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Abstract—Deep neural network (DNN) models are being
deployed in safety-critical embedded devices for object iden-
tification, recognition, and even trajectory prediction. Opti-
mised versions of such models, in particular the convolutional
ones, are becoming increasingly common in resource-constrained
edge-computing devices (e.g., sensors, drones), which typically
rely on reduced memory footprint, low power budget and
low-performance microprocessors. DNN models are prone to
radiation-induced soft errors, and tackling their occurrence in
resource-constrained devices is a mandatory and substantial chal-
lenge. While traditional replication-based soft error mitigation
techniques will likely account for a reasonable performance
penalty, hardware solutions are even more costly. To undertake
this almost contradictory challenge, this work evaluates the
efficiency of a lightweight software-based mitigation technique,
called Register Allocation Technique (RAT), when applied to
a convolutional neural network (CNN) model running on two
commercial Arm microprocessors (i.e., Cortex-M4 and M7)
under the effects of neutron radiation. Gathered results obtained
from two neutron radiation campaigns suggest that RAT can
reduce the number of critical faults in the CNN model running
on both Arm Cortex-M microprocessors. Results also suggest
that the SDC FIT rate of the RAT-hardened CNN model can be
reduced in up to 83% with a runtime overhead of 32%.

Index Terms—Neutron Radiation, DNN and CNN inference
models, Resource-constrained Devices, Arm Cortex-M.

I. INTRODUCTION

DEEP neural network (DNN) models notoriously demand
high computational power and resources (e.g., memory

footprint), which imposes fundamental challenges on their
deployment in resource-constrained edge devices that integrate
low-power microprocessors and sensors. The availability of
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more efficient edge-computing devices and specialised li-
braries/APIs has enabled a wide variety of DNN-based so-
lutions for systems and applications across several embedded
computing domains. The growing adoption of DNN models in
safety-critical embedded systems (e.g., autonomous vehicles
and drones), increases the demand for more efficient, safe
and reliable models. In this regard, authors have investigated
different fault-aware training approaches [1][2][3] aiming to
improve the robustness of neural network models, for instance,
by reducing the occurrence of memory faults. Although effi-
cient such kind of approach may be retraining and/or dataset
dependable [1]. Datasets are not always available and the
retraining cost may not be affordable to complex accelerators
or every single business case [4]. More traditional hardening
approaches (e.g., triple modular redundancy - TMR) have also
been either adapted for DNN solutions implemented in FPGAs
[5][6][7] or applied to DNN models running in specialised
accelerators [8][9]. However, the lower resource availability
of edge-computing devices makes traditional redundancy mit-
igation approaches unsuitable for tackling the occurrence of
radiation-induced soft errors, given their likely impact on the
system’s performance and response time.

Based on the above, we advocate that to achieve high safety
and reliability standards, resource-constrained edge devices
must be underpinned by efficient and lightweight mechanisms
able to reduce their vulnerability to radiation-induced soft
errors with minimal power and performance overhead. Further,
the complex nature of DNN models calls for more efficient
approaches that enable automatic and bespoke code hardening.

This paper contributes by investigating the efficiency of the
Register Allocation Technique (RAT) [10] when applied to
a convolutional neural network (CNN) model running on an
Arm Cortex-M4 and M7 microprocessors under the effects of
neutron radiation. RAT is a compiler-based technique that does
not involve code redundancy, but rather restricts the number
of available registers used to execute specific functions, thus
reducing the exposed area. Results show that the promoted
technique can reduce the number of critical faults and the
SDC FIT rate of the CNN inference model with a runtime
overhead of 32%.

The rest of this paper is organised as follows. Section II
presents related works in the assessment and mitigation of
soft errors in ML models operating under radiation effects.
Section III describes the adopted hardening technique. In
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Section IV the CNN inference model, adopted as case-study,
is detailed. Section V details the methodology used perform
the radiation tests. Section VI discusses the effectiveness of
RAT. Finally, Section VII points out conclusions.

II. RELATED WORK IN MACHINE LEARNING SOFT ERROR
ASSESSMENT AND MITIGATION

The soft error assessment and mitigation literature is abun-
dant, requiring a taxonomy to classify the different approaches.
This work considers the definitions from [20] for fault, error,
and failure. A fault is an event that may cause the internal
state of the system to change, e.g., a radiation particle strike.
When a fault affects the system’s internal state, it becomes
an error. If the error causes a deviation of at least one of the
system’s external states, it is considered a failure. To achieve
compliance with safety and reliability standard requirements,
it is of utmost importance to provide systems with appropri-
ate mechanisms to tackle systematic or transient faults, also
known as soft errors or Single Event Upsets (SEUs). While the
former originates from hardware and software design defects,
soft errors are those caused by alpha particles or atmospheric
neutrons [21]. The occurrence of soft errors can be tackled
both in hardware and software. While hardware approaches
lead to the area and power overhead, software techniques are
generally implemented on a per-application basis that usually
incurs performance penalties.

Due to the ever-increasing trend towards having ML models
embedded in edge safety-critical systems, researchers have
started to investigate the impact of radiation-induced soft
errors on the reliability of underlying models considering
simulation (e.g., [22][23][24][25][26][27][28][29]), emulation
(e.g., [6][14][30]) and radiation tests (see Table I). While
high-level simulation and emulation approaches are highly
useful to conduct early soft error assessment and eliminate not
suitable options, final systems’ configurations must be evalu-
ated through radiation tests. Table I summarises the works
that investigate the impact of radiation-induced soft errors on
the reliability of ML algorithms and trained models under
radiation tests, highlighting those approaches that employ a
mitigation technique.

Except for our pioneering works ([14][19]), this is the only
work employing resource-constrained devices in the experi-
ments. The remaining works consider FPGA implementations
of ML algorithms [5][12][6][15][17][7] or their execution on
generic graphics processing units (GPUs) [11], and ML spe-
cialised accelerators [13][16][18]. All works, with exception
of [5], adopted neutron irradiation for their experiments.

On the soft error mitigation side, in addition to this paper
only three works have considered hardened inference models
in their radiation experiments [6][16][11]. In this context,
Libano et al. [6] promote the selective hardening approach,
where the most sensitive NN and CNN layers are fully or
partially triplicated in the FPGA. Blower et al. [16] focus
on an artificial neural network (ANN) running on the Neu-
roShield accelerator. This work proposed a bespoke TMR-
based solution dedicated to the target accelerator, designed
based on experimental observations. Results show that 96% of

critical errors were reduced at no performance cost. However,
the hardening solution demands error propagation analysis,
in-depth dataset knowledge and modification, and model re-
training. Further, the efficiency of this hardening method
depends on the number of classification classes supported
by the NN model. In turn, Santos et al. [11] focus on
a more generic Graphics Processing Unit (GPU), which is
widely used in high-computational systems. In this work, the
Algorithm-Based Fault Tolerance (ABFT) technique has been
applied due to its efficient to detect soft errors in dense linear
algebra operations including matrix multiplication, which form
a significant part of the CNNs operation. Although ABFT
brings less performance overhead w.r.t. replication-like ap-
proaches (e.g., TMR), resulting overhead might still lead to
high response times - a critical consideration for resource-
constrained devices.

Unlike the above mitigation techniques, RAT is a compiler-
based hardening solution; thus, neither dataset modification
nor model retraining is needed. Instead, RAT enables auto-
matic hardening of the most critical function(s) or layer(s) of
generic or DNN-based applications, considering the possibility
of manual configurations to guide bespoke hardening tuning
for resource-constraint devices.

This work distinguishes from the previous works in two
main aspects:

– First, this is the first work to assess the soft error
susceptibility of a CNN inference model considering
two resource-bound microprocessors, presented in com-
mercial smart sensor systems [31] and drone platforms
[32][33], under several radiation exposure hours.

– Second, a comprehensive evaluation of the efficiency
of RAT on a CNN inference model executing on Arm
Cortex-M microprocessors under radiation effects is pre-
sented for the first time.

III. ADOPTED SOFT ERROR MITIGATION TECHNIQUE

This work adopts the lightweight technique, called Register
Allocation Technique (RAT) [10], to mitigate the occurrence of
soft errors in a 7-layer CNN inference model. The RAT tech-
nique does not involve code redundancy and is an architecture-
independent approach, which restricts the number of available
registers for specific functions aiming to minimise the number
of vulnerable registers. RAT is implemented on the backend
of the LLVM compiler, and can be fine-tuned to achieve
the highest relative trade-off in terms of performance and
soft error reliability. Thus, the software engineer can set the
registers’ pool parameter, aiming to restrict the application’s
register allocation considering their availability in the target
architecture, and the minimum number of registers demanded
by each application. Furthermore, the software engineer can
also set a list of application functions (e.g., the critical ones)
that must be hardened. Functions are limited to those available
in the program’s source code; that is, functions from external
libraries do not suffer any effect as they are already in the
machine code format.

RAT has been integrated into SOFIA [34], a fully automated
framework that supports fast and early soft error assessment,
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TABLE I
RELATED WORKS IN THE ASSESSMENT AND MITIGATION OF SOFT ERRORS IN MACHINE LEARNING MODELS UNDER RADIATION EFFECTS.

Work Dataset ML Algorithm/Model Assessment Aproach Target Device Radiation Fluence Mitigation

Libano et al. [5]
(2018)

Boston Housing,
Iris Flower 2-layer NN Emulation,

Heavy-ion irradiation Xilinx Zynq-7000 1.14× 107 i/cm2 —

Santos et al. [11]
(2018)

PASCAL VOC,
Caltech Pedestrian

YOLO, Faster R-CNN,
ResNet

Simulation,
Neutron irradiation NVIDIA GPU 7.2× 1011 n/cm2 ∗ ABFT

Trindade et al. [12]
(2019) Fault Detection Support Vector Machine

(SVM) Neutron irradiation Xilinx Zynq-7000 1.944× 1010 n/cm2 —

Libano et al. [6]
(2019)

Iris Flower,
MNIST 2-layer NN, 7-layer CNN Emulation,

Neutron irradiation
Xilinx Zynq-7000,
Zynq Ultrascale+

1.6× 1011 n/cm2,
3.0× 1011 n/cm2

Partial TMR,
Full TMR

Brewer et al. [13]
(2020) MNIST SNN Emulation,

Neutron irradiation
TrueNorth

Neurosynaptic
2× 107 p/cm2 -
5.6× 107 p/cm2 —

Trindade et al. [14]
(2020) Iris Flower ANN, SVM Emulation,

Neutron irradiation Arm Cortex-M4 2.916× 109 n/cm2 —

Luza et al. [15]
(2020) MNIST LeNet-5 CNN Neutron irradiation Xilinx Zynq-7000 ∗∗ —

Blower et al. [16]
(2021) MNIST ANN Neutron irradiation NeuroShield 1.5× 108 n/cm2 Partial TMR

Libando et al. [17]
(2021) MNIST CNN Neutron irradiation FPGA 3.44× 1011 n/cm2 —

Wang et al. [7]
(2021) CIFAR-10 CNN Neutron irradiation FPGA 2.91× 108 n/cm2,

2.67× 108 n/cm2 —

Rech et al. [18]
(2022)

COCO, ILSVRC,
Oxford-IIIT Pet

Inception v4, ResNet-50,
SSDLite MobileNet V2,

SSDLite MobileDet
Neutron irradiation Google Coral USB

TPU 3.41× 1012 n/cm2 —

Bastos et al. [19]
(2022) Iris Flower ANN, SVM, RF Neutron irradiation Arm Cortex-M4 1.9–2.4×109n/cm2,

1.0–1.2×107n/cm2 —

This work (2022) CIFAR-10 CMSIS CNN Neutron irradiation Arm Cortex-M4,
Arm Cortex-M7

1.98× 1010 n/cm2

3.18× 1010 n/cm2 RAT

∗Approximate lower bound of total fluence per device
∗∗Insufficient information to calculate

and includes other mitigation techniques such as partial and
full TMR. SOFIA provides orders of magnitude speedup while
preserving the soft error analysis accuracy (i.e., mismatch
below to 10%) w.r.t. the RTL level [35]. SOFIA is a com-
plementary reliability assessment approach to radiation testing
and does not introduce any overhead on the radiation-exposed
hardened or unhardened application. The main steps to apply
RAT automatically using SOFIA are shown below:

1) Software stack setup, which includes the application,
operating system, and driver configuration;

2) Compilation using LLVM with the correct target processor
parameters;

3) Dynamic analysis. In this step, the application is simu-
lated and essential information is extracted (i.e., processor
register file utilisation and critical function);

4) Static analysis, which investigates the application object
code extracting information about the functions and reg-
isters usage;

5) Finally, a new compilation is performed, taking into ac-
count the critical function and the register pool previously
set. The underlying compilation uses a modified version
of the LLVM Fast Register Allocator, which considers
arguments (i.e., restrictions) that are passed to LLVM
Static Compiler (LLC) through a command line.

Note that the RAT technique does not work properly on
modern out-of-order processors that use register renaming.
However, RAT can increase the soft error reliability of appli-

cations running on resource-constrained devices that employ
simple in-order and low-power microprocessors, whereas its
advantages have been fully explored and demonstrated, in
simulation, considering the MobileNet CNN on ImageNet
dataset [25]. This is the first work to investigate the RAT
effectiveness when applied to a CNN inference model running
on low-power microprocessors under neutron radiation.

IV. CASE-STUDY

This case study comprises a 7-layer CNN based on the
CMSIS-NN library [36], which is deployed on two Arm
Cortex-M microprocessors. Unlike traditional libraries and NN
models, CMSIS-NN uses low-precision fixed-point represen-
tation to set the inference model. This feature brings per-
formance advantages to resource-constrained devices, which
may not have a dedicated Floating-Point Unit (FPU) or large
memory footprints available. Furthermore, as high-precision
representation is generally not required during inference, this
approach avoids the need for floating-point de-quantization
between layers and reduces the memory footprint.

The adopted CNN inference model comprises convolution
layers interspersed by non-linear activation layers, pooling
layers, and a fully-connected layer at the end of CNN. The
convolution layer implements a partial image-to-column data
transformation considering the Height-Width-Channel (HWC)
format. Rectified Linear activation Unit (ReLU) layer loops
through all elements replacing negative values with zeros.
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Then, pooling layers reduce the number of parameters, the
feature dimensions, and the network computations. Finally, the
fully-connected layer has connections to all activations in the
previous layer to define the output classification probabilities.
The RAT mitigation technique was applied manually to the
first convolutional layer, which is the most executed one. In
this sense, the register pool has been restricted to R0-R4, in
addition to the special registers (SP, PC) that cannot be altered
during the allocation phase.

The CNN model is trained with the CIFAR-10 dataset [37],
consisting of 60,000 32x32 colour images divided into ten
output classes. The choice for this generalist dataset, which
contains automobiles, planes, ships, trucks, and some animals,
is due to its usability in the most diverse applications under
resource-constrained devices available today, such as monitor-
ing boats or livestock [38].

V. RADIATION TEST METHODOLOGY

This Section describes the methodology used to collect and
show the results obtained with a 14MeV neutron generator,
which has been used to test the effectiveness of RAT when
applied to a CNN inference model running on two resource-
constrained test boards under neutron radiation.

A. Radiation Test Set-up

Two 14-MeV neutron radiation test campaigns were per-
formed at the LPSC (Grenoble, France), the first in November
2021 and the second in July 2022. The two radiation test
campaigns used the GENEPI2 (GEnerator of NEutrons Pulsed
Intense) neutron source, a neutron generator that delivers 14-
MeV neutron beam with a maximum flux that exceeds the
natural 14-MeV neutron flux at 40,000 ft by a factor of 1010.
Note that a total fluence > 5.4×1010 neutron/cm2 was chosen
to achieve statistical significance. In this regards, the average
flux during the experiment in November 2021 was 9.2× 106

neutron/cm2/s, while the average flux during the radiation tests
in July 2022 was 7.4× 106 neutron/cm2/s.

Figure 1 (left photo) illustrates the set-up assembled at the
LPSC. The STM32-L476RGT6U board [39] and the STM32-
F767ZIT6 board [40] were selected as the target devices. They
were chosen to cover Arm Cortex-M microprocessors with
single instruction and multiple data (SIMD) capabilities, i.e.,
the Arm Cortex-M4 board was evaluated in November 2021
(Figure 1 - centre photo) and the Arm Cortex-M7 board was
evaluated in July 2022 (Figure 1 - right photo). Figure 1 also
shows that the whole system (CPU, memory, communication
peripherals) is under the beam and that the STM32 boards
were placed in the first boards row of the neutron generator.

Table II shows the configuration of the test boards, which
have been set to their maximum clock frequency and with all
caches enabled. We refer to the test boards as a device under
test (DUT) onward. In regard to the application configuration,
the CNN model was compiled using Clang/LLVM 6.0.1 with
O2 optimisation level. Furthermore, the two experiments use
the same tiny 32x32 dog image (3kB) initialised in the RAM,
as input of the CNN model. The output is an integer vector of
10 elements, which indicates the probability for the distinct

classifications. The majority of the CNN parameters (e.g.,
weights and bias) are stored in Flash memory (about 100kB),
and about 50kB of RAM is reserved for storing partial results
during the CNN computation.

TABLE II
TEST BOARD CONFIGURATION.

Microprocessor Arm Cortex-M4 Arm Cortex-M7

MCU (STM32-) L476RGT6U F767ZIT6
Clock (MHz) 80 216
Flash (kB) 1,024 2,048
RAM (kB) 128 512
I Cache (kB) - 16
D Cache (kB) - 16
Cache - I & D
Firmware L4 1.17.0 F7 1.16.1

B. Radiation Test Flow

Figure 2 shows the test flow schematic. First, the flux
was calibrated remotely to fit a proper operation of the
DUTs, which is connected to a control computer (CC) outside
the radioactive chamber through a USB cable. Then, the
Universal Asynchronous Receiver Transmitter (UART)-based
communication between the DUT and the CC is verified via
checkers (i.e., checksum) to isolate radiation-induced failures
in the UART peripheral and the data communication channel
between the DUT and the CC. The communication time takes
up to 20 ms in total for each run, which corresponds to 2-
4% in relation to the CNN computation time. The checksum
computation takes less than 1 ms.

The steps to run the radiation tests are shown below:
1) Board programming using the Open On-Chip Debugger

(openocd);
2) Synchronise both DUT and CC devices before the algo-

rithm main function execution, i.e., send a message from
CC to DUT and awaits the correct response. If the DUT
takes more than 5 seconds to respond, the board is then
reprogrammed;

3) Check the input checksum. The checksum is calculated
in the DUT and sent to the CC for checking against the
golden reference. If there is a mismatch in the input data,
the board is reprogrammed. If the reprogramming fails,
the relay is actioned, and a power cycle is done;

4) Algorithm main function execution;
5) Synchronise DUT and CC after the algorithm computa-

tion, i.e., send a message from CC to DUT and awaits
the correct response;

6) Send output and output checksum from DUT to CC. The
checksum is calculated in DUT and sent to CC. If there
is a mismatch in the output, the procedure is the same as
for the input data.

C. Adopted Fault Classification and Reliability Metrics

The most commonly used classification to describe a failure
in a device exposed to radiation considers silent data corrup-
tion (SDC) and detectable unrecoverable error (DUE) as main
classes. However, to better understand the impact of soft errors
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Fig. 1. DUTs mounted at the LPSC facility (left photo), highlighting the use of Arm Cortex-M4 board in November 2021 (centre photo) and Arm Cortex-M7
board in July 2022 (right photo).

STM32-Nucleo board

SRAM

Arm 
Cortex-MControl 

Computer (CC)

Device Under Test (DUT) 
under Neutron Radiation

FLASHCase Study
CNN Model

Output checkers

Input checkers

UART
chip

Fig. 2. The radiation test flow schematic, highlighting the communication
between the control computer and the system under test with its check system.

on CNN models, this work classifies the radiation results into
three different types. Tolerable is when there is a mismatch
between the CNN model result and its golden reference.
However, they present a top-ranked classification equals to
the fault-free execution. On the other hand, critical is when
there is a mismatch between the CNN model result and its
golden reference, and the resulting classification is incorrect.
Note that a typical SDC comprises these two fault types, i.e.,
tolerable and critical. The last classification is crash. It occurs
when the CNN algorithm suffers from abnormal termination or
application hang. Furthermore, if the communication between
CC and DUT is lost during the CNN execution, it indicates
that radiation effects have upset the DUT. In this situation,
the board must be restarted and classified as a crash. Note
that this paper uses the above fault classification to measure
the TolerableSDC , CriticalSDC and Crash events for the
hardened and unhardened execution of the CNN.

The following metrics are used to compare the reliability of
both hardened and unhardened CNN model executions. The
Failure in Time (FIT) metric shows how many failures occur
in a billion hours. It depends on both the device sensitivity and
the particle flux to which it will be exposed. The specification
that defines standard requirements and procedures for terres-
trial soft-error-rate testing of integrated circuits and reporting
of results (JEDEC) suggests to uses 13 n/cm2/h as flux using
NYC as a reference [41]. Furthermore, the cross-section of the

device for a singular test was calculated using Equation (1),
where σ is the per-bit cross-section, Ne is the number of errors,
and φ is the neutron fluence.

σ =
Ne

φ
(1)

This work also uses the Mean Work to Failure (MWTF),
which captures the average work the CNN can perform be-
tween failures, to assess the the trade-off between reliability
improvement and runtime overhead. Equation (2) shows how
it is calculated.

MWTF =
1

(σ × flux× execution time)
(2)

The execution time refers to the rate at which a CNN
can be invoked, calculated from the cycles needed to run
the CNN inference model. This was measured using the
processor’s hardware performance counters and considering
both Cortex-M4 and M7 running at their maximum clock
speeds so the cycle count can be considered a worst case for
both microprocessors.

VI. RADIATION RESULTS

This Section explores the soft error reliability of a CNN
inference model under neutron radiation. In this sense, Sec-
tion VI-A provides an overview of the radiation results, show-
ing reliability trends from the hardening approach. Then, each
campaign (i.e., Arm Cortex-M4 and M7 board) is analysed
separately. Section VI-B details the results obtained with
the Arm Cortex-M4 boards in the radiation test campaign
performed in November 2021. Next, Section VI-C exploits
the CNN inference model soft error reliability considering the
Arm Cortex-M7 microprocessor - campaign held in July 2022.

A. General Analysis of Radiation Results

Table III summarises the neutron radiation test results. For
the Arm Cortex-M4 microprocessor, a total of 4636 runs were
performed for the unhardened version and 4859 runs for the
RAT-hardened version. Note that the unprotected CNN model
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TABLE III
SUMMARY OF THE NEUTRON RADIATION TEST RESULTS FOR THE TWO RESOURCE-CONSTRAINED TEST BOARDS (ARM CORTEX-M4 IN NOVEMBER 2021

AND ARM CORTEX-M7 IN JULY 2022).

Microprocessor
Case-Study

Runs
Runtime Effective Fluence Events (FIT [Failures/109 h]) MWTF (σ[10-10 cm2 ]) Memory Usage [kB]

Scenarios [ms] [1010 neutrons/cm2 ] Tolerable Critical Crash Critical Crash RAM Flash

Arm Cortex-M4
Unhardened 4636 538 2.29 103 (58.17) 6 (3.39) 42 (23.72) 772 (2.6) 110 (18.3) 48.91 93.04

RAT 4859 712 3.18 22 (8.96) 4 (1.63) 50 (20.36) 1214 (1.2) 97 (15) 48.91 96.69

Arm Cortex-M7
Unhardened 6231 430 1.98 12 (7.8) 6 (3.9) 28 (18.25) 1038 (3.02) 223 (14) 51.53 137.57

RAT 7500 570 3.16 24 (9.8) 2 (0.8) 19 (7.77) 3750 (0.63) 395 (5.99) 51.53 141.47

runtime is around 538 ms, while the RAT version incur a
performance penalty of 32%. However, the results demonstrate
that improved soft error reliability offsets this performance
overhead. For the Arm Cortex-M7 microprocessor, the un-
derlying results were obtained from 7500 RAT-hardened runs
and 6231 runs of the unhardened version. Similar to the Arm
Cortex-M4 test, the execution time of the RAT-hardened CNN
(i.e., 570 ms) was 32% longer than the unhardened CNN
model (i.e., 430 ms).

However, the situation is reversed for the soft error re-
liability results, which show that the RAT-hardened version
presents a 3.1× improvement for MWTFcritical and 1.77×
for MWTFcrash. Regarding the cross-section, there is an
80% reduction in σcritical and 58% in σcrash when using the
RAT-hardened version. Note that for calculating the MWTF
metric, the total fluence used for the unhardened version was
1.98 × 1010 n/cm2 and 3.16 × 1010 n/cm2 for the RAT-
hardened version.

To make our radiation results comparable with the literature,
Figure 3 shows the number of SDCs and the FIT rate consider-
ing the two Arm Cortex-M boards without and with protection
(RAT). The SDC FIT rate (i.e., FITSDC) is calculated by
summing the FIT rate of both tolerable and critical faults. Note
that the margin of error follows the JESD89-A standard [42],
which considers the total number of memory elements, the
total number of events, the inverse cumulative standard normal
distribution function (φ−1(α/2)), and a 95% confidence level.
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Fig. 3. SDC results for Arm Cortex-M4 and Arm Cortex-M7 boards.

For the Arm Cortex-M4, results show that the FITSDC

reduces by 83.6% when applying RAT. The 83% reduction

can be calculated by comparing the first (i.e., 61.56) and the
third (i.e., 10.59) red dot values, illustrated in Figure 3, for the
Cortex-M4 processor. On the other hand, the Arm Cortex-M7
FIT results are the same (i.e., about 10%) for unhardened and
RAT when considering the margin of error. However, although
the RAT shows more SDC events, the protected CNN inference
model was exposed for a longer period to neutron radiation.

Figure 4 presents the number of executed instructions on
the two Arm Cortex-M boards for the unhardened and RAT
CNN versions. Results show that the number of executed
instructions is similar for both boards. The number on the
Arm Cortex-M7 is slightly higher for the unhardened version
due to its more significant number of drivers. Unlike, when
RAT is applied, the number of executed instructions is closer
because the Arm Cortex-M4 has fewer resources than the Arm
Cortex-M7 board, requiring more instructions to be executed.
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Fig. 4. Executed instructions for Arm Cortex-M4 and Arm Cortex-M7 boards.

After an initial overview of the radiation results, an in-
depth analysis is conducted in the next Sections, splitting the
SDC into tolerable and critical faults, and analysing the boards
separately, in order to draw more robust conclusions about the
efficiency of RAT protection.

B. Arm Cortex-M4 Radiation Results

Figure 5 shows the radiation test results considering the
CNN unhardened and the hardened version (i.e., RAT protec-
tion) following the methodology detailed in Section V. Each
bar represents an event type (i.e., tolerable, critical and crash)
associated with the left y-axis. The red dots represent the FIT
metric for each event associated with the right y-axis. During
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the radiation test campaigns conducted in November 2021, 227
events related to the CNN inference model running on an Arm
Cortex-M4 board were observed.
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Fig. 5. Radiation-induced failures in each case-study scenario evaluated with
the Arm Cortex-M4 board.

Note that communication failures also occurred. However,
these were rare and caused by CC problems. On certain
occasions, the process used to control the communication with
the serial port on the CC hung, changing the port allocated to
the DUT. In this scenario, CC kept trying to communicate
with the wrong port. This fault is counted as a crash on its
first occurrence, while the remaining occasions are discarded
until a manual reset is performed.

Figure 5 also shows the FIT rate, which captures the
relationship between radiation exposure time and the number
of events. Note that the RAT-hardened version has improved
the FIT rate on all types of events w.r.t. the unprotected
version. As for FITtolerable, the RAT version shows a 6.5×
improvement. Although it is a significant value, this event does
not affect the correct application behaviour. The RAT version
also offers a 2.1× improvement for FITcritical and 1.1× for
the FITcrash. To explain the FITcrash similarity, it is important
to understand the category of executed instructions. Figure 6
shows the number of executed instructions divided into three
categories: memory access, control, and data processing.

Results show that the RAT version has more instructions
devoted to memory access (about 13% - LOAD/STORE in-
structions generated by the compiler). This additional number
of LOAD/STORE instructions is due to the lack of sufficient
registers to hold the variables. Therefore, some variables will
have to be moved to the main memory. This directly impacts
the data processing proportion, as shown in Figure 6. In this
regard, two main reasons may explain the similar FITcrash rate:
(i) the number of incorrect branches from control instructions;
and (ii) the number of illegal memory accesses from memory
instructions (i.e., LOAD/STORE). Note that illegal memory
accesses cause a system exception when a fault changes the
address to access a prohibited memory space. Works in the
literature have demonstrated that SEUs occurring in data or
NN parameters (e.g., weights and activation quantizations)
stored in memory affect DNN inference models’ soft error
reliability and accuracy [43].
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Fig. 6. Dynamic instruction performed on the Arm Cortex-M4 board for the
unhardened and RAT versions.

Another important reliability metric is the MWTF, which
captures the trade-off between reliability improvement and ex-
ecution time overhead. For experiments with the Arm Cortex-
M4 board, the effective radiation fluence was 2.29 × 1010

[n/cm2] for the unhardened and 3.18 × 1010 [n/cm2] for the
RAT version. The effective fluence refers only to the appli-
cation computing time, excluding the time spent managing
each run (e.g., communication, checking input and output).
Results show that the RAT version provides an MWTFcritical
improvement of 18.8% w.r.t. the unhardened version. For the
MWTFcrash, the unhardened version shows an improvement of
50.7%. Note that this is the opposite of the FITcrash results,
showing that FIT is not the most suitable metric for reliability
comparison when considering different versions of the same
application.

In regard to the memory utilisation, the protected CNN
model has 3.9% higher usage of Flash memory w.r.t. the
unhardened version. However, Cellere et al. [44] show that
Flash memory is quite resilient to neutron radiation, so we
can assume that the events did not come from that source. As
for RAM usage, both application versions have practically the
same memory utilisation, as there is no data replication in the
RAT technique.

C. Arm Cortex-M7 Radiation Results

Figure 7 shows the radiation test results considering the
CNN unhardened and the hardened version (i.e., RAT protec-
tion) running on the Arm Cortex-M7 microprocessor. Each
bar represents an event type (tolerable, critical and crash)
associated with the left y-axis. The red dots represent the FIT
metric for each event associated with the right y-axis.

During the radiation test campaigns conducted in July 2022,
91 events related to the Arm Cortex-M7 board were observed.
Figure 7 also shows the relationship between radiation ex-
posure time and the number of events through the FIT rate.
On the one hand, the unhardened version shows a 1.25× im-
provement to FITtolerable. On the other hand, the RAT-hardened
version offers a 4.78× improvement for FITcritical and 2.35×
for FITcrash. These results evidence that the RAT-hardened
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Fig. 7. Radiation-induced failures in each case-study scenario for the Arm
Cortex-M7 board.

version improved soft error reliability w.r.t. the unprotected
version running on the Arm Cortex-M7 board.

These results suggest that RAT improves the CNN soft error
reliability with low memory utilisation and runtime overheads.
Observed results also corroborate with those presented by
Abich et al. [25], which simulated more than 4.5 million fault
injections and showed that the RAT technique significantly
reduced the occurrence of soft errors of the MobileNet CNN
model in the Arm Cortex-M7 microprocessor architecture.
Results also show that the MobileNet soft error reliability
varies with the precision bitwidth of its convolutional layers
and that the reduction of weights and activations precision
bitwidth increases the fault-masking capability by up to 10%,
thus reducing the MobileNet CNN susceptibility to the oc-
currence of soft errors. Even under these conditions, the RAT
technique improved the MWTF by up to 4.7× compared to
the unhardened version.

Some trends can be observed when comparing the neutron
radiation test results for the two Arm microprocessor models.
First, Figure 5 and Figure 7 show that RAT significantly
reduces critical faults, which are the most important events
for a system’s reliability. While for the Arm Cortex-M4 it
is not possible to draw a definitive conclusion due to the
margin of error, the same does not occur for the Arm Cortex-
M7. However, there is no direct relationship between both
microprocessors regarding tolerable faults and crashes.

The results only suggest that the CNN running on the Arm
Cortex-M7 board is more resilient to crashes. Second, it is
possible to observe that the number and type of instructions
executed are very similar when comparing Figure 6 and
Figure 8. In fact, the most significant changes between the
two Cortex-M microprocessor models are in the pipeline
and operation frequency since the architecture is the same.
Moreover, the same memory usage pattern is observed for
both boards. However, the Arm Cortex-M7 has a significant
increase (about 40%) in its Flash memory usage, mainly due
to new board drivers.

VII. CONCLUSION

This work establishes the viability of using a lightweight
mitigation technique as an effective alternative to enhance
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Fig. 8. Dynamic instruction executed for the unhardened and RAT versions
running on Arm Cortex-M7.

the soft error reliability a CNN inference model running
on two resource-constrained devices under neutron radiation.
Radiation results suggest that RAT improves the CNN soft
error reliability against critical faults with a slight increase in
memory utilisation and execution time for both tested STM32
boards. Furthermore, a significant reduction in crashes was
observed even with a higher number of runs on the STM32
board using the Arm Cortex-M7, which presented a higher
resilient to radiation-induced errors w.r.t. the STM32 Arm
Cortex-M4 board.

Future works include to apply RAT to other CNN models,
such as AlexNet network, taking into account other Arm
and RISC-V microprocessor architectures. We also intend to
combine and compare RAT with other mitigation techniques
developed in a lower code-level, aiming to surpass actual
limitations and consider architectures with more resources
available.
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