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Abstract. In this paper we introduce the notion of almost equality (or, more specif-
ically, almost equality by translations) of complex functions of an unrestricted real
variable in terms of the new concept of ε-translation number of a function with
respect to other one, which is inspired by Bohr’s notion of ε-translation number as-
sociated with an almost periodic function. We develop the main properties of this
new class of functions and obtain a characterization through a very important equiv-
alence relation which we introduced in previous papers in the context of the almost
periodicity.
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1. Introduction. The theory of almost periodic functions was introduced in
its main features by H. Bohr during the 1920’s and it shortly acquired numerous
applications to various areas of mathematics, from harmonic analysis to differential
equations. Some important references on the basic ingredients of this theory are
[2, 3, 4, 5, 6, 7, 9, 10].

We emphasize that the definition given by Harald Bohr of an almost periodic
function is based upon two properly generalized concepts: the periodicity to the
so-called almost periodicity, and the periodic distribution of periods to the so-
called relative density of ε-almost periods or ε-translation numbers. Specifically,
let f : R 7→ C be a complex function of an unrestricted real variable, the notion
of almost periodicity involves the fact that f(x) must be continuous, and for every
ε > 0 there corresponds a number l = l(ε) > 0 such that any interval of length l
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contains a number τ satisfying

sup{|f(x+ τ)− f(x)| : x ∈ R} ≤ ε (1)

(or also |f(x+ τ)− f(x)| < ε for all x). In fact, a number τ satisfying (1) is called
an ε−almost period or a ε-translation number of the function f . We will denote as
AP (R,C) the space of almost periodic functions in the sense of this definition. As in
classical Fourier analysis, every function in AP (R,C) is bounded and is associated
with a Fourier series with real frequencies.

In this framework, we established in 2018 a new equivalence relation on the
classes of almost periodic functions (and more generally in the context of the func-
tions which can be represented by certain exponential sums, as in the case of the
Besicovitch space B(R,C)) which led to refining Bochner’s result that characterizes
these spaces of functions and to an extension of Bohr’s equivalence theorem (see
for instance [11, 12, 13, 14, 15, 16]). This equivalence relation, which we will here
call ∗-equivalence or SV-equivalence, is defined in the following terms:

Definition 1.1. Given an arbitrary countable set Λ = {λ1, λ2, . . . , λj , . . .} of dis-
tinct real numbers (which we will call exponents or frequencies), consider A1(p)
and A2(p) two exponential sums of the form

A1(p) =
∑
j≥1

aje
λjp and A2(p) =

∑
j≥1

bje
λjp, with aj , bj ∈ C, λj ∈ Λ,

where p is a parameter (which could also adopt the form ip, with i the imaginary
unit). We will say that A1 is ∗-equivalent to A2 (or A1 is SV-equivalent to A2) if
for each integer value n ≥ 1, with n ≤ ♯Λ (♯Λ denotes the cardinal of the set Λ),
there exists a Q-linear map ψn : Vn → R, where Vn is the Q-vector space generated
by {λ1, λ2, . . . , λn}, such that

bj = aje
iψn(λj), j = 1, . . . , n.

We will write A1
∗∼ A2.

Also, let f1 and f2 be two almost periodic functions in AP (R,C) whose associated
Fourier series have the same set of frequencies or exponents. We will say that f1
is ∗-equivalent to f2 (or f1 is SV-equivalent to f2) when their associated Fourier
series satisfy the previous definition.

In comparison with the concept of ε-translation number and almost periodicity,
in this paper we introduce the notion of almost equality by translations (or simply
almost equality) which is defined in terms of the relative density of the set of ε-
translation numbers of a function with respect to other one (see Definitions 2.1 and
2.4).

We develop the main basic properties of this new class of functions (see for
example Lemma 2.6 and Proposition 4.4). In particular, we show that the almost
equality connects the property of uniform continuity and almost periodicity of
the underlying functions (see Lemma 4.1). In fact, under the assumption of the
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continuity of at least one of the involving functions, we show that the almost
equal functions are uniformly continuous and bounded on R (see Proposition 4.2)
and we demonstrate that the properties of SV-equivalence and almost equality are
equivalent, which is our main result (see Theorem 4.6). This means that the SV-
equivalence in AP (R,C) can be characterized in terms which are more practical
than those of Definition 1.1 (in fact, in terms which are similar to those used by
Bohr to define the almost periodicity). Finally, as a consequence of our main result,
we prove the ∗-equivalence of the product by scalars, the conjugates or the powers
of ∗-equivalent functions in AP (R,C) (see Corollary 4.8) or the ∗-equivalence of
the uniform limits of two sequences formed by functions in AP (R,C) which are
∗-equivalent pairwise (see Corollary 4.10).

2. Definition of ε-translation numbers and almost equal functions. In-
spired by the previous research work, we next consider a condition which is an
adaptation of the concept of an ε-translation number (or an ε-almost period) as-
sociated with a unique function.

Definition 2.1. (ε-translation number of f2 with respect to f1) Consider
f1, f2 : R 7→ C to be two complex functions, and consider ε > 0. A real num-
ber τ satisfying

supx∈R |f2(x+ τ)− f1(x)| ≤ ε (2)

will be called an ε-translation number of f2 with respect to f1.

The existence of a relatively dense set of ε-translation numbers of f2 with respect
to f1 would yield the existence of a positive number l > 0 such that all the intervals
in R of length l > 0 contain at least one real value τ satisfying (2).

Remark 2.2. Note that τ is an ε-translation number of f2 with respect to f1 if
and only if −τ is an ε-translation number of f1 with respect to f2. Indeed, if we
take t = x+ τ , it is clear that

supx∈R |f2(x+ τ)− f1(x)| = supt∈R |f1(t− τ)− f2(t)|.

Remark 2.3. Fix c ∈ C \ {0}. If τ is an ε-translation number of f2 with respect
to f1, then it is clear that:

i) τ is also an ε · |c|-translation number of cf2 with respect to cf1.

ii) τ is also an ε-translation number of f2 with respect to f1 (the conjugate
functions).

For the next key definition in this paper, we recall that a set T of real numbers
is said to be relatively dense if there exists l > 0 such that any interval (α, α + l)
intersects with T .

Definition 2.4. (Almost equal functions) Let f1, f2 : R 7→ C be two complex
functions. We will say that f1 and f2 are almost equal by translations (or, simply,
almost equal) if to every positive number ε there corresponds a relatively dense
set of ε-translation numbers of f2 with respect to f1 (or, equivalently, a relatively
dense set of ε-translation numbers of f1 with respect to f2).
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Remark 2.5. The notion of almost equality between two complex functions f1
and f2 is well defined in view of the property of symmetry motivated by Remark
2.2. That is, f1 is almost equal to f2 if and only if f2 is almost equal to f1. That
is why we will say that f1 and f2 are almost equal.

Moreover, the property of transitivity also holds in the sense that if f1 and f2 are
almost equal and if f2 and f3 are also almost equal, then f1 and f3 are almost
equal. In fact, if τ1 is an ε

2 -translation number of f2 with respect to f1 and if τ2 is
an ε

2 -translation number of f3 with respect to f2, then τ1 + τ2 is an ε-translation
number of f3 with respect to f1. Indeed, we have

supx∈R |f3(x+ τ1 + τ2)− f1(x)|
≤ supx∈R |f3(x+ τ1 + τ2)− f2(x+ τ1)|+ supx∈R |f2(x+ τ1)− f1(x)|.

Finally, it is worth noting that the reflexivity holds when we handle complex func-
tions for which to every ε > 0 there corresponds a relatively dense set of ε-almost
periods. Hence f ∈ AP (R,C) is almost equal to itself in virtue of Bohr’s notion of
almost periodicity. This means that, under this hypothesis of existence of relatively
dense sets of ε-almost periods, the notion of almost equality could also be treated
as an equivalence relation.

The following basic result will be useful for the next sections of our paper.

Lemma 2.6. Let f1, f2 : R 7→ C be two almost equal functions. Then it is satisfied
that:

i) If f2(x) is continuous (on the whole R), then f1(x) is bounded (on the whole
R).

ii) If f1(x) is continuous (on the whole R), then f2(x) is bounded (on the whole
R).

Proof. Fix ε = 1. By hypothesis, we know that every interval of a certain length
l > 0 contains at least one real value τ satisfying (6) or, equivalently, it satisfies
the condition supx∈R |f1(x− τ)− f2(x)| < 1.

i) Suppose first that f2(x) is continuous on R, and denote by M the maximum of
|f2(x)| in the interval [0, l]. If x ∈ R, we can assure the existence of τx ∈ [−x,−x+l)
satisfying (6), which yields that x+ τx ∈ [0, l) and consequently |f2(x+ τx)| ≤M .
Hence

|f1(x)| ≤ |f1(x)− f2(x+ τx)|+ |f2(x+ τx)| ≤ 1 +M,

for all values of x.

ii) If we suppose second that f1(x) is continuous on R, then we deduce by symmetry
that the function f2(x) is bounded. In fact, if we denote by K the maximum
of |f1(x)| in the interval [0, l], then any x ∈ R can be associated with a value
τx ∈ (x − l, x] satisfying supx∈R |f1(x − τx) − f2(x)| < 1 and with x − τx ∈ [0, l).
Consequently |f1(x− τ)| ≤ K and

|f2(x)| ≤ |f2(x)− f1(x− τx)|+ |f1(x− τx)| ≤ 1 +K,
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for all values of x. 2

3. First connection between ∗-equivalent almost periodic functions and
almost equal functions. We next show that the ∗-equivalence of almost periodic
functions leads to the property of almost equality.

Lemma 3.1. Let f1, f2 : R 7→ C be two complex functions such that at least one
of them is in AP (R,C) and f1

∗∼ f2. Then f1 and f2 are almost equal functions.

Proof. Suppose first that f2 ∈ AP (R,C). Then f2 is associated with a Fourier
series with some set Λ of frequencies or exponents. Let FΛ be the class of functions
in AP (R,C) whose Fourier exponents coincide with Λ, and let G be the equivalence

class in FΛ/
∗∼ such that f2 ∈ G. Also, consider f1

∗∼ f2. Since the set of translates
of f2 is dense in G (see [11, Theorem 2 and Corollary 3]), there exists an increasing
unbounded sequence {δn}n≥1 of positive numbers such that the sequence of func-
tions {f2(x+δn)}n≥1 converges uniformly on R to f1(x). Equivalently, given ε > 0
there exists n0 ∈ N such that

|f2(x+ δn)− f1(x)| < ε/2 ∀n ≥ n0, ∀x ∈ R.

Moreover, since f2(x) is in AP (R,C), there exists l = l(ε) > 0 such that any
interval (a, a+ l) contains a number γ satisfying |f2(x+ γ)− f2(x)| < ε/2 ∀x ∈ R.
Hence any interval (a, a+ l) contains a number γ satisfying

|f2(x+ δn + γ)− f1(x)|
≤ |f2(x+ δn + γ)− f2(x+ δn)|+ |f2(x+ δn)− f1(x)| < ε ∀n ≥ n0, ∀x ∈ R,

which proves the existence of a relatively dense set of positive numbers τ (of the
form γ + δn, with n ≥ n0) such that

supx∈R |f2(x+ τ)− f1(x)| ≤ ε.

In the case that f1 ∈ AP (R,C) and f2
∗∼ f1, we analogously prove the existence

of an increasing unbounded sequence {δn}n≥1 of positive numbers such that the
sequence of functions {f1(x + δn)}n≥1 converges uniformly on R to f2(x). This
means that, given ε > 0, there exists n0 ∈ N such that

|f1(x+ δn)− f2(x)| < ε/2 ∀n ≥ n0, ∀x ∈ R.

Moreover, since f1(x) is in AP (R,C), there exists l = l(ε) > 0 such that any
interval (a, a+ l) contains a number γ satisfying |f1(x+ γ)− f1(x)| < ε/2 ∀x ∈ R.
Hence any interval (a, a+ l) contains a number γ satisfying

|f1(x+ δn + γ)− f2(x)|
≤ |f1(x+ δn + γ)− f1(x+ δn)|+ |f1(x+ δn)− f2(x)| < ε ∀n ≥ n0, ∀x ∈ R,
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which proves the existence of a relatively dense set of positive numbers τ (of the
form γ + δn, with n ≥ n0) such that

supx∈R |f1(x+ τ)− f2(x)| ≤ ε,

i.e. τ is an ε-translation number of f1 with respect to f2 or, equivalently, −τ is an
ε-translation number of f2 with respect to f1. This proves the result. 2

We next prove that the converse of the lemma above is also true, which leads to
a characterization of the property of almost equality (and the ∗-equivalence) under
the hypothesis that at least one of the functions is in AP (R,C) (we will improve
this result in Theorem 4.6).

Theorem 3.2. Let f1, f2 : R 7→ C be two complex functions such that at least one
of them is in AP (R,C). Then f1 is ∗-equivalent to f2 if and only if f1 and f2 are
almost equal.

Proof. If f1
∗∼ f2 and at least one of them is in AP (R,C), the direct implication

is a consequence of Lemma 3.1.
Conversely, suppose first that f2 ∈ AP (R,C), and let G be the equivalence class

in FΛ/
∗∼ such that f2 ∈ G, where FΛ is the class of functions in AP (R,C) whose

Fourier exponents are given by a set Λ. Also, suppose the existence of a relatively
dense set of real numbers τ satisfying

supx∈R |f2(x+ τ)− f1(x)| ≤ ε.

Hence we can extract a sequence {τn}n such that {gn(x) := f2(x+ τn)}n tends to
f1(x) with respect to the topology of the uniform convergence on R. This means
that f1 is a limit point of the set of translates of f2 and, consequently, f1 ∈ G (in

particular, it is in AP (R,C)), i.e. f1
∗∼ f2 (see [11, Corollary 2]).

In the case that f1 ∈ AP (R,C), the condition to every ε > 0 there corresponds a
relatively dense set of real numbers τ satisfying

supx∈R |f2(x+ τ)− f1(x)| ≤ ε

is equivalent to
supt∈R |f1(t− τ)− f2(t)| ≤ ε,

which also leads to the result in an analogous way. 2

4. Main characterization and properties of the almost equal functions.
As we next show, the almost equality connects the property of uniform continuity
and almost periodicity of the underlying functions.

Lemma 4.1. Let f1, f2 : R 7→ C be two almost equal functions. Then it is satisfied
that:
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i) f1 is uniformly continuous on R if and only if f2 is uniformly continuous on
R.

ii) f1 ∈ AP (R,C) if and only if f2 ∈ AP (R,C).

Proof. i) Fix ε > 0. By hypothesis, there corresponds a relatively dense set of
real numbers τ satisfying

supx∈R |f2(x+ τ)− f1(x)| ≤
ε

3
. (3)

If f2 is uniformly continuous on R, then so is f1. Indeed, given ε > 0, there exists
δ2 > 0 such that |f2(x) − f2(y)| < ε

3 if |x − y| < δ2. In this way, if x, y ∈ R with
|x− y| < δ2 then

|f1(x)−f1(y)| ≤ |f1(x)−f2(x+τ)|+ |f2(x+τ)−f2(y+τ)|+ |f2(y+τ)−f1(y)| < ε,
(4)

where τ is a real number satisfying (3). Conversely, suppose that f1 is uniformly
continuous on R, which yields the existence of δ1 > 0 such that |f1(x)− f1(y)| < ε

3
if |x− y| < δ1 (for a prefixed ε > 0). In this way, if x, y ∈ R with |x− y| < δ1 then

|f2(x)−f2(y)| ≤ |f2(x)−f1(x−τ)|+ |f1(x−τ)−f1(y−τ)|+ |f1(y−τ)−f2(y)| < ε,
(5)

where τ is a real number satisfying supt∈R |f1(t−τ)−f2(t)| ≤ ε, which is equivalent
to the condition (3).

ii) If f1 ∈ AP (R,C), then Theorem 3.2 shows that f1
∗∼ f2, which yields that

f2 ∈ AP (R,C) (see also [11, Lemma 2]). The converse is analogous. 2

We next show that the continuity of one of the two functions which are almost
equal leads to the uniform continuity and boundedness of both of them.

Proposition 4.2. Let f1, f2 : R 7→ C be two almost equal functions. If at least
one of the functions f1(x) or f2(x) is continuous (on R), then f1(x) and f2(x) are
uniformly continuous and bounded (on R).

Proof. Suppose first that f2(x) is continuous (on the whole R), and fix ε > 0.
Let l > 0 be the positive number for which every interval in R of length l contains
at least one ε

3 -translation number of f2 with respect to f1. We know that f2(x) is
uniformly continuous on the compact set [−1, 1 + l], which means that there is a
positive number δ (which we assume to be less than 1) such that |f2(x1)−f2(y1)| <
ε
3 whenever |x1− y1| < δ with x1, y1 ∈ [−1, 1+ l]. Let now x and y be any two real
numbers such that |x − y| < δ (that is, −δ < x − y < δ). Thus we can assure the
existence of a real value τ ∈ [−x,−x+ l) satisfying supx∈R |f2(x+ τ)− f1(x)| ≤ ε

3 .
Moreover, it is also satisfied y + τ ∈ [−x+ y,−x+ y + l), which yields −1 < −δ <
y + τ < δ + l < 1 + l. Hence the real values x + τ and y + τ are in the interval
[−1, 1 + l] and we have |f2(x+ τ)− f2(y + τ)| < ε

3 . Consequently,

|f1(x)−f1(y)| ≤ |f1(x)−f2(x+τ)|+|f2(x+τ)−f2(y+τ)|+|f2(y+τ)−f1(y)| ≤ 3
ε

3
= ε.
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Suppose second that f1(x) is continuous (on R). Then we deduce by symmetry
that the function f2(x) is uniformly continuous. Indeed, by repeating the same
argument as above, we know that f1(x) is also uniformly continuous on the compact
set [−1, 1 + l], i.e., given ε > 0, there is a positive number δ (which we assume to
be less than 1) such that |f1(x1) − f1(y1)| < ε

3 whenever |x1 − y1| < δ with
x1, y1 ∈ [−1, 1+ l]. Let now x and y be any two real numbers such that |x− y| < δ
(that is, −δ < x − y < δ). Thus we can assure the existence of a real value
τ ∈ (x− l, x] (that is, −τ ∈ [−x,−x+ l)) satisfying supx∈R |f2(x)− f1(x− τ)| ≤ ε

3 .
Moreover, it is also satisfied x− τ ∈ [0, l] and y − τ ∈ [−x+ y,−x+ y + l), which
yields −1 < −δ < y − τ < δ + l < 1 + l. Hence the real values x− τ and y − τ are
in the interval [−1, 1 + l] and we have |f1(x− τ)− f1(y − τ)| < ε

3 . Consequently,

|f2(x)−f2(y)|≤ |f2(x)−f1(x−τ)|+|f1(x−τ)−f1(y−τ)|+|f1(y−τ)−f2(y)|≤3
ε

3
= ε.

Finally, we deduce from Lemma 4.1, point i), that both functions f1(x) and f2(x)
are uniformly continuous (on R). Moreover, by Lemma 2.6, they are also bounded
(on the whole R). 2

As a consequence of the proposition above, we can prove that the set of the ε-
translation numbers of a function with respect to the another one contains intervals
of a certain length centered at every point which is an ε1-translation number with
0 < ε1 < ε.

Corollary 4.3. Let f1, f2 : R 7→ C be two almost equal functions, and suppose
that at least one of them is continuous (on R). Given ε2 > 0, consider a positive
number ε1 < ε2. Then for any ε1-translation number of f2 with respect to f1, say
τε1 , there exists δε1,ε2 > 0 (which only depends on ε1 and ε2) such that every point
in the open interval (τε1 − δε1,ε2 , τε1 + δε1,ε2) is an ε2-translation number of f2 with
respect to f1.

Proof. By Proposition 4.2, we know that f1(x) and f2(x) are uniformly continuous
on the whole R. In particular, given ε = ε2 − ε1 > 0 there exists δ > 0 such that
|f2(x)−f2(y)| < ε whenever |x−y| < δ with x, y ∈ R. Now, consider a real number
τ satisfying supx∈R |f2(x+ τ)− f1(x)| ≤ ε1. If η ∈ R is so that |η− τ | < δ (that is,
η ∈ (−δ + τ, δ + τ)), then

supx∈R |f2(x+ η)− f1(x)|
≤ supx∈R |f2(x+ η)− f2(x+ τ)|+ supx∈R |f2(x+ τ)− f1(x)| ≤ ε+ ε1 = ε2.

This means that η is an ε2-translation number of f2 with respect to f1. 2

Some basic properties of the set of almost equal functions are now immediately
deduced from Remark 2.3 and Proposition 4.2.

Proposition 4.4. Let f1, f2 : R 7→ C be two almost equal functions. Then it is
satisfied that:
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i) Given c ∈ C, the functions cf1 and cf2 are almost equal.

ii) The functions f1 and f2 are almost equal.

iii) Let k ∈ N. If at least one of the functions f1(x) or f2(x) is continuous (on
R), then the functions fk1 and fk2 are almost equal.

iv) If inf{|f1(x)| : x ∈ R} > 0 and inf{|f2(x)| : x ∈ R} > 0, then the functions
1
f1

and 1
f2

are almost equal.

Proof. The two first statements are a consequence of Remark 2.3.

The property iii) derives from Proposition 4.2 and the fact that, given ε > 0, the
real values τ which are ε-translation numbers of f2 with respect to f1 satisfy

supx∈R |fk2 (x+ τ)− fk1 (x)|
= supx∈R |f2(x+ τ)k−1 + f2(x+ τ)k−2f1(x) + . . .

. . .+ f2(x+ τ)f1(x)
k−2 + f1(x)

k−1||f2(x+ τ)− f1(x)|
≤ (Mk−1

2 +M1M
k−2
2 + . . .+Mk−2

1 M2 +Mk−1
1 )ε,

where M1 = sup{|f1(x)| : x ∈ R} < ∞ and M2 = sup{|f2(x)| : x ∈ R} < ∞ (see
also Proposition 4.2).

Finally, concerning the property iv), we note that the real values τ which are
ε-translation numbers of f2 with respect to f1 satisfy

supx∈R

∣∣∣∣ 1

f2(x+ τ)
− 1

f1(x)

∣∣∣∣ = supx∈R

∣∣∣∣f1(x)− f2(x+ τ)

f1(x)f2(x+ τ)

∣∣∣∣ ≤ ε

m1m2
,

where m1 = inf{|f1(x)| : x ∈ R} > 0 and m2 = inf{|f2(x)| : x ∈ R} > 0. This
proves that the set of ε-translation numbers of 1

f2
with respect to 1

f1
is relatively

dense. 2

Proposition 4.5. Let {fk}k≥1 and {gk}k≥1, with fk, gk : R 7→ C, be two se-
quences of complex functions converging uniformly on R to f(x) and g(x), respec-
tively. If the functions fk and gk are almost equal for each k ≥ 1, then f and g are
also almost equal.

Proof. By hypothesis, given ε > 0 there exists n0 ∈ N such that |f(x)−fn(x)| < ε
3

and |g(x)− gn(x)| < ε
3 for each n ≥ n0 and all x ∈ R. Now, let τ be a real number

satisfying

supx∈R |fn0(x+ τ)− gn0(x)| ≤
ε

3
.

Thus

supx∈R |f(x+ τ)− g(x)| ≤ supx∈R |f(x+ τ)− fn0(x+ τ)|+
+ supx∈R |fn0

(x+ τ)− gn0
(x)|+

+ supx∈R |gn0(x)− g(x)|

≤ 3
ε

3
= ε.
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This proves the result. 2

Under very weak conditions on the underlying functions, we next improve The-
orem 3.2 by obtaining a characterization of the almost equality of two complex
functions through the ∗-equivalence in AP (R,C). Therefore, at the same time, we
obtain a characterization of the ∗-equivalence in AP (R,C) in terms of the property
of almost equality of two complex functions (or, equivalently, through the set of
ε-translation numbers of a function with respect to the another one, i.e. in terms
which are similar to Bohr’s notion of almost periodicity).

Theorem 4.6. (Main result) Let f1, f2 : R 7→ C be two complex functions such
that at least one of them is continuous. Then f1 is ∗-equivalent to f2, with f1, f2 ∈
AP (R,C), if and only if f1 and f2 are almost equal.

Proof. The direct implication is a consequence of Lemma 3.1.

Conversely, suppose that to every ε > 0 there corresponds a relatively dense set of
real numbers τ satisfying

supx∈R |f2(x+ τ)− f1(x)| ≤
ε

3
, (6)

which yields that any interval of a certain length l > 0 contains at least one real
value τ satisfying (6). By Proposition 4.2, we know that both functions f1(x) and
f2(x) are uniformly continuous on R, i.e., given ε > 0, there exist δ1, δ2 > 0 such
that |f1(x) − f1(y)| < ε

3 if |x − y| < 2δ1 and |f2(x) − f2(y)| < ε
3 if |x − y| < 2δ2.

Now, consider a sequence of real numbers {hj}j≥1. Since any interval (hj − l, hj)
contains a real value τj satisfying (6), then every hj can be represented in the form
hj = τj + rj , where 0 ≤ rj ≤ l. In this way, by Bolzano-Weierstrass theorem,
take r a limit point of the bounded set {r1, r2, . . .}. Now, consider the set of all
hj = τj + rj for which r− δ1 < rj < r+ δ1 (which form a subsequence of the initial
sequence {hj}j≥1). If hj and hk are two such values, then |rj − rk| < 2δ2 and

sup{|f2(x+ hj)− f2(x+ hk)| : x ∈ R}
= sup{|f2(t+ hj − hk)− f2(t)| : t ∈ R}
= sup{|f2(t+ rj − rk + τj − τk)− f2(t)| : t ∈ R}
≤ sup{|f2(t+ rj − rk + τj − τk)− f2(t+ τj − τk)| : t ∈ R}

+ sup{|f2(t+ τj − τk)− f2(t)| : t ∈ R}

≤ ε

3
+sup{|f2(t+ τj − τk)− f1(t− τk)| : t ∈ R}+sup{|f1(t− τk)− f2(t)| : t ∈ R}

≤ ε

3
+
ε

3
+
ε

3
= ε.

Consequently, given any sequence of real numbers {hj}j≥1, it is clear that there
exists a subsequence {hjk}k≥1 such that the sequence of functions {f2(x+hjk)}k≥1

is uniformly convergent on R (see also the proof of [2, p. 11, 3◦. Theorem]). This
means that f2 satisfies the property of normality and hence it is in AP (R,C). Fi-
nally, the fact that f1 is ∗-equivalent to f2 is a consequence of Theorem 3.2. 2
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Remark 4.7. It is worth noting that if f1, f2 : R 7→ C are two complex functions
such that at least one of them is continuous, then the converse of our main result
states that the almost equality of both functions yields particularly that f1 and
f2 are almost periodic, i.e. f1, f2 ∈ AP (R,C) (and hence both functions are also
uniformly continuous and bounded). Furthermore, under the same requirements,
f1 and f2 are also ∗-equivalent in AP (R,C).

As a consequence of Theorem 4.6, we can directly prove the following result.

Corollary 4.8. Let f1, f2 : R 7→ C be two complex functions. If f1 is
∗-equivalent

to f2, with f1, f2 ∈ AP (R,C), then

i) cf1 is ∗-equivalent to cf2 for any c ∈ C.

ii) f1 is ∗-equivalent to f2.

iii) fk1 is ∗-equivalent to fk2 for each k ∈ N.

iv) If inf{|f1(x)| : x ∈ R} > 0 and inf{|f2(x)| : x ∈ R} > 0, then fk1 is
∗-equivalent to fk2 for each k ∈ Z.

Proof. By hypothesis, we know that both functions f1 and f2 are in AP (R,C),
which yields that they (and also the powers fk1 and fk2 ) are continuous. Hence the
result is a direct consequence of Theorem 4.6 and Proposition 4.4. 2

For the following remark, we recall that it was demonstrated in [11, Proposition
1’ (mod.)] or [12, Proposition 1] that the ∗-equivalence can be characterized in
terms of a basis GΛ = {g1, g2, . . . , gk, . . .} of the Q-vector space generated by a set
Λ = {λ1, λ2, . . .} of exponents, i.e. GΛ is linearly independent over the rational
numbers and each λj is expressible as a finite linear combination of terms of GΛ,
say

λj =

ij∑
k=1

rj,kgk, for some rj,k ∈ Q, ij ∈ N. (7)

Indeed, two exponential sums A1(p) =
∑
j≥1 aje

λjp and A2(p) =
∑
j≥1 bje

λjp are
∗-equivalent if and only if for each integer value n ≥ 1, with n ≤ ♯Λ, there exists
xn = (xn,1, xn,2, . . . , xn,k, . . .) ∈ R♯GΛ such that bj = aje

<rj ,xn>i for j = 1, 2, . . . , n,
where rj ∈ R♯GΛ is the vector of rational components satisfying (7). In particular,
note that the modulus of the coefficients aj and bj of

∗-equivalent exponential sums
are equal pairwise.

Remark 4.9. If f1 is ∗-equivalent to f2 and g1 is ∗-equivalent to g2, with f1, f2, g1,
g2 ∈ AP (R,C), then it is not necessarily true that f1 · g1 is ∗-equivalent to f2 · g2
(and the same for the sum, i.e. f1 + g1 is not necessarily ∗-equivalent to f2 + g2).
For example, consider the complex functions

f1(x) = eix ln 2 + eix ln 3 + eix ln 4 and f2(x) = −eix ln 2 + eix ln 3 + eix ln 4.
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Then f1 and f2 are
∗-equivalent (indeed, take Λ = {ln 2, ln 3, ln 4}, GΛ = {ln 2, ln 3},

r1 = (1, 0), r2 = (0, 1), r3 = (2, 0) and x0 = (π, 2π) in the characterization above).
Also, consider the complex functions

g1(x) = g2(x) = −eix ln 2 − eix ln 3 + eix ln 4,

which are of course ∗-equivalent. However, it is clear that

(f1 · g1)(x) = −eix ln 4 − 2eix ln 6 − eix ln 9 + eix ln 16

is not ∗-equivalent to

(f2 · g2)(x) = eix ln 4 − 2eix ln 8 − eix ln 9 + eix ln 16.

Moreover, it is also clear that

(f1 + g1)(x) = 2eix ln 4

is not ∗-equivalent to

(f2 + g2)(x) = −2eix ln 2 + 2eix ln 4.

Finally, the following result is a direct consequence of Theorem 4.6 and Propo-
sition 4.5 (recall that the functions in AP (R,C) are uniformly continuous).

Corollary 4.10. Let {fk}k≥1 and {gk}k≥1, with fk, gk : R 7→ C, be two se-
quences of complex functions converging uniformly on R to f(x) and g(x), respec-
tively. Suppose that fk is ∗-equivalent to gk, with fk, gk ∈ AP (R,C), for each
k ∈ N. Then f is ∗-equivalent to g.

Remark 4.11. (Some extensions) The main definitions and results in this paper
have been formulated for the case of complex functions of an unrestricted real
variable and with respect to the topology of the uniform convergence (which leads
to the spaces of Bohr’s almost periodic functions AP (R,C)). That is why we use
the absolute value (or the modulus) in the initial definition of ε-translation number
of a function with respect to other one (see Definition 2.1). However, we could go
further by generalizing this development to the context of several spaces of locally
integrable maps from R to C satisfying certain characteristics. In particular, this
extension can be formulated for the case of the spaces of almost periodic functions
in Stepanov’s sense Sp(R,C), 1 ≤ p <∞, where we must replace the supremum or
uniform norm by the norm

∥f∥Sp := sup

{(∫ r+1

r

|f(t)|p dt
)1/p

: r ∈ R

}
,

or, more generally, to the context of almost periodic functions in Weyl’s sense
W p(R,C) (⊃ Sp(R,C)), 1 ≤ p <∞, where it is considered the seminorm

∥f∥Wp := lim
l→∞

sup


(
1

l

∫ r+l

r

|f(t)|p dt

)1/p

: r ∈ R

 .
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Furthermore, another extension can be made to the context of the almost periodic
functions in Besicovitch’s sense Bp(R,C), 1 ≤ p < ∞, where it is considered the
seminorm

∥f∥Bp :=

(
lim sup
l→∞

(2l)−1

∫ l

−l
|f(t)|p dt

)1/p

,

and, in addition to an extra condition, the property of relative density is replaced
by that of a satisfactorily uniform set of real numbers, which means that there
exists l > 0 such that the ratio of the maximum number of terms in this set which
are included in an interval of length l to the minimum number is less than 2. In
particular, the space B(R,C) contains all spaces of almost periodic functions in
Bohr’s, Stepanov’s, Weyl’s and Besicovitch’s sense. See for instance [1, 15] for
more details and properties concerning these spaces of functions.

Remark 4.12. (Final remark) During the refereeing process, a reviewer informed
us of the connection between our Definition 2.4 and the notion of ρ-almost peri-
odicity for continuous functions introduced in the ArXiv paper [8, Definition 2.1]
shortly after the submission of this work (with the choice I ′ = I = R, B = {X},
Y = R(f2) and ρ : R(f2) 7→ R(f1) defined as ρ(f2(x)) := f1(x) for all x ∈ R, where
R(fj) = {y ∈ C : ∃x ∈ R such that y = fj(x)}, j = 1, 2). Moreover, the reviewer
indicated us that [8, Proposition 2.2] could also be used to prove the first statement
of Remark 4.7.

Acknowledgements. The first author was supported by PGC2018-097960-B-C22
(MCIU/AEI/ERDF, UE).
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