The density of the real parts of the zeros of the entire functions

\{1 + 2^z + \cdots + n^z : n \geq 2 \}

Gaspar Mora Martínez
Juan Matías Sepulcre Martínez
José Ignacio Ubeda García
Departamento de Análisis Matemático,
Universidad de Alicante
gaspar.mora@ua.es, JM.Sepulcre@ua.es, jiubeda@gmail.com

Abstract

Our purpose in this paper is to study the behavior of the real parts of the zeros of the functions

\[G_n(z) = 1 + 2^z + \cdots + n^z, \quad n \geq 2. \]

Firstly, we will consider some particular values of \(n \) for which the real parts of the zeros of \(G_n(z) \) are dense in some intervals of the real line. Secondly, by denoting

\[S_n = \{ \lambda < 0 : \exists b \in \mathbb{R} \text{ such that } G_n(\lambda + ib) = 0 \}, \]

and \(\overline{S_n} = -\overline{S_n} \) the closure of \(S_n \), we will establish some conditions for which we can assure \(\overline{S_{n-1}} \subset \overline{S_n} \) for all \(n \in \mathbb{N}, \ n \geq 2 \).

1. Introduction

We show the following results (see [2], [3]):

- We consider exponential polynomials of the form

\[P_n(x) = a_1 e^{\alpha_1 x} + \cdots + a_n e^{\alpha_n x}, \quad \text{with } a_j \in \mathbb{C}, \ \lambda_j \in \mathbb{R}, \ \forall j : 1 \leq j \leq n. \]

- All the zeros of \(P_n(x) \) are situated in some strip parallel to the real axis

\[G_n(x) = 1 + 2^x + \cdots + n^x \]

is an entire function of order \(1 \) for each fixed integer \(n \geq 2 \)

- \(G_n(x) \) is a function of exponential type \(n - \ln n \).

- The sequence \(\{G_n(x) : n \geq 2\} \) approaches the Riemann zeta function for \(1 < x < -1 \).

- \(G_n(x) \) has infinitely many zeros for each fixed integer \(n \geq 2 \)

- The functions \(G_n(x) \) do not have all the zeros on the imaginary axis, except for \(n = 2 \).

2. Preliminaries

Theorem 1 (Equivalent to theorem 3.1 of [1]) Let \(P_n(x) = \sum_{j=1}^{n} a_j e^{\alpha_j x} \) be an exponential polynomial with \(a_j \in \mathbb{C} \) and \(\lambda_j \in \mathbb{R} \) \(\forall j = 1, \ldots, n \). Let \(B = \lambda_1, \lambda_2, \ldots, \lambda_n \) be the base of the \(\mathbb{Q} \)-vectorial space generated by \(\{e^{\lambda_j x} : 1 \leq j \leq n\} \). Let \(b = (b_1, b_2, \ldots, b_n) \) and \(c_j = (c_j^1, \ldots, c_j^n) \), with \(c_j^j \in \mathbb{Q} \), such that \(\lambda_j = c_j^j + b_j \), where \(c_j^j > 0 \) (denotes the scalar product).

We define the function

\[F_{n,m} : \mathbb{R} \times [0, \infty)^m \rightarrow \mathbb{C}, \]

\[(t, x_1, \ldots, x_m) \mapsto \sum_{j=1}^{n} e^{\lambda_j x_j} \sum_{i=1}^{m} b_i t_i e^{c_j^i x_j}. \]

If there exists an interval \([a, b] \subset \mathbb{R} \) such that \(\forall \lambda \in [a, b] \) we can find a vector \((x_1^j, \ldots, x_m^j) \in [0, \infty)^m \) with \(F_{n,m}(t, x_1^j, \ldots, x_m^j) = 0 \), then the projection of the zeros of \(G_n(z) \) in the real line is dense in \([a, b] \). The converse is also true.

3. Density for \(n = 4 \)

We consider the entire function \(G_4(z) = 1 + 2^z + 3^z + 4^z \). Let

\[F_{4,2} : \mathbb{R} \times [0, \infty)^2 \rightarrow \mathbb{C}, \]

\[(t, x_1, x_2) \mapsto 1 + e^{2x_1 t} + e^{2x_2 t} + e^{2x_1 x_2 t}, \]

be the function that appears in the Theorem 1 and

\[F_{4,2}(t, x_1, x_2) \rightarrow \mathbb{C}, \]

\[(t, x_1) \mapsto 1 + 2^x t + e^{2x t^2}. \]

Then, the distance function, \(d(0, 0) \) verifies that \(d(f_{4,2}(0, 0), 0) = 1 + 2^x + x^2 > 2^x \) and, taking \(w = 2^x \), the distance \(d(f_{4,2}(w), 0) \) satisfies

\[d\left(1 + \left(1 - \frac{w}{\sqrt{w}} \right)^2 - \frac{w^2}{\sqrt{w}} \right) = 0 < 0 \]

and the last polynomial have two real zeros, \(\forall w \approx 0.75 \), that is, \(t \approx -0.41 \).

Therefore

\[d\left(f_{4,2}(t, x_1, x_2) = 0 \right) \sim 0 \quad \text{if } t > -0.41. \]

Finally, using the continuity of the distance function, for each \(t > -0.41 \), there exists \(\alpha^1 \in [0, 2\pi) \) such that

\[f_{4,2}(t, x_2) = 0 \]

that is

\[f_{4,2}(t, x_2) = 2^x e^{i\alpha^1} \quad \text{for some } \alpha_i \in [0, 2\pi) \]

and consequently

\[F_{4,2}(t, x_2, \alpha_i) = 0. \]

Now, taking into account the Theorem 1, we can assure the density of the projection of the zeros of \(G_4(z) \) if \(t > -0.41 \).

4. From \(n = 1 \) to \(n \), if \(n \) is prime

We denote by \(R_n \), the subset of the real numbers determined by

\[R_n = \{ \lambda < 1 : \exists b \in \mathbb{R} \text{ such that } G_n(\lambda + ib) = 0 \}, \]

and \(\overline{R_n} = -\overline{R_n} \) the closure of \(R_n \).

Theorem 2 Let \(n \) be a prime number greater than 1, then

\[\overline{S_{n-1}} \subset \overline{S_n}. \]

5. From \(n = 1 \) to \(n \), if \(n \) is not prime

We denote by \(S_n \), the subset of the real numbers determined by

\[S_n = \{ \lambda < 0 : \exists b \in \mathbb{R} \text{ such that } G_n(\lambda + ib) = 0 \}, \]

and \(\overline{S_n} = -\overline{S_n} \) the closure of \(S_n \).

Theorem 3 Let \(n \) be an integer number greater than 3, \(n \) not prime, and let \((a_1, a_2, \ldots, a_k) \in [0, \infty)^k \) be the vector whose existence is assured by the theorem 1. Then, \(f((a_1, a_2, \ldots, a_k)) \) \(\forall \lambda \in [0, \infty) \)

\[f((a_1, a_2, \ldots, a_k)) \rightarrow (a_1 + a_2 + \cdots + a_k) > 1 \]

we have

\[\overline{S_{n-1}} \subset \overline{S_n}. \]

6. Relation between several sets

Let \(f \) be a positive real function, we define the function \(S_n(f) = n^2 \) and the set

\(S(f) = \{ a \in \mathbb{R}, \exists b \in \mathbb{R} \mid |G_n(a + ib)| \leq f(a) \}. \)

Proposition 1 If \(n \) is prime, then

\(S_n \) \(\supset S(f). \)

Proposition 2 If \(n \) is not prime, then

\(S_{n-1} \) \(\supset S(f). \)

Proposition 3 For all \(n \geq 2 \),

\(S_n \) \(\subset S_{n-1}. \)

References