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Abstract: On June 17, 2020, Aniangzhai landslide, an ancient landslide located in Danba County, 

southwest China, was reactivated by Meilonggou debris flow. The front edge of the slope collapsed, 

mobilizing a soil mass of about 2.35×106 m3. Evaluating the stability of the whole slope is of great 

importance to avoid further landslides and mitigate the damage for Aniangzhai villagers living on this 

slope. This paper focuses on the inaccessible upper-slope of Aniangzhai landslide (no attention paid 

before) that exhibits a relative elevation difference of more than 1000 m. Multi-source remote sensing 

including Unmanned Aerial Vehicle (UAV) photogrammetry, Light Detection and Ranging (LiDAR), 

and satellite-based Interferometric Synthetic Aperture Radar (InSAR) techniques, were used in this 

research to identify and evaluate this high mountain upper-slope potential hazard in Aniangzhai landslide. 

Considering the huge height difference and the steep slope of Aniangzhai landslide, an iterative route 

planning method was proposed and adopted to obtain a 3D model with 0.02 m resolution and a DEM 

with 0.25 m resolution by using UAV and LiDAR close-in flight method, respectively. Meter-level huge 

cracks were clearly identified by the high-resolution UAV 3D model and LiDAR data, which confirm 

that the location of these cracks is related to the morphological structure of this ancient landslide. Time 

series InSAR analysis reveals the activity of this high-altitude area, with a maximum LOS displacement 

rate of 15 cm/a. The combination of the above remote sensing technologies confirms and reveals the high 

potential risk and the reactivated condition of the upper-slope of Aniangzhai landslide. Through this 

found we show that the evolution of Aninangzhai landslide happened through four stages with a 

cascading effect. This paper proves the usefulness of an integrated method to successfully identify and 

evaluate the high-altitude upper-slope potential hazard, and compares the technical features of them, 

providing a reference for future works that aimed to mitigate the potential damage of the upper slope. 

 

Keywords: Upper-slope potential landslides; LiDAR; InSAR; UAV; Cascading effect 



 

Introduction 

Landslides are commonly developed on steep upper-slopes in mountainous regions. These landslides are 

extremely difficult to be detected during their early stage of development. Once a landslide is destabilized, 

it could cause severe harm. Some good examples are the Xinmo Village landslide in Mao County in 2016 

(Fan et al. 2017), the Yarlung Zangbo River landslide in Milin County, Tibet in 2018 (Jia et al. 2019), the 

Baige landslide in 2019 (Fan et al. 2019) and so on. This kind of landslides are generally located in 

mountainous areas with high altitude and large height differences, featuring steep terrain and complex 

topography.  

Traditional manual methods to investigate this kind of landslides are typically limited by low efficiency, 

high cost, high risk and low accessibility. Remote sensing technology, characterized by its non-contact 

long-distance detection, can effectively overcome various limitations of traditional manual investigation, 

especially the difficulty in investigating potential hazards in high-mountain upper-slope, and the 

efficiency of work, which is significantly improved (Scaioni et al. 2014; Zhao and Lu 2018). UAV 

photogrammetry is economical, flexible, and enables the capture of high-resolution images for landslide 

investigation. Nowadays, UAV photogrammetry techniques have been extensively used in landslide 

analysis (Niethammer et al. 2012; Lucieer et al. 2014; Turner et al. 2015; Fernández et al. 2016; Yu et 

al. 2017; Fan et al. 2017, 2019; Eker et al. 2018; Rossi et al. 2018; Ma et al. 2019; Giordan et al. 2020; 

Sestras et al. 2021; Cheng et al. 2021). However, the surface covered by vegetation is difficult to be 

observed by UAV photogrammetry. LiDAR, which has the ability to penetrate vegetation and quickly 

acquire real high-resolution DEM data to some extent, is also being gradually applied in landslide 

identification and monitoring (Glenn et al. 2006; Eeckhaut et al. 2007; Burns et al. 2010; Ventura et al. 

2011; Jaboyedoff et al. 2012; Wang et al. 2013; Tarolli 2014; Chu et al. 2014; Ortuño et al. 2017; Tomás 

et al. 2018; Görüm 2019; Xu et al. 2021). Nevertheless, the main drawback of UAV and LiDAR is that 

they are not able to detect tiny displacements (i.e. millimeter level), even though the displacements are 

very small during the initial stage of a landslide. In contrast, InSAR time series analysis enables to detect 

very small displacements (Zhou et al. 2009; Ferretti et al., 2007). This remote sensing technique has been 

widely used for early landslide identification and monitoring in recent years (Gabriel et al. 1989; Peyret 

et al. 2008; Wasowski and Bovenga 2014; Dai et al. 2016, 2020; Intrieri et al. 2018; Dong et al. 2018; 

Tomás et al. 2019; Zhang et al. 2021). Consequently, a single observation technology does not enable 



 

the identification and evaluation of steep potential landslides comprehensively and accurately because 

of the existing limitations and complexity in mountainous regions. Therefore, a combination of multiple 

remote sensing technologies is needed. 

On June 17, 2020, a sudden rainstorm fell in the Meilonggou area of Banshanmen Town, Danba 

County, Sichuan Province, resulted in a debris flow in Meilonggou that caused the blockage of the 

Xiaojinchuan River and formed a barrier lake. Subsequently, the post-failure flood caused a cascading 

effect, destabilizing the front edge of the foot of the ancient Aniangzhai landslide encompassing an area 

of about 0.62 km2 (Zhao et al. 2021). A combination of in-situ investigation, remote sensing analyses, 

and simulations were performed to understand the failure mechanism (Zhu et al. 2021). Post-hazard 

surveys, remote sensing, and seismic signals were obtained to comprehensively analyze the evolution 

process of the landslide dam failure hazard chain (Yan et al. 2021). UAV and Terrestrial Laser Scanner 

(TLS) were used to obtain displacements of the failure caused by the June 17, 2020 event (Jiang et al. 

2021) and InSAR was used to reveal the displacements of the slope before the June 17, 2020 event (Xia 

et al. 2021; Kuang et al. 2022). However, few works have been devoted to investigate the upper-slope of 

Aniangzhai landslide after the June 17, 2020 event, and the precise boundary of whole landslide is also 

not clear. 

This paper combines three remote sensing technologies, including UAV photogrammetry, LiDAR 

and InSAR, to identify and evaluate the upper-slope of Aniangzhai landslide. A high potential risk on the 

upper-slope was revealed by multi-source remote sensing. The technical keys of acquiring high-

resolution data of UAV and LiDAR in high mountain valleys are also discussed in this paper. 

Study area 

Aniangzhai landslide (102°01'44.8"E, 30°58'22.8″N) is located 20 km northeast of Danba County, 

Sichuan Province, China, which is 190 km straight line distance and 309 km driving distance from the 

provincial capital Chengdu. The study area is the transition zone of the first and second steps in China, 

with a typical alpine valley landscape and Tibetan plateau type monsoon climate. China's land terrain 

can be divided into three steps from west to east. The first step includes the Qinghai-Tibet Plateau and 

the Qaidam Basin with an average altitude of more than 4,000 m a.s.l..  The area of China's second step 

ladder accounts for about one-third of China's land area, with an average altitude of 1000-2000 m a.s.l.. 

The third step is mainly composed of plains and hills, with an average altitude below 500 m a.s.l.. The 



 

annual average temperature is 14.2 ℃ in this area. Aniangzhai landslide is located at the confluence of 

the Xiaojinchuan River and Meilonggou ditch (¡Error! No se encuentra el origen de la referencia.a). 

G350 Road (also known as China Panda Avenue), which is the most important link between Danba 

County and Xiaojin County, runs along the banks of the Xiaojin River. There are hundreds of people 

living in Aniangzhai Village which is near the Aniangzhai landslide. The distance from the front edge to 

the tailing edge in the slope is 1.75 km and the difference in height is over 1000 m.  

 

Fig. 1 Overview of the study area. (a) Topography maps of the study area. (b) Location of the study 



 

area. (c) 3D model of the study area obtained by UAV. P-(a) to P(e) indicate the approximate location 

of the photos shown in Figure 2. 

¡Error! No se encuentra el origen de la referencia.c illustrates a UAV 3D model acquired on 16 

October 2021, in which three areas are highlighted with dashed lines. The area with magenta circle is the 

toe of the Aniangzhai landslide, which collapsed in the June 17, 2020 event (Zhao et al. 2021; Zhu et al. 

2021; Yan et al. 2021), and the on-site photos are shown in Fig.2a and Fig.2b . The blue line region 

corresponds to the deduced failure of Aniangzhai ancient landslide after the collapse of the toe (Song et 

al. 2021; Zhu et al. 2021; Yan et al. 2021; Xia et al. 2021). Additionally, the upper-slope is highlighted 

by red circle in ¡Error! No se encuentra el origen de la referencia.c and the on-site photo is shown in 

Fig.2c. Jiang et al. (2021) mentioned this area when they studied this landslide using UAV and TSL, but 

did not explored it in detail and did not determine the exact boundaries of the landslide. However, it can 

be seen that there are obvious cracks in the tailing edge of the area in the 3D model. Consequently, three 

remote methods have been used in this work to reveal the evolution of the upper-slope potential danger. 

 
Fig.2 Field work photos of Aniangzhai landslide. (a) and (b) show the toe of the slope collapse related to 

Meilonggou debris flow. (c) Upper-slope area of Aniangzhai landslide. (d) (e) Tension cracks. The 

approximate locations of the pictures are shown in Figure 1. 

Methods and data 

A close flight method was adopted to obtain the high-resolution UAV 3D model and LiDAR data in this 

paper. Meanwhile, SBAS-InSAR technology was used to detect time series displacements information. 

These three remote sensing techniques are combined to carry out the research of the upper-slope potential 



 

hazard of Aniangzhai landslide. The adopted workflow is depicted in Fig. 3 and the data used in this 

study is shown in Tab.1 and Fig. 3c. 

 

Tab.1 Summary of the study data 

Data Resolution Date Equipment 

UAV 3D model 0.02 m 2021.10.16 Share 102S 

LiDAR data 0.25 m 2021.10.16 DJI L1 

SAR images 2.33 m / 13.96 m 2020.06.20 – 2021.11.18 Sentinel-1A (ESA) 

Acquisition and processing of UAV data  

A DJI-M300 UAV equipped with a Share-102S five-lens oblique camera was used in this study. The DJI-

M300 UAV had an integrated RTK positioning system that provided centimeter-level accuracy position 

POS (position and orientation system) information.  

When using UAV for aerial photography, flight route needs to be laid out according to certain 

constraints. Relative flight height is a key parameter in UAV photogrammetry, which is directly related 

to the Ground Sample Distance (GSD) of the image. Therefore, the relative flight height setting was 

determined by the parameters of the aerial camera and GSD using next equation: 

𝐻 =
𝑓×𝐺𝑆𝐷

𝑎
 (1) 

Where 𝐻 is the relative flight height in m; 𝑓 is the focal length of the camera lens in mm; 𝐺𝑆𝐷 

is the ground sample distance in m; and 𝑎 is the pixel size of camera in mm.  

Therefore, it is important to maintain consistent relative flight height for images with consistent 

GSD. The study area belongs to an alpine canyon landscape with a height difference nearly 1000 meters. 

If the aerial photography operation is carried out according to the conventional 2D flight route, the same 

or similar relative aerial height cannot be guaranteed, which leads to an inconsistent GSD of the acquired 

images impeding the requirements of high resolution and high precision. In response to this problem, the 

method of laying a 3D coverage route based on existing DEM was proposed. Since the debris flow and 

the landslide disasters in the study area, and the high transmission towers built in recent years had 

changed the terrain, we could not directly lay out the 3D coverage route based on the SRTM-DEM. 

Consequently, an iterative DSM method to lay out a 3D flight route to cope with the aerial photography 

operation with huge height difference shown as Fig. 3a was adopted. Firstly, the common 2D route was 



 

laid out based on SRTM-DEM, and the relative height was set larger to ensure flight safety and flight 

efficiency (the relative height of the 2D route in this study is between 400 and 1300 m). The position 

information and images were pre-processed and the aerial triangulation processed to quickly obtain a 

rough DSM with GSD of 5 m. Compared with SRTM-DEM, the rough DSM was more accurate and 

provided information of ground buildings, transmission towers, etc. Then, based on this rough DSM, we 

laid out a 3D route to keep consistent the relative flight height and keep away from obstacles such as 

transmission towers. 

The designed GSD was 0.02 m and the relative flight height was calculated to be about 180 m in 

this study. Furthermore, the heading and side direction were overlapped over 75%. Finally, we got the 

3D model with a GSD of 0.02 m. 

Acquisition and processing of LiDAR data 

A DJI-L1 LiDAR system was mounted on the DJI-M300 UAV for the capture of the point cloud. The 

relative flight height is also very important for Airborne-LiDAR operations, because the quality of the 

final acquired point cloud data is directly related to it. Like for the UAV photogrammetry, we also used 

the DSM-based 3D flight route for LiDAR surveying as shown in Fig. 3a. However, when carrying 

LiDAR for close ground flight to collect data, the laser beam center scattering characteristics must be 

taken into consideration. In order to ensure consistent point cloud density, it was needed to fly 

perpendicular to the contour. After obtaining the point cloud data, it was also necessary to classify the 

point cloud data and to extract the ground points to obtain a high precision and high-resolution DEM. 

The Progressive TIN Densification (PTD) was used to automatically extract the ground points (Axelsson 

2000; Meng et al. 2010; Lin and Zhang 2014; Chen et al. 2021). The Triangulated Irregular Network 

(TIN) model was constructed based on these discrete ground points, and finally the elevation value was 

interpolated to generate a DEM with a resolution of 0.25 m. The DEM generated based on LiDAR data 

had a high resolution and a high precision, providing information about the real surface conditions under 

vegetation to some extent (Glenn et al. 2006; Eeckhaut et al. 2007). In this paper, we used Sky View 

Factory (SVF) (Guo et al. 2021) for DEM visualization, which enables to partially correct the limitations 

of poor local texture caused by a single light source in traditional mountain shade maps, and can provide 

a more comprehensive visual reflection of surface features, which is favorable for the analysis of 

landslides. 



 

Processing of SBAS-InSAR 

The small baseline differential SAR interferograms (SBAS-InSAR) technique (Berardino et al. 2002) is 

a method which enables to obtain time series of displacements and effectively overcomes the limitations 

of the traditional D-InSAR technique by time decoherence, spatial decoherence or atmospheric delay. 

SBAS-InSAR was used for this study because it works better in low coherence areas such as the 

mountainous areas of Southwest China (Zhang et al. 2018). The workflow of SBAS-InSAR is as follows: 

firstly, multi-scene images of different time periods in the same area were selected for precise 

coregistration, their time-space baselines were calculated, and multiple sets of interferometric pairs were 

combined by selecting suitable time-space baseline thresholds. Then differential interference, filtering 

and phase unwrapping were performed on these interferometric pairs. Finally, the displacements 

parameters of the freely formed short baseline sets of these interferometric pairs were estimated by using 

the least squares method or singular value decomposition method to obtain the time series displacements 

and surface displacement rates of the study area. The workflow is shown in Fig. 3b. 

In this study, Sentinel-A C-band SAR images were used. In consideration of the geometric 

distortions in mountainous areas due to the side-looking geometry of InSAR (Dai et al. 2022), 42 

descending images after June 17, 2020 event were used to analyze the evolution characteristics of the 

upper-slope after the disaster. The SRTM-DEM was used to assist images registration and remove 

topographic phase. Due to the poor coherence of Sentinel-1 data in this study area, we only selected 

interference pairs with a time baseline of less than 36 days. 



 

 

Fig. 3 Workflow adopted in this study. (a) UAV and LiDAR (b) InSAR. (c) Timeline of data 

acquisition. DSM: Digital Surface Model; SBAS: Small Baseline technique; DIFF: interferograms; 

UNW: Unwrapped interferograms. 

Results 

Analysis of UAV data  

As the GSD of the UAV 3D model can reach the resolution of 2 cm, landslide features such as tensile 

cracks and shear cracks can be clearly identified on the 3D model to determine the landslide potential 

hazard boundary. According to the distribution of cracks (Fig.4b-g) and topographic elevation, the whole 

Aniangzhai landslide can be divided into 3 tiers and 7 areas as shown in Fig.4a. 



 

 

Fig.4 Zonation of Aniangzhai lanslide slope based on the 3D model. (a) Zonation of whole slope. (b) (c) 

(d) (e) (f) (g) Examples of cracks. Red arrows deliniate the location of the cracks. 

Area I, located at the first tier, is the most front edge of the entire landslide body, with elevations 

ranging from 2060 to 2162 m a.s.l.. This area was the first to collapse due to the cascading effect caused 

by the impact of the debris flow. Due to the collapse, the anti-slip resistance was considerably reduced, 

inducing the failure of the second tier. 

Areas II, III, IV, V belong to the second tier of the landslide, ranging from 2162 to 2556 m a.s.l.. 

Among them, the displacement in area III is the largest. Tension cracks at the tailing edge of this area are 

very obvious in the 3D model, and the scarp is also clearly visible. In addition, obvious tension shear 

cracks appeared at the juncture of these areas also at the landslide flanks both on the left and right sides. 

Area VI and area VII are in the third tier with a difference in elevation over 500 m a.s.l.. The upper-

slope is divided into two areas by an inconspicuous fissure (Fig.4b and e). Those potential hazards were 

not noticed by researchers because there were no obvious features on the tailing edge at the initial stage 

and it was difficult for personnel to reach this zone during the development of the field investigation. 

However, through the high-resolution 3D model collected on October 16, 2021 (Fig. 5¡Error! No se 

encuentra el origen de la referencia.), it can be seen that a complete arc-shaped crack appears on the 

crown of the landslide in this area, among which the width of the fissure at the rearmost edge position 



 

D3 can reach 28.52 m, and the width of the fissure at other positions varied from 2 to 10 m. Thus, it can 

be tentatively judged that the landslide in the area VI and the area VII have also been activated and are 

currently in a creeping or sliding stage. As for the evolution process of this upper-slope, it needs to be 

analyzed combined with other information. 

 

Fig. 5 Evaluation of the upper-slope (areas VI and VII) based on the obtained 3D model. (a) Overview 

of the distribution of cracks on the upper-slope. (b) Details of cracks.  

Analysis of LiDAR data 

Vegetation covers more than 85% of Aniangzhai landslide. For investigating the real surface morphology 

under its vegetation cover, the 0.25 m resolution DEM acquired by LiDAR is visualized by the SVF 

method shown in Fig.6. The ancient landslide accumulation body after removing vegetation is clearly 

visible and the scarps of the ancient landslide can also be recognized from the SVF map and slope maps 

as shown in Fig. 6a and Fig. 6b. From the details in Fig. 6c and Fig. 6d, it can be found that in the upper-



 

slope there is a clear visible trace between the sliding area and the stable area. Based on the above 

characteristics, we determined the boundaries of the landslide, and the arc-shaped fissure identified on 

the 3D model (Fig.5a) correspond with the ancient landslide boundary. Combined with the DEM-derived 

slope gradient map (Fig.6b), we can see that the rear part of the upper-slope is steep with an average 

slope higher than 30°, and the front part is gentle. This , it is a typical feature of ancient accumulation 

landslides accumulation. When the platform located below it (Area II – V) is destabilized, it is highly 

likely that the upper part of the ancient landslide is reactivated under the effect of gravity.”  When the 

platform located below it (Area II – V) is destabilized, it is highly likely that the upper part of the ancient 

landslide is reactivated under the effect of gravity. 

 

Fig.6 Analysis of the upper-slope based on LiDAR data. (a) SVF map. (b) Slope map. (c) (d) Details of 

the upper-slope. Red lines and the red arrows delineate the scarps. 

Analysis of InSAR data 

In order to further reveal the kinematic evolution process of the upper-slope potential landslide, the time 

series SBAS-InSAR technique was used. LOS displacement rates were obtained as shown in Fig.7a. 



 

Negative red values indicate that the objects are far away from the satellite along the LOS direction and 

can be considered as a component of subsidence; Positive blue values indicate that the point is moving 

towards the satellite along the LOS direction and can be considered as a component of uplifting. The 

LOS displacement rate of the upper-slope varies from -15 to 11 cm/a. From Fig.7a, it can be found that 

the area near points P1, P2 and P3 shows downward displacements, while the area near point P4 shows 

uplift.  

For further quantitative analysis, the time series displacements of points P1, P2, P3 and P4 are 

plotted, as shown in Fig.7b. The cumulative displacement of P1 is the largest, with a value of -20 cm 

from June 20, 2020 to November 18, 2021, revealing that this area is active since the occurrence of the 

June 17, 2020 event. By the end of January 2021, there was a deceleration and the slope gradually entered 

into a stable state. However, this stable state was only maintained until July 2021, when the slide 

reactivated again. The cumulative displacement of P2 is around -17 cm, and its time-series displacement 

curve was like P1. The cumulative displacement of P3 is around -11 cm, exhibiting activity from the 

beginning of the observation to the end of December 2020, and then becoming stable. Finally, the 

cumulative displacement of P4 is 11 cm. From the slope gradient shown in Fig.6b, it can be found that 

the area near the point P4 is a gentler platform with a certain anti-slip resistance that probably corresponds 

to the area of accumulation in which the soil is squeezed and bulged due to the sliding of the upper 

landsliding mass. It is worth noting that all the time series curves of P1-P3 show an obvious 

acceleration after September 2020, which coincides with the time point of activation of this region 

mentioned in the study published by Jiang et al. (2021). 



 

 
Fig.7 Kinematics of the upper-slope based on InSAR data. (a) Velocity map derived from SBAS-

InSAR (b) Displacement time series plotting of some representative points. 

Discussion 

Evolution of Aniangzhai landslide 

So far, the evolution of this event can be roughly divided into 4 stages shown in Fig. 8. It should be 

notes that this case study shows a clear example of cascading effect (Pescaroli and Alexander 2015) 

in which the impact of a physical event (i.e. rainfall) generated a sequence of events. First, the 

rainfall event occurred on June 17, 2020 in the Meilonggou area of Banshanmen Town, resulted in 

a mudslide that caused the blockage of the Xiaojinchuan River, formed a barrier lake and impacted 

the toe of the slope (stage 1 show in Fig. 8a). Then, during stage 2 (Fig. 8b), the toe of the ancient 

landslide collapsed in a short period. Due to the collapse of the toe, the tier-2 lost its support and 

was activated by gravity (stage 3 shown in Fig. 8c). Stages 1-3 have been described in detail by 

different scholars (Zhao et al. 2021, Zhu et al. 2021, Xia et al. 2021, Yan et al. 2021). Significant slippage 

occurred within 2-3 months after the activation of the tier-2. At the same time the toe of the tier-3 

collapsed, reactivating the upper-slope landslide (Jiang et al. 2021), and then, the Aniangzhai landslide 

entered into stage 4 (Fig. 8d), which means that the entire ancient landslide became activated. By the 



 

end of 2021, significant tension cracks appeared on the crown of upper-slope (Fig. 5) and InSAR data 

also detected displacement features in this area (Fig.7). 

 

Fig. 8 Evolution of Aniangzhai landslide after the June 17, 2020 event. 

Applicability analysis of multi-source remote sensing in landslides 

The applicability, advantages and disadvantages of the three techniques in landslide analysis applications 

are summarized in this study, as shown in Tab. 2. 

Tab. 2 Comparison of three remote sensing methods. 

Methods Products Advantages Disadvantages 

UAV 

photogrammetry 

High-resolution 3D-model 

Cracks and scarps 

High-resolution and 

texture features, 

Disturbed by 

vegetation 



 

identification Customized acquisition 

LiDAR 

High-resolution DEM  

Slope morphology analysis 

Partial vegetation 

removal,  

Customized acquisition 

Lack of textural 

features 

InSAR Time series displacements 

Historic data, wide 

coverage and high-

precision displacement 

information 

Affected by 

vegetation, and 

geometrical distortions 

Non-customized 

acquisition 

The high-resolution 3D model and images obtained by UAV photogrammetry have extremely obvious 

texture features. The GSD of the 3D model obtained by the 3D route-based UAV photogrammetry is as 

high as 2 cm. These data are very useful for the identification of landslide cracks, especially those with 

very small widths just developed in the early stage shown in Fig. 5. In the 3D model, it is possible to 

observe the upper-slope potential hazards that are inaccessible to personnel in a safe manner. Based on 

these signs and the cracks identified by the UAV data, the landslide can be zoned to facilitate subsequent 

research and management work. However, in areas with dense vegetation, UAV photogrammetry cannot 

observe the surface hidden below the vegetation. It should be noted that in southwest China landslides 

are often characterized by vegetation cover, which means an important limitation for the use of UAV 

photogrammetry. In contrast, LiDAR presents an inherent advantage in measuring vegetation-covered 

areas since it can partially penetrate vegetation to obtain surface information. Then, the point cloud data 

collected by LiDAR can be classified to remove vegetation and obtain high-resolution and high-precision 

DEM. Geomorphic features left by landslide movements such as circle chair-like landforms, steep 

canyons, and cracks are used to identify and delineate the extent of the landslides, especially for ancient 

landslides. Combined with the DEM-derived slope angle and slope direction information, the slope 

morphology can be analyzed. In this study, the determination of the exact boundary of the ancient 

landslide was almost entirely based on LiDAR data. However, point cloud data lacks texture information, 

and needs to be combined with UAV photogrammetry for landslides analysis, although LiDAR can only 

reach the centimeter level. 

Finally, InSAR can detect tiny displacements and monitor millimeter-level displacements in those 



 

areas exhibiting good coherence. The 12 days revisit period of the Sentinel-1 satellite provides the 

conditions for time series displacements analysis. Therefore, the evolution of the landslides can be 

analyzed based on it. In addition, for sudden events, the displacements characteristics can be traced back 

to the time before the event because of the existence of a long archive of satellite data. However InSAR 

has poor coherence in vegetation-covered areas with spatial and temporal decoherence. Furthermore, 

InSAR results are also affected by factors such as atmospheric delay. 

Consequently, the combination of these three remote sensing technologies, namely UAV, LiDAR 

and InSAR, each of them with their own advantages and disadvantages (Xu et al., 2022), can effectively 

and accurately allow the identification of landslides, and is an indispensable way to study the 

evolutionary processes of potential landslides in a safer manner, especially in very steep and inaccessible 

mountain slopes. 

 

Conclusions 

In this paper, three kinds of remote sensing techniques, UAV, LiDAR and InSAR, were combined to 

evaluate the boundary extent, morphological structure and displacements characteristics of the 

Aniangzhai landslide. 

The results of the study showed that the tension and shear cracks developed at the boundary of areas 

VI and VII were discovered from the analysis of the UAV 3D model. This model also allowed to divide 

the landslide into three tiers and seven areas. The accumulation features hidden under vegetation caused 

by the ancient landslide in upper-slope were identified using the LiDAR-derived DEM, and the 

accumulation boundary was basically consistent with the location of the cracks discovered by the UAV 

3D model. Time series displacements information of the upper-slope extracted by SBAS-InSAR revealed 

that this region was active, exhibiting maximum displacements up to 15 cm/a in the LOS direction. Based 

on the above information, it can be determined that tier-3 represents a potential hazard, since the entire 

landslide is fully active and needs further monitoring. 

This work illustrates how the combined use of the three remote sensing methods mentioned above 

can effectively contribute to identify and evaluate the potential hazard of landslides. The main conclusion 

drawn is that multi-source remote sensing enables the exploitation of the complementarities of different 

techniques, providing new references and views to state the potential risk of landslides on high and steep 



 

landslides in complex mountainous region. 
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