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Abstract: This study aimed to determine the criterion validity of the ADR jumping photocell when
compared to a motion capture system and to examine the within-session test–retest reliability of
the instrument. Thirteen highly trained female volleyball players performed ten countermovement
jumps (CMJ) with two minutes rest in-between trials. Jumps were recorded simultaneously by both
devices to compare the outcomes. The main results showed significant mean differences between
devices (10.6 cm, p < 0.001; ES = 0.9), high Spearman’s correlations (ρ = 0.95), weak CCC (0.25), and
SEE = 0.92 cm. Bland–Altman’s plot indicated high systematic errors (10.5 cm), heteroscedasticity
of error (slope = 0.026), and all values included among the limits of agreement. The within-session
reliability (internal consistency) was very high (ICC = 0.96; CCC = 0.94; SEM = 1.18 cm; CV = 4.21%).
In addition, the sensitivity of the instrument showed values of SWC = 0.33 cm. In conclusion, ADR
jumping is a valid instrument for the estimation of CMJ in highly trained female volleyball players.
Furthermore, the instrument is shown to be a consistent tool in the measurement of CMJ.

Keywords: validation; error; countermovement jump; MoCAP; portable devices; infrared barrier;
sensitivity; consistency

1. Introduction

Vertical Jump (VJ) performance can be considered one of the most important key
factors for success in many sports, especially team sports, where there are numerous
technical actions including countermovement vertical jumps [1–3]. In addition, the measure
of VJ is frequently used to control lower body strength and power levels [4–7]. Thus,
variations in VJ may indicate changes in sporting performance, fitness, or health [8–11] or
may be used as an element for load quantification and fatigue monitoring [12].

Accurate estimation of the vertical jump (VJ) is crucial to prevent errors in exercise
analysis, control, and prescription [13]. Jump height is defined as the distance between
the center of mass (CoM) during standing and the apex of a jump, and there are various
methods for calculating it [14]. These methods include the take-off velocity, impulse–
momentum, and work–energy methods, which estimate jump height based on the velocity
of the CoM at the instant of takeoff. Another method is the flight time method, which only
requires measuring the time in the air between take-off and landing [15]. However, this
method assumes that the position of the CoM is the same at takeoff and landing [16]. Motion
capture has also been used to calculate CoM displacement during jumping, providing an
approximation of the CoM if changes in body configuration occur [17,18]. Force plates
are considered a reference element in estimating VJ due to their high resolution and
reliability [19,20].

However, both systems have drawbacks that make their practical or ecological value
limited due to their high cost, complex calibration processes, as well as the impossibility of
measurements outside laboratory conditions. This means that their use is often limited to
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research and high-performance athletes and sports teams, who can afford these expensive
technologies. [12]. In recent years, lower-priced instruments, such as accelerometers,
jumping mats, or systems based on video recording, have been developed as an alternative
to MoCAP and FP and have enabled physical activity and sports specialists to monitor
their athletes [21,22].

Accelerometers can detect accelerations in all axes, allowing for the estimation of jump
height through double integration, similar to force plates [23]. Inertial Measurement Units
(IMUs) comprise accelerometers and are a convenient device for obtaining real-time data,
but the accuracy of the obtained data may be affected by the sensitivity and error of the
accelerometers [24]. The estimation of jump height based on flight time (FT) has led to the
development of various instruments, such as jump mats and linear position or electronic
transducers, but these methods require further processing and may be expensive or not
usable on all surfaces [25–31]. Jump mats are a low-cost and reliable option for estimating
jump height from the time between take-off and landing, but they can only be used on
specific surfaces, limiting their ecological validity [18,20,32–34].

Finally, photocells have traditionally been used for the measurement of in-line speed,
but they are also being developed for time-of-flight capture, specifically, and their use has
become widespread along with that of FP [35], as their logistics and manageability have
significantly improved at cheaper prices [36]. In this way, photocells are shown to be valid
instruments for VJ estimation when compared to MoCAP systems and FP [20,37]. The main
advantage of these systems is that they allow the acquisition of data from several subjects
on the same surfaces where physical activity is to be performed, adding ecological value
or content validity to the measurement process [38]. These devices consist of two bars: an
emitter and a receiver that can be placed on a variety of grounds [39]. The Optojump
photoelectric system is a technology that uses an infrared barrier to estimate VJ height. It
has been shown to be valid and reliable for estimating VJ height compared to force plates
when flight time is used for estimation [39,40]. However, when estimating jump height
from the double integration of reaction forces using force plates as the reference instrument,
the system’s validity is limited, and high systematic errors (10.4 cm) have been found [41].
The Wheeler jump photoelectric sensor has been demonstrated to be a valid and reliable
device for estimating VJ height based on flight time. It has been found to have high or
almost perfect correlations when compared to other methods such as jump mats, mobile
applications, and the Optojump infrared barrier [42]. However, the sensor has not been
validated against a true gold standard such as a motion capture system or force plates.

The ADR jumping infrared barrier sensor (ADR, Toledo, Spain) is an economical and
easy-to-use tool for estimating the vertical jump. It uses a photoelectric barrier and wireless
technology to send data directly to a smartphone or tablet. The validity of the ADR
jumping was determined against a jump mat, with strong correlations (r = 0.98) for the
countermovement jump (CMJ) and high ICC (0.89), determining the device to be valid and
reliable. However, there are no studies that compare the values obtained by ADR jumping
against a MoCAP or FP [43].

The purpose of this study was twofold: (1) to determine the criterion validity of the
ADR jumping infrared barrier when compared to a MoCAP system in the measure of CMJ,
and (2) to examine the reliability of the instrument understood as its internal consistency
in the within-session test–retest for consecutive attempts. It is hypothesized that the ADR
jumping infrared barrier is a valid and reliable instrument when compared to a standard
instrument based on motion capture.

2. Materials and Methods
2.1. Participants

Thirteen highly trained female volleyball players [44] from the Spanish Superliga 2
voluntarily participated in this validation study (age 22.2 ± 3.3 y, height 1.72 ± 0.06 m,
body mass 64.1 ± 7.3 kg, fat percentage 16.5 ± 2.5%, body mass index 21.6 ± 2.1 kg/m2,
training experience 8.8 ± 2.0 y). All participants signed an informed consent document
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in which they were informed of the characteristics of the intervention, as well as the
scientific use of the data obtained in the intervention as specified by the Ethical Principles
for Medical Research Involving Human Subjects of 1975 (revised in Fortaleza, Brazil in
2013) in the Declaration of Helsinki of the World Medical Association (WMA). This research
was approved by the ethics committee of the University of Alicante (UA-2018-11-17).

All participants met the inclusion criteria, which were defined as: being female; age
over 18 years, with at least 3 years of volleyball experience; and being familiar with the
CMJ execution. On the other hand, the exclusion criteria that prevented them from being
eligible to participate in this study were: presenting a current or previous pathology
that would imply a medical contraindication for physical activity, presenting a previous
musculoskeletal injury or one acquired during the development of the experimental phase,
not participating in all the interventions that make up the study, and ingesting alcohol or
doping substances in the 48 h before the performance of the tests.

2.2. Instruments
2.2.1. Optitrack Motion Capture System

The motion capture system (Optitrack motive, Corvallis, OR, USA) was set up with six
Optitrack Flex 3 cameras (Optitrack motive, Corvallis, OR, USA), which allow markers to be
tracked in 3D. The marker is placed between the L4 and L5 lumbar vertebrae of the subjects,
near the center of mass. The marker consists of a reflective sphere capable of reflecting
infrared light in the same direction in which it is received. The light is emitted by the
26 light-emitting diodes (LED) surrounding the camera lens (IR 850 nm). All six cameras
worked at 100 Hz, with a shutter speed of 20 µs, achieving an overall resolution of 0.001 m.
The height of the VJ was determined by the difference in the position on the vertical axis
of the marker before the execution of the jump, during the resting phase H2, and at the
highest point recorded in the flight phase H1 (Figure 1).
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Figure 1. Determination of jump height from the data obtained by the MoCAP system by the
difference between the initial height (H2) and the highest point registered (H1).

The signal was sent via a USB cable connection to a computer where it was collected
and interpreted using the Motive Tracker 2 software. This software synchronizes and
calibrates the image collection systems, as well as exports the data obtained in the CSV
format for subsequent analysis in a spreadsheet to determine the JH through the difference
in positions (Figure 1).
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2.2.2. ADR Jumping Infrared Barrier

ADR jumping is a photocell consisting of two boxes (12 × 5 cm) connected to each
other by a cable. One of the boxes is an emitter of an Infrared (IR) beam, and the second box
acts as a receiver. The beam is emitted by a diode with a wavelength of 940 nm and 40 mW
of radiation flux, and the ADR includes a filter to avoid interference from other radiation
sources. The data recorded by the instrument is sent via Bluetooth to a tablet where it is
recorded using the ADR jumping application. The device comprises a liquid crystal display
(LCD) screen that allows the data to be observed in real-time, which means that it can be
manually annotated if the wireless connection to the application fails. The VJ estimation is
performed by determining the take-off and landing instant (moments when the beam is
no longer cut and returns to the cut, respectively). This time interval will be considered as
the FT and the JH will be estimated from it, according to the equation JH = FT2·g/8, where
g is gravity acceleration (9.8 m/s2). In addition to the FT, the application automatically
provides the values of jump height, contact time, and the reactive strength index.

2.3. Experimental Procedure

The procedure was carried out in two sessions separated by seven days each in the
sports science laboratory of the University of Alicante. All participants performed the tests
at the same time of the day to avoid possible effects associated with circadian rhythms,
as well as at the same temperature of 23 ◦C. In the first test session, participants were
familiarized with the experimental protocols and anthropometric measurements were taken.
In the second test session, the following procedure was performed: first, a standardized
warm-up of five minutes of continuous running was performed, followed by three minutes
of dynamic range of motion exercises, and then two minutes of familiarization jumps
in which subjects were instructed in the initial and final positions of the CMJ. Second,
the warm-up was followed by four minutes of rest during which the marker was placed
for tracking by the MoCAP system, and the jumping protocols were reviewed. Finally,
subjects performed 10 CMJ jumps with two minutes between each attempt to avoid fatigue
effects [45].

To avoid displacements in the transverse and frontal plane, the jumps were performed
on a bounded surface of 29.2 × 42 cm, meaning that the take-off and landing phases were
executed completely within the boundaries. At the lateral ends of the jumping surface, the
emitter and receiver boxes were positioned so that the center of the boxes were aligned
with the phalanges at the time of take-off and landing (Figure 2).
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The CMJs were performed with a quick descent to a depth self-selected for each
participant [46,47], followed by the quickest possible ascent to achieve take-off. All tests
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were performed with hands placed on the iliac crests in the akimbo position [48] to avoid
extra variability generated by arm action. Participants were instructed to jump as high
as possible on each attempt and to land tiptoe by imitating the position adopted by the
ankle joint in the take-off phase to minimize the error produced by variations in the angle
of ankle flexion in the landing phase [49]. Jumps were always supervised by an instructor
to avoid execution errors. Attempts were considered null if subjects did not land within
the established limits, if participants did not land on tiptoe, or if they separated their hands
from the iliac crests in any phase of the jump. All records were collected simultaneously by
both measuring instruments: the ADR jumping photocell and the MoCAP Optitrack system.

2.4. Statistical Analysis

Descriptive data are shown as mean and standard deviations. Normality was checked
using a Kolmogorov–Smirnov test, resulting in a non-normal sample for MoCAP (p = 0.011).

2.4.1. Criterion Validity

To determine the degree of agreement and the presence of systematic error between
the two instruments, the Lin’s concordance correlation coefficient (CCC) was calculated.
This statistic is expressed as ρc = ρ × Cb, providing information on how close the pairing of
the height data in both instruments is (ρ, precision) and how close to ideality the relation is
(Cb, accuracy), where a straight-line x = y would be obtained [50]. The results obtained are
classified as: ≤ 0.9 (poor), 0.90–0.95 (moderate), 0.95–0.99 (substantial), and ≥0.99 (near
perfect) [51]. Spearman’s bivariate correlation coefficient (rs) was also determined in this
study as a means of conducting a correlational analysis. The use of this non-parametric
equivalent to Pearson’s coefficient is justified due to the small sample size and the non-
normal distribution of the sample [52]. For interpretation, the following criteria were
used ≤0.1 (trivial), 0.10–0.29 (low), 0.30–0.49 (moderate), 0.50–0.69 (high), 0.70–0.89 (very
high), and ≥0.90 (near perfect) [20,53].

For the regression analysis, the Passing and Bablok regression [54] for non-parametric
samples was used to test for the existence of a linear relationship between the paired
data from both instruments. The relationship was established by the equation y = ax + b,
whereby the values of a variable y can be predicted as a function of another variable x,
where a represents the slope, in which its ideal value would be 1. This parameter provides
information on the proportional differences between the two methods. On the other hand, b
is the cut-off point with the x-axis (intercept) in which its ideal value, in this case, would be
0 and represents in a quantifiable way the systematic differences between the two devices.
The standard error of estimate (SEE) was also calculated. Low values of SEE indicated that
the points were closer to the regression line and, therefore, the magnitude of the estimated
error was smaller.

To study the existence of a systematic error, significant differences in the values of
the ADR jumping and the criterion instrument were calculated using a Wilcoxon test for
paired samples and the effect size (ES) was determined as r = Z/

√
n [55]. The differences

expressed as ES were interpreted according to Hopkins et al. [56]: trivial (<0.19), small
(0.2–0.59), moderate (0.6–1.19), large (1.2–1.99), very large (2.0–3.99), and huge (>4.0).

Bland–Altman plots are used to assess the agreement between the height data of
the two paired devices, allowing for the visualization of the differences between the two
methods, and the extent to which the differences vary depending on the magnitude of
the measurement. The limits of agreement (LoA) are defined as the interval within which
the differences between the two methods of measurement are expected to fall with 95%
confidence. LoA are calculated using the SD of the differences as LoA = ±1.96 × SD
and represent the range within which 95% of the observed differences between the two
methods of measurement are expected to fall. The maximum allowable differences were
calculated from the coefficients of variation (CV) of each method according to the expression
(CV2

method1 + CV2
method2)1/2 [57], interpreting that the methods are not in disagreement if
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the 95% confidence limits of the upper LoA are below the maximum allowable difference
and the lower LoA is above the maximum allowable difference [58].

The magnitude of the error was estimated by calculating the standard error of mea-
surement (SEM); this statistic was calculated as SEM = Sd/

√
2, where Sd is the standard

deviation of the difference of the values [59]. This statistic provides information on the
error in absolute terms from the analysis of the dispersion of the values around the true
value [60]. Relative reliability was established by the coefficient of variation (CV) calculated
from SEM as CV = (SEM/mean).

2.4.2. Reliability

The regression analysis, Bland–Altman, and CCC were used again, in this case, to
determine the reliability of the instrument in the measurement of consecutive vertical jump
attempts in the same session. In addition, the intraclass correlation coefficient (ICC) was
determined to study the intrasession reliability of ADR jumping (taking as a reference that
the method is reliable if the ICC > 0.90 and CV < 5%) [61]. Sensitivity was calculated
using the smallest worthwhile change (SWC). The SWC allows determining which values
represent the minimum improvements that have a practical impact and was calculated from
the SEM as 0.2·SEM·

√
2 [62,63]. Knowing that SWC can determine the signal-to-noise ratio,

if the signal-to-noise ratio (SWC/SEM) is greater than 1 then the data can be considered
reliable [64].

The sample size was calculated for a statistical power of 80%. A minimum of 250 jumps
(α = 0.1, two-tailed) was determined using G*Power (v3.1.9.7, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf, Germany). To accomplish this number of jumps without inducing
fatigue, the 13 participants performed 10 CMJ, resting 2 min between attempts in two
sessions separated by 7 days [65,66], resulting in 260 valid jumps.

Statistical analysis was performed using the MedCalc Statistical Software version 20.100
(MedCalc Software Ltd., Ostend, Belgium) and the validity and reliability analysis spread-
sheet developed by W. G. Hopkins [67].

3. Results
3.1. Criterion Validity of the ADR Jumping

Table 1 shows the values of Spearman’s correlation coefficient, Lin’s concordance
correlation coefficient, and the results of the Wilcoxon test for paired samples between the
ADR jumping photocell and the MoCAP criterion instrument, showing an almost perfect cor-
relation value. In addition, CCC values indicate a weak correlation of concordance. There
are also significant differences between the paired data of the heights of both instruments,
with a mean difference between the two of 10.6 cm and a moderate ES (0.9).

Table 1. Mean, the difference of means, significant differences between means and Spearman
correlations, and agreement of ADR jumping and MoCAP.

HMoCAP (cm)
(95% CI)

HADR (cm)
(95% CI) Diff. (cm) ES rs

(95% CI)
CCC

(95% CI)

38.83
(37.98 to 39.68)

28.40
(27.30 to 29.00)

−10.56 *
(−10.76 to −10.32) 0.9 0.95

(0.93 to 0.96)
0.25

(0.21 to 0.29)
95% CI: confidence intervals at 95%; H: medium height; ES: Effect size; rs: Spearman’s correlation coefficient;
CCC: concordance coefficient correlation; * p < 0.01.

From the analysis carried out through the Passing and Bablok regression (Figure 3),
a SEE of 0.92 cm can be observed. In terms of systematic error, the fit equation obtained
is expressed as HMoCAP = 10.921 + 0.991·HADR (cm). This equation allows to determine
the degree of linear association between ADR jumping and MoCAP. In this case, a very
strong positive linear association is observed, since the slope of the line is close to the unit
(0.991) that represents the perfect association. Thus, the values of ADR jumping increase or
decrease proportionally to those of MoCAP when estimating the VJ. This strong association



Appl. Sci. 2023, 13, 3151 7 of 15

is supported by the correlation values appreciated, since Spearman’s correlation coefficient
was near perfect (rs = 0.95; p < 0.0001), showing no significant difference (p = 0.37) with the
linearity condition in the Cusum test [54].

Appl. Sci. 2023, 13, 3151 7 of 15 
 

decrease proportionally to those of MoCAP when estimating the VJ. This strong 
association is supported by the correlation values appreciated, since Spearman’s 
correlation coefficient was near perfect (rs = 0.95; p < 0.0001), showing no significant 
difference (p = 0.37) with the linearity condition in the Cusum test [54]. 

 
Figure 3. Correlation analysis between the MoCAP system and the ADR jumping photocell through 
Passing and Bablok regression and residuals plot. (a) The continuous line represents the regression 
line; the shaded area represents the confidence intervals for 95% of the regression line; the pointed 
line is the x = y line; rs which represents Spearman’s correlation coefficient; SEE = Standard Error of 
Estimate; (b) Residuals plot. No trends are discernible; thus, linearity is assumed. 

Observation of the Bland–Altman plot (Figure 4) shows a LoAlow of 7.99 cm (95% CI 
of 7.61–8.37 cm) and a LoAupper of 13.07 cm (95% CI of 12.69–13.45 cm). The systematic 
error found is 10.53 cm, with no proportional error provided (slope = 0.026, p = 0.29). The 
maximum allowable differences were determined as ±19.3 cm, with lower and upper LoA 
included within this range (not in Figure 4). 

 
Figure 4. Bland–Altman plot for the study of the validity of the jump height obtained by the ADR 
jumping photocell versus a MoCAP Optitrack system. Dotted line: mean of the differences 
(systematic error); shaded areas: confidence intervals for 95% of the mean and LoA; continuous line: 
the line of perfect agreement (difference 0); plots and dashed line: the regression line of differences; 
Mean: mean of differences; SD: standard deviation. 

3.2. Reliability of the ADR Jumping 
Within-Session Test–Retest Reliability 

The test–retest reliability on a single day (internal consistency) [59] was calculated 
from the data obtained from the first 5 jumps, and corresponding results were produced 
for consecutive jump pairings (Table 2). The ICC values indicated test–retest correlations 
that were interpreted as near perfect consistencies (ICC = 0.94–0.98) for the within-session 

Figure 3. Correlation analysis between the MoCAP system and the ADR jumping photocell through
Passing and Bablok regression and residuals plot. (a) The continuous line represents the regression
line; the shaded area represents the confidence intervals for 95% of the regression line; the pointed
line is the x = y line; rs which represents Spearman’s correlation coefficient; SEE = Standard Error of
Estimate; (b) Residuals plot. No trends are discernible; thus, linearity is assumed.

Observation of the Bland–Altman plot (Figure 4) shows a LoAlow of 7.99 cm (95% CI
of 7.61–8.37 cm) and a LoAupper of 13.07 cm (95% CI of 12.69–13.45 cm). The systematic
error found is 10.53 cm, with no proportional error provided (slope = 0.026, p = 0.29). The
maximum allowable differences were determined as ±19.3 cm, with lower and upper LoA
included within this range (not in Figure 4).

Appl. Sci. 2023, 13, 3151 7 of 15 
 

decrease proportionally to those of MoCAP when estimating the VJ. This strong 
association is supported by the correlation values appreciated, since Spearman’s 
correlation coefficient was near perfect (rs = 0.95; p < 0.0001), showing no significant 
difference (p = 0.37) with the linearity condition in the Cusum test [54]. 

 
Figure 3. Correlation analysis between the MoCAP system and the ADR jumping photocell through 
Passing and Bablok regression and residuals plot. (a) The continuous line represents the regression 
line; the shaded area represents the confidence intervals for 95% of the regression line; the pointed 
line is the x = y line; rs which represents Spearman’s correlation coefficient; SEE = Standard Error of 
Estimate; (b) Residuals plot. No trends are discernible; thus, linearity is assumed. 

Observation of the Bland–Altman plot (Figure 4) shows a LoAlow of 7.99 cm (95% CI 
of 7.61–8.37 cm) and a LoAupper of 13.07 cm (95% CI of 12.69–13.45 cm). The systematic 
error found is 10.53 cm, with no proportional error provided (slope = 0.026, p = 0.29). The 
maximum allowable differences were determined as ±19.3 cm, with lower and upper LoA 
included within this range (not in Figure 4). 

 
Figure 4. Bland–Altman plot for the study of the validity of the jump height obtained by the ADR 
jumping photocell versus a MoCAP Optitrack system. Dotted line: mean of the differences 
(systematic error); shaded areas: confidence intervals for 95% of the mean and LoA; continuous line: 
the line of perfect agreement (difference 0); plots and dashed line: the regression line of differences; 
Mean: mean of differences; SD: standard deviation. 

3.2. Reliability of the ADR Jumping 
Within-Session Test–Retest Reliability 

The test–retest reliability on a single day (internal consistency) [59] was calculated 
from the data obtained from the first 5 jumps, and corresponding results were produced 
for consecutive jump pairings (Table 2). The ICC values indicated test–retest correlations 
that were interpreted as near perfect consistencies (ICC = 0.94–0.98) for the within-session 
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error); shaded areas: confidence intervals for 95% of the mean and LoA; continuous line: the line of
perfect agreement (difference 0); plots and dashed line: the regression line of differences; Mean: mean
of differences; SD: standard deviation.
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3.2. Reliability of the ADR Jumping
Within-Session Test–Retest Reliability

The test–retest reliability on a single day (internal consistency) [59] was calculated
from the data obtained from the first 5 jumps, and corresponding results were produced
for consecutive jump pairings (Table 2). The ICC values indicated test–retest correlations
that were interpreted as near perfect consistencies (ICC = 0.94–0.98) for the within-session
test–retest reliability. On the other hand, the CCC also showed high values of (CCC = 0.97),
having very high precision and near perfect accuracy values (ρ = 0.94 and Cb = 0.99). The
CVs were similar (4.21%).

Table 2. Within-session test–retest reliability for the ADR jumping photocell between five trials.

2–1 3–2 4–3 5–4 Mean of the Test

Change in the mean 0.73 −0.05 0.30 0.60 –
IC-95% lower −0.23 −0.96 0.55 0.11 –
IC-95% upper 1.69 0.87 1.15 1.09 –

ICC 0.94 0.95 0.95 0.98 0.96
IC-95% lower 0.85 0.86 0.87 0.95 0.91
IC-95% upper 0.98 0.98 0.98 0.99 0.98

CCC 0.92 0.93 0.94 0.97 0.94
IC-95% lower 0.77 0.80 0.81 0.91 0.82
IC-95% upper 0.97 0.98 0.98 0.99 0.98

ρ (precision) 0.93 0.93 0.94 0.97 0.94
Cb (accuracy) 0.99 0.99 0.99 0.99 0.99
SEM (cm) 1.37 1.31 1.22 0.70 1.18

IC-95% lower 1.03 0.99 0.92 0.53 1.00
IC-95% upper 2.07 1.99 1.85 1.06 1.47

CV (%) 5.03 4.70 4.37 2.48 4.21
SWC (cm) 0.39 0.37 0.34 0.20 0.33

IC-95% lower 0.29 0.28 0.26 0.15 0.28
IC-95% upper 0.59 0.56 0.52 0.30 0.42

IC-95%: confidence intervals at 95%; ICC: intraclass correlation coefficient; CCC: concordance coefficient corre-
lation; ρ: precision derived from CCC; Cb: accuracy derived from CCC; SEM: standard error of measurement;
CV: coefficient of variation; SWC: smallest worthwhile change.

In terms of noise, the SEM values were 1.18 cm (0.70 cm–1.37 cm) on average for the
forefoot. Furthermore, the signal-to-noise ratio was less than unity in both cases, implying
that the noise was greater than the minimum change in practical interest.

Internal consistency between consecutive attempts was analyzed using the Bland–
Altman analysis (Figure 5), which showed that all points were within the upper and lower
LoA. The systematic error showed values ranging from −0.7 to 0.04 cm.

On the other hand, the proportionality of the error was negligible as the slopes ob-
served for the fit lines varied from 3.10−3 to 0.08. The observation of regression plots
showed very strong and near perfect linear relationships between consecutive trials
(0.84–0.95), with slopes very near unity and intercepts ranging from −0.6 to −3.7 cm.
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Figure 5. Within-session consistency for consecutive trials. (Left) Bland–Altman plots for consecutive
pairs of jumps between ADR and MoCAP. The pointed line: the mean of the differences (systematic
error); dashed lines: the upper and lower LoA (random error); the continuous line: the ideal
agreement; the dashed and dotted line: the regression line of the differences (a proportional error);
Mean: mean of the differences; SD: standard deviation; dashed area: confidence intervals for 95% of
the LoAs and mean. (Right) Passing-Bablock regression for consecutive trials. The dotted line: linear
regression; SEE: standard error of the estimate.
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4. Discussion

This study aimed to test the criterion validity of the IR photocell ADR jumping device
against a MoCAP system in the estimation of the CMJ, as well as to determine the reliability
in the within-session test–retest of the device. To the best of our knowledge, this is the first
study to validate the ADR jumping device against a 3D MoCAP system. The main results of
this research show that the ADR jumping photocell is a valid instrument for measuring CMJ.

In terms of criterion validity, the Wilcoxon test for paired samples showed significant
differences concerning the MoCAP system (10.6 cm), with moderate ES. Likewise, near
perfect correlations (rs = 0.95) between the two devices were also observed. The correlations
obtained were in the same line as those obtained by other studies comparing photoelectric
sensors with jumping mats or force platforms [37,38,42]. Otherwise, the differences ob-
tained in these studies (systematic error) were smaller than those found by Attia et al. and
Rago et al. [20,41]. However, these studies did not use MoCAP as a reference system, and,
therefore, the comparisons would not be very adequate. Although all the methods have
been validated and their reliability tested, a systematic error between the force or jumping
platforms and the MoCAP systems was observed [49], which can add to or subtract from
that already obtained from other sources. The results of González-Conde et al. (2022) re-
vealed a substantially reduced systematic error of 0.84 cm, compared to the systematic error
found in the present study, despite having similar correlation values (r = 0.98) and both
studies utilizing the flight-time method to calculate jump height. This could indicate that
systematic errors are lower in studies utilizing the flight-time method compared to those
utilizing force plate as a criterion instrument [40,68]. Similarly, the degree of validity found
is in line with that found for other devices that use FT to estimate VJ height such as jump
mats [32,69] or photogrammetry [26,28,70,71]. Regarding the analysis of the Bland–Altman
plots, LoA ranging from 8 cm to 13 cm were observed, and all points were within the LoA,
indicating a small dispersion in the differences. Furthermore, the LoA were within the
maximum allowed differences between methods, and no heteroscedasticity was observed,
discarding the existence of proportional error in the measurement.

It should be added that the correlations obtained from the Passing–Bablok regression
model between ADR jumping and MoCAP were almost perfect, with random error values of
SEE 0.95 cm, which can be quantified as small, according to the standardized SEE of 0.2 [62].
Similarly, a fitting equation was obtained showing an intercept of 10.92 cm (systematic
error) and a slope of 0.991, very close to linearity meaning proportional error, similarly to
other photocells [32,37]. The CCC values indicated poor correlations (0.25), largely due to
the lack of precision (ρ) derived from the systematic error.

The differences found between ADR jumping and MoCAP may be due to the way the
two devices perform the estimation. While MoCAP tracks a marker located close to the
centre of mass, photocells are based on FT, and, therefore, the detection of the exact landing
and take-off point is crucial. Therefore, factors such as horizontal displacement during the
flight phase; the flexion of the ankle joint [38,40]; hip or knee in the landing phase; thickness
and flexibility of the contact surface [49]; and the angle of incidence of the photocell with
the foot, which can cause the signal to continue to be captured after take-off [40], can be
sources of error.

Either way, the ADR jumping can be considered, in general terms, as a valid tool,
interpreting this criterion validity according to the values observed and the coherent results
with other studies carried out on photocells. In any case, the criterion validity may have
been affected by the way the emitted infrared beam was cut by the foot, and it would be
interesting to study the effect of this variable in future research. The high systematic bias
found could imply that the CMJ height measurements were not interchangeable between
the ADR jump and the MoCAP system (gold standard). However, in this study, it has been
possible to determine the adjustment equation HMoCAP = 10.921 + 0.991·HADR (cm) that
allows predicting the MoCAP heights from the ADR jumping values. This equation allows
the observed systematic error to be corrected, thus the data obtained by ADR can be easily
compared with those obtained by MoCAP.
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Focusing attention on the internal consistency of ADR jumping (whithin-session va-
lidity), this study has shown high consistency in the measurement for the ADR jumping
photocell, observing near perfect ICC values and high CCC values for the mean of consecu-
tive pairs of trials. Additionally, it was observed that the instrument showed near perfect
correlations in all pairings (ICC of 0.94–0.98 and CCC of 0.92 to 0.97) and random errors of
SEM = 1.18 cm. These results are in agreement to other studies that found near perfect ICC
for Optojump photocells (ICC = 0.98; CV = 2.2% and SEM = 2.43 cm) [40], the Wheeler Jump
photoelectric sensor (CV = 1.5% and SEM = 1.33 cm) [42], Fijump (ICC = 0.97; CV = 2.3%
and SEM = 1.30 cm) [37], or the ADR jumping itself that has ICC values of 0.89 and a SEM
of 0.7 cm. On the other hand, the SEE values observed for ADR jumping are larger than
those observed for the Fitjump device (1.10–1.60 cm) [37]. In contrast, it should be noted
that consistency was examined from data from sessions separated by 7 days (inter-session
reliability) in these studies, which may explain the lower ICC observed in other studies [43],
as variability may increase due to biological or environmental factors as the time interval
between repetitions increases [1,72].

Finally, the sensitivity of ADR jumping showed SWC values of 0.33 cm. As can be seen,
the SEM noise is greater than the minimum change in practical interest, thus the reliability
of this device may be questioned in those populations in which very small changes affect
performance, such as highly trained athletes.

Limitations

The limitation of using a sample of highly trained women only in this study should be
considered when extrapolating the results to other populations. Further studies evaluating
the criterion validity and reliability of the instrument in diverse populations (including
gender, age, and training level variations) are recommended for a more comprehensive
understanding of its utility. In addition, jump height was calculated in our study as the
difference between the CoM position at the apex of the jump and its position during
standing, using a sacral marker in the pelvis as an approximation of the CoM. While a
single marker serves as a good approximation of the CoM [73], future studies should aim
to enhance the accuracy of CoM tracking. Three-dimensional MoCAP allows calculating
the actual CoM by tracking the position and orientation of body segments of the whole
body. Alternatively, the use of force plates can determine the vertical jump height through
the measurement of reaction forces generated during takeoff. This method provides a
more comprehensive understanding of the body’s movements and can greatly improve the
accuracy of CoM analysis.

The fact that our results showed a bias of 10.6 cm photocells with respect to motion
capture is explained by the different methods used to measure jump height. The flight-time
method underestimates jump height by approximately 10 to 12 cm [74,75], compared to
methods that more directly determine jump height [15,75,76], such as motion capture. In
our study, the ankle extension amplitude was not considered in the calculation of jump
height as every athlete was monitored to perform with ankle and knee joints fully extended
at take-off and landing. However, jump height was computed as the distance between
CoM during standing and the apex of the jump, contrary to the distance between CoM
at take-off and the apex [77]. Wade et al. [49] reported that the displacement of heel lift
during takeoff influences the jump height measures obtained using the flight-time method,
which can account for the observed systematic bias in our study.

5. Conclusions

Our study has shown that the ADR jumping photocell is an accurate method for es-
timating CMJ in highly trained female volleyball players of the Spanish Superliga 2, as
long as the correction equation HMoCAP = 10.921 + 0.991·HADR (cm) is used to address the
systematic bias identified. In this simple way, CMJ height data can be obtained interchange-
ably with MoCAP data, thus users may have jump height values that can be exchanged or
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compared with MoCAP data. Furthermore, the instrument is shown to be a consistent tool
in the measurement of a within-session CMJ.

From a practical point of view, ADR jumping is recommended for use by physical
activity and sports specialists as a valid and reliable tool for the assessment and control
of CMJ height, considering the relevant fitting equations if the data captured are to be
compared with those obtained by other measuring instruments.
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Measuring Vertical Jump in Primary School Children. Int. J. Environ. Res. Public Health 2020, 17, 3708. [CrossRef]

9. Cruvinel-Cabral, R.M.; Oliveira-Silva, I.; Medeiros, A.R.; Claudino, J.G.; Jiménez-Reyes, P.; Boullosa, D.A. The Validity and
Reliability of the “My Jump App” for Measuring Jump Height of the Elderly. PeerJ 2018, 2018, e5804. [CrossRef]

10. Singh, H.; Kim, D.; Kim, E.; Bemben, M.G.; Anderson, M.; Seo, D.I.; Bemben, D.A. Jump Test Performance and Sarcopenia Status
in Men and Women, 55 to 75 Years of Age. J. Geriatr. Phys. Ther. 2014, 37, 76–82. [CrossRef]

11. Villalon-Gasch, L.; Penichet-Tomas, A.; Sebastia-Amat, S.; Pueo, B.; Jimenez-Olmedo, J.M. Postactivation Performance En-
hancement (PAPE) Increases Vertical Jump in Elite Female Volleyball Players. Int. J. Environ. Res. Public Health 2022, 19, 462.
[CrossRef]

12. Alba-Jiménez, C.; Moreno-Doutres, D.; Peña, J. Trends Assessing Neuromuscular Fatigue in Team Sports: A Narrative Review.
Sports 2022, 10, 33. [CrossRef] [PubMed]

13. Wade, L.; Needham, L.; McGuigan, M.P.; Bilzon, J.L.J. Backward Double Integration Is a Valid Method to Calculate Maximal and
Sub-Maximal Jump Height. J. Sport. Sci. 2022, 40, 1191–1197. [CrossRef]

14. Linthorne, N.P. Analysis of Standing Vertical Jumps Using a Force Platform. Am. J. Phys. 2001, 69, 1198–1204. [CrossRef]
15. Buckthorpe, M.; Morris, J.; Folland, J.P. Validity of Vertical Jump Measurement Devices. J. Sport. Sci. 2012, 30, 63–69. [CrossRef]
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