i=1

(
Q3 −Q1

Q3 + Q1

)
i
, (9)

where Q1 and Q3 are the first and third quartiles of the dataset, which consists of the results
of each metric of every eye over the set of 49 images. The higher this coefficient is, the
wider the data variability is. Therefore, a model with a low QCD is expected.

3. Results and Discussion

The 49 mathematically degraded images that resulted from the convolution of the
PSF of each eye with the original images were obtained. Subsequently, the values of
all the metrics for each degraded image, their mean, and their standard deviation (SD)
were computed.

Due to the major difference between the values of the metrics, and to compare the
coefficients that resulted from the distinct fittings, the metrics results were normalized
within the range [0, 1]. We called them nMSE, nPSNR, nGMSD, and nPSNR-HVS. Therefore,
linear combinations of nMSE with the other metrics were chosen, i.e., QL = β1nMSE+ β2Q,
with Q being any of the other six herein used metrics. First, we evaluated collinearity with
the VIF index (Table 1). As shown, the VIF values were high, except for nMSE, which was
related to the other metrics.

Table 1. VIF values among metrics.

nMSE nPSNR SSIM nGMSD MSSSIM FSIM

nPSNR 7.64
SSIM 4.15 21.7
nGMSD 3.05 12.3 27.8
MSSIM 4.23 24.8 150 30.8
FSIM 5.93 35.8 76.7 15.2 57.4
nPSNR-HVS 7.78 63.8 27.9 14.6 31.7 57.2

The generalized reduced gradient resolution algorithm was used to find the minimum
value of the sum of the squares of the deviations between the value of subjective VA and
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the target value provided by the fitting to the logistic function (5). This fitting provided
an optimal local solution. Figures 3A–G and 4A–F show the subjective VA for distance
vision versus the value obtained for all the metrics and the linear combination of metrics.
The fitted functions are plotted in red, and the resulting parameters appear in Table 2. In
all cases, the average amount of residuals was practically zero.
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Table 2. Parameters obtained for the fittings of the normalized metrics and the linear combinations
of nMSE with the other metrics to the logistic function (5).

a b c d e

β1 β2

nMSE −4.000 8.992 0.000 0.078 2.016
nPSNR −4.364 −8.983 0.775 −4.522 4.211
SSIM 10.29 2.228 0.746 −3.054 3.255
nGMSD 0.002 0.000 −0.352 −2.501 2.580
MSSSIM 24.57 3.075 0.712 −15.19 11.55
FSIM 21.24 3.134 0.864 −12.47 11.78
nPSNR-HVS −23.08 −3.773 0.729 −17.55 13.51

nMSE-nPSNR 64.78 0.021 45.16 −0.335 15.18 72.10 −12.75
nMSE-SSIM 0.173 155,1 −5.512 −0.223 −1.093 −0.772 −12.21
nMSE-nGMSD −0,708 4.516 −4,870 0.213 2,418 −0.026 −12.78
nMSE-MSSSIM 37.89 17.24 −0,873 −1.326 17.27 0.111 −2.583
nMSE-FSIM 7.478 8.858 −3.770 −0.632 1.011 −0.944 −6.714
nMSE-nPSNR-HVS 41.54 0.282 3.670 −2.878 10.63 5.839 −1.391

To establish the best fitting, we performed an analysis of variance (ANOVA) with
the subjective VA and the values provided by the above fittings of metrics. The ANOVA
results are found in Table 3. In all cases, regressions provided a very low probability
(p < 0.001) of accepting the null hypothesis. The F-number was used to determine whether
the high coefficient of determination values occurred by chance. The critical value for
a 95% confidence level and a number of points (eyes; n = 52) was 4.03. As the F-number is
much higher than the critical value, a significant relationship between the variables in the
model must be accepted. Therefore, all the metrics are useful for predicting the subjective
VA value. Regarding the t statistic, the metrics provided t values above 20. The critical
value was 2.01 with an alpha value equaling 0.05 (probability of the null hypothesis). As
the obtained values were higher than the critical value, it can be stated that fittings were
statistically significant with a probability over 95%. All the metrics also provided high
coefficients of determination, which means that the logistic Function (5) allowed the studied
variables to be correlated as a high percentage.

Table 3. ANOVA parameters for the above fittings. Coefficient of determination (R2), standard error
of estimate (σest), F-number, and t statistic.

R2 σest F-Number t Statistic

nMSE 0.9141 0.1563 532 23.1
nPSNR 0.9114 0.1588 514 22.7
SSIM 0.9218 0.1495 590 24.3
nGMSD 0.8891 0.1777 401 20.0
MSSSIM 0.9170 0.1540 553 23.5
FSIM 0.9266 0.1448 631 25.1
nPSNR-HVS 0.9152 0.1554 539 23.2
nMSE-nPSNR 0.9105 0.1600 509 22.6
nMSE-SSIM 0.9261 0.1454 626 25.0
nMSE-nGMSD 0.9178 0.1533 558 23.6
nMSE-MSSSIM 0.9228 0.1486 597 24.4
nMSE-FSIM 0.9309 0.1406 673 25.9
nMSE-nPSNR-HVS 0.9116 0.1589 516 22.7

The normality of the distribution of residuals was studied by applying three types of
tests: Lilliefors, Anderson–Darling and Jarque–Bera with a significance level α = 0.05. The
three tests indicated that the distributions of residuals could be accepted as normal. Only
the obtained residuals using the nGMSD metric did not follow normal distribution.

Regarding the independence of residuals, Table 4 shows the computed DW statis-
tics following (7) for the considered metrics. If the value of this statistic was two, the
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residuals were completely independent. For a sample size of 52 eyes and a significance
level of α = 0.05, the critical values of the statistic were approximately DW(L,α) = 1.49
and DW(U,α) = 1.60. The obtained DW values indicated that no performed fit led to
a negative self-correlation in residuals. The correlations of the decimal subjective VA with
the nMSE, nPSNR, and PSNR-HVS metrics, and with the metrics obtained by the linear
nMSE-nPSNR and nMSE-nPSNR-HVS combination, gave DW values below DW(L,α). Such
values indicated statistically significant evidence at 95% and the error terms were positively
self-correlated. In contrast, all the other used measures or combinations of measures gave
DW values over DW(L,α), which indicates that residuals did not positively self-correlate, or
the test was inconclusive (for SSIM and nMSE-FSIM).

Table 4. Durbin–Watson, WI, and QCD indices (in red: those metrics or linear combinations that
provide positive self-correlations in residuals).

nMSE nPSNR SSIM nGMSD MSSSIM FSIM nPSNR-
HVS

nMSE-
nPSNR

nMSE-
SSIM

nMSE-
nGMSD

nMSE-
MSSSIM

nMSE-
FSIM

nMSE-
nPSNR-HVS

DW 1.30 1.28 1.59 1.73 1.61 1.54 1.42 1.28 1.67 1.62 1.67 1.56 1.35
WI 40.7 39.4 44.7 31.1 42.0 47.7 41.7 38.8 47.4 42.4 45.2 50.8 39.3

QCD 0.46 0.12 0.15 0.15 0.13 0.06 0.15 0.46 0.14 0.15 0.25 0.07 0.46

The analysis of models’ performance was completed by calculating the WI and QCD
indices, which are, respectively defined in (8) and (9), and also presented in Table 4. The
higher the WI index, the more accurate the model. Conversely, the lower QCD, the less
spread the results of a metric, which indicates that the metric was relatively independent of
the chosen set of images. Thus, its performance was better.

Of the metrics not ruled out by the DW evaluation, the results showed that the nMSE-
FSIM metrics combination gave the best results. It can be accepted that residuals were
normally distributed, the WI index was higher (higher coefficient of determination), and
the index (QCD) had the second lowest value. It also indicated the smallest estimated error
for all the metrics used in this paper.

To summarize, the model that best determined subjects’ VA from the image processing
metrics based on a logistic function was the nMSE-FSIM combination:

VA = 7.478
(

1
2
− 1

1 + exp[8.858(QL + 3.770)]

)
− 0.632 QL + 1.011, (10)

with QL = −0.944nMSE− 6.714FSIM and an uncertainty of ±0.14.

4. Conclusions

It is often difficult to subjectively determine subjects’ uncorrected VA (their age, lack
of cooperation with subjective measurement, etc.). In other cases, it would be desirable to
predict this VA prior to any type of ocular intervention. The proposed method allows such
a determination to be made objectively by determining the degradation of the eye’s optical
system on a set of natural images.

A method is presented to make an objective assessment of subjects’ decimal VA, which
can be determined with low uncertainty. The technique is based on using image quality
metrics together with the determination of degraded images by the optical part of the HVS.
This technique allows both the objective determination and quantification of visual quality.
The evaluation of the correlation of VA with the results of different metrics using public
domain images revealed that FSIM best performed of all the individual studied metrics.
Furthermore, we propose a linear combination of these metrics that provides efficient and
effective results, namely QL = −0.944nMSE− 6.714FSIM.

It is worth noting that a common criticism of this type of mathematical prediction
model is that correlation can be confused with chance. We believe that both numerical
results and the justification of the hypothesis (image quality metrics can objectively de-
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termine subjects’ VA) more than suffice to confirm correlation and causality between the
studied variables.

It would be interesting to conduct a more extensive study, such as using other grayscale
metrics, including the color factor in images or combinations of metrics, to improve
the results.
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Appendix A

Appendix A.1. The Structural Similarity Index (SSIM)

The SSIM is a metric proposed by Wang and Bovik based on the combination of the
luminance and contrast distortion and the loss of correlation between the pixels of the
image [8]. The analytical expression of SSIM is shown in expression (A1),

SSIM(X, Y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) , (A1)

being µx and µy the mean values of the luminances of the two compared X and Y images, σx
and σy are the standard deviations of the luminances and σxy is the covariance between
the two images. The values C1, C2 and C3 are constants used to avoid instability when the
denominator or denominators approaches zero and are given by:

C1 = (K1L)2; C2 = (K2L)2; and C3 = C2/2, (A2)

L is the dynamic range of the image (L = 255 for 8-bit/ pixel grayscale images), and K1
and K2 are two scalar constants with a value less than unity, usually 0.01 and 0.03.

Appendix A.2. The Multi-Scale Structural Similarity Index (MSSSIM)

Wang, Simoncelli and Bovik developed a multiple-scale SSIM, MSSSIM [9] in order to
incorporate image details into different image resolutions. In this metric both the reference
image and the distorted image are taken as input signals. As in the SSIM, they compare
luminance, contrast and correlation between images. The system repeatedly applies a low-
pass filter and decreases the resolution of the filtered image by a factor 2. The authors called
the original image as Scale 1, and the most distorted image as Scale M (usually M = 5),
which is obtained after M-1 iterations. The comparison between luminance is calculated
only on the scale M, lM(X, Y). However, the contrast and correlation between images are
obtained as in SSIM, but each time the image is distorted. Both are denoted by cj(X, Y) and
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sj(X, Y), respectively, and j is the number of performed iterations. Therefore, MS-SSIM is
calculated by combining measurements from different scales using Equation (A3).

MS− SSIM(X, Y) = [lM(X, Y)]αM ·∏M
j=1[cj(X, Y)]β j sj(X, Y)]γj , (A3)

where we use the exponents αM, β j and γj, originally obtained by Wang et al. [9], to adjust
the importance of each component.

Appendix A.3. The Gradient Magnitude Similarity Deviation (GMSD)

The gradient is generally calculated by convolving an image with a linear filter, usually
a Prewitt filter, along both the horizontal direction, hh, and the vertical direction, hv. By
performing the convolution of hv and hh with the reference image and the distorted image,
the horizontal and vertical gradient images of X (reference image) and Y (distorted image)
are obtained as follows:

mX(i) =
√
(X ∗ hv)

2(i) + (X ∗ hh)
2(i)

mY(i) =
√
(Y ∗ hv)

2(i) + (Y ∗ hh)
2(i) i ∈ [1, N],

(A4)

where i represents any pixel of the image and N is the total number of pixels in the image.
With the gradient images, we calculate the gradient magnitude similarity (GMS),

GMS(i) =
2mX(i)mY(i) + c

m2
X(i) + m2

Y(i) + c
, (A5)

where c is a positive constant that provides numerical stability and controls the contrast
response in low gradient areas. In this work, we used a value of c = 0.0026, obtained by
Xue et al. [11] provided that 8-bit images are considered and with normalized luminance in
the range [0, 1]. If mX(i) and mY(i) are the same, GMS(i) reaches the maximum value, 1.
The GMS map serves as the quality map of the distorted image and reflects the local quality
of each small area in the distorted image. The most used way to calculate the quality of
a distorted image is to obtain the mean of the elements of the GMS map, GMSM,

GMSM =
1
N

N

∑
i=1

GMS(i) (A6)

Based on the idea that the overall variation of the degradation of local image quality
may reflect its overall quality, Xue et al. proposed a metric that evaluates the standard
deviation of the GMS map. This metric, gradient magnitude similarity deviation is denoted
by GMSD,

GMSD =

√√√√ 1
N

N

∑
i=1

(GMS(i)− GMSM)2 (A7)

The value of this metric is null if there is no distortion. Although the metric does
not have higher bounds, we can observe that, for very high values of distortion (normal-
ized difference mean opinion score, DMOS, close to unity), the value of this metric is
approximately 0.35.

Appendix A.4. The Peak Signal to Noise Ratio Based Human Visual System (PSNR-HVS)

The PSNR-HVS metric is equivalent to the peak signal-to-noise ratio, but it considers
the human contrast sensitivity function. It is based on the differences between the coef-
ficients that appear when performing a discrete transform of cosine (DCT) in blocks of
8 × 8 pixels of both the original and the distorted image. To determine if the differences
between DCT coefficients of two images are visually distinguishable, such differences are
weighed using a mask based on the quantization table for the JPEG Y color component



Appl. Sci. 2023, 13, 6350 13 of 15

obtained considering the contrast sensitivity function. According to [10], the PSNR-HVS
metric is more efficient than other metrics and can be expressed as:

PSNR− HVS = 10log
(

L
MSEH

)
(A8)

where

MSEH =
1

64(N − 7)2

N−7

∑
i=1

N−7

∑
j=1

8

∑
k=1

8

∑
l=1

((
CY[k, l]ij − CX [k, l]ij

)
T(k, l)

)2
(A9)

In the expression (18), C[k, l]ij are the coefficients of the DCT whose upper left coordi-
nates are (i, j), for both X and Y images. T is a matrix of correction factors proposed in the
JPEG algorithm [36,37]. The disadvantage of this metric is that it is not above bounded. It
presents zero value if there is no relation between the two compared images and a very
high value when they are very similar. When implementing this metric, Ponomarenko
assigned a value of 10,000 if the images are the same.

Appendix A.5. The Feature Similarity Index (FSIM)

The last of the used metrics has been the FSIM [12]. It is a full reference metric based
on the determination of two characteristics of the compared images: the phase congruence
(PC) and the gradient map of the image (GM). The PC is a dimensionless measure of the
local structure [38]. It is used as a main feature in FSIM. The theory on PC function offers
a simple but biologically plausible model of how mammalian visual systems detect and
identify features in an image [39,40]. Considering that the PC is invariant to the contrast
but considering that the local contrast of the image affects the perception of the HVS on the
quality of the image, the magnitude of the GM is used as a secondary feature to encode
contrast information. The PC and GM play complementary roles in the characterization
of local image quality. After obtaining the local similarity map, the PC is again used as
a weighting function to obtain a unique quality score at each point in the image. According
to Zhang et al. [12], the FSIM metric can achieve a correlation with subjective evaluations
higher than all IQA metrics do.

The calculation of the FSIM index consists of two stages. In the first stage, the local
similarity map is calculated, and then in the second stage, the similarity map is grouped
into a single similarity score. Given the X and Y images, the FSIM value for a pixel x = (i, j)
of these images is given by:

FSIMX,Y(p) =
∑p[SPC(p)·SG(p) PCm(p)]

∑x PCm(p)

=
∑x

[(
2 PCX(p)·PCY(P)+T1
PC2

X(p)+PC2
Y(p)+T1

)
·
(

2 GMX(p)·GMY(p)+T2
GM2

X(p)+GM2
Y(p)+T2

)
·PCm(p)

]
∑x PCm(p)

(A10)

where PCm(x) = max(PCX(x), PCY(x)). T1 and T2 are two positive constants used to
increase the stability of the SPC(p) and SG(p) functions [12].
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