Organic \& Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: J. Sansano, A. Belabbes, F. Foubelo, C. Najera, G. Retamosa, A. Sirvent and M. Yus, Org. Biomol. Chem., 2023, DOI: 10.1039/D3OB00023K.

Organic \& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x
www.rsc.org/

pseudo-Multicomponent 1,3-dipolar cycloaddition involving a metal-free generation of unactivated azomethine ylides

Asmaa Belabbes, $\ddagger^{\mathrm{a}, \mathrm{b}}$ María Gracia Retamosa, ${ }^{\mathrm{a}, \mathrm{b}}$ Francisco Foubelo, ${ }^{\mathrm{a}, \mathrm{b}}$ Ana Sirvent, ${ }^{\mathrm{a}, \mathrm{b}}$ Carmen Nájera, ${ }^{\mathrm{b}}$ Miguel Yus, ${ }^{\text {b }}$ and José M. Sansano. ${ }^{\text {a,b* }}$

Abstract

The pseudo-multicomponent reaction between propargyl amine, an aldehyde and an electron-deficient alkene is described The C-H activation takes place thermally and allows to obtain cicloadducts in very good yields and high diastereoselectivities. The relative configuration is determined by X-Ray diffraction analysis of the chiral molecule, obtained as single diastereosiomer, using a chiral maleimide. A brief study of the stability of the possible ylides involved in the process is also mentioned, confirming the high diastereoselectivity observed. The high functional group density of these cycloadducts permits the synthesis of complex heterocycles. After allylation or propargylation of the pyrrolidine nitrogen atom, RCM-DA cycloaddition or a cyclotrimerization with an alkyne are studied, respectively. In this last example, the resulting tetracyclic structures possess potential interest as drugs for the treatment of cystic fibrosis.

Introduction

The C-H bond activation avoiding metals constitutes one of the most important sustainability challenges in organic synthesis. ${ }^{\text {[1] }}$ The relevance of the processes bypassing the introduction of activating-directing auxiliary groups, ensuring a total atom economy, is even higher. Cycloadditions, for example, offer a complete atom economy, and, in particular, 1,3-dipolar cycloadditions (1,3-DCs) ${ }^{[2,3]}$ involving azomethine ylides are thermally generated in the presence of activating groups. Thus, N-alkyl α-amino acids and aldehydes thermally react to generate the corresponding nonstabilized iminium-type dipole I after decarboxylation (Scheme 1a). ${ }^{[2]}$ On the other side, the lack of the reactivity of imines requires strong bases at very low temperatures to afford dipoles, (lithium azaallyl anions) II (Scheme 1b), which react with dipolarophiles. ${ }^{[4]}$ Employing a different strategy, our group developed a successful thermal activation of Schiff base derivatives to generate non-stabilized azomethine ylides III by promotion of a thermal 1,2-prototropy shift (Scheme 1c). Maleimides and bis(phenylsulfonyl)ethylene (BPSE) were appropriate dipolarophiles whose cycloadducts were key intermediates for the diastereoselective synthesis of a tricyclic thrombin inhibitor. ${ }^{[5]}$
In this work, we continue with the same strategy, but now replacing the allyl by a propargyl group (Scheme 1d). The risk of suffering thermal isomerization to the corresponding allene, ${ }^{6}$ in the presence of basic imines, is fortunately circumvented to

[^0]afford the desired ethynyl-substituted pyrrolidines, which are key structures to build complex heterocyclic scaffolds.

Scheme 1 Generation of unactivated azomethine ylides.

Results and Discussion

The unactivated propargilic system 1a was allowed to react with N-methylmaleimide (NMM, as bench reaction) under identical sequence (Table 1) that the previously described for the allylic imines shown in Scheme 1c. ${ }^{5}$ This, propargylic imine 1a was tested in a pressure tube at 150,130 and $100^{\circ} \mathrm{C}$ using different reaction times (Table 1, entries 1-5). The complete conversions observed at 150 and $130{ }^{\circ} \mathrm{C}$ between $24-18 \mathrm{~h}$ revealed the presence of the allene derived from the basic thermal isomerization of the terminal alkyne group (10\% approximately, Table 1, entries 1-3). This cumulene was detected in smaller proportions in the reaction performed at $130{ }^{\circ} \mathrm{C}$ for 8 h (Table

1, entry 4) and it was not present in the crude mixture at $100^{\circ} \mathrm{C}$ (Table 1, entry 5). An extraordinary feature of this transformation at $130^{\circ} \mathrm{C}$ vs the cycloaddition underwent by the benzylidene allyl amine (run at $\left.150{ }^{\circ} \mathrm{C}\right)^{5}$ was the very high diastereoselectivity observed in the crude reaction mixture ($>95: 5$, Table 1, entries 2 and 3 vs 71:29 detected in the reaction with allylamine). Fortunately, the undesired allene byproduct was not observed when the reaction was tested in the pseudomulticomponent mode, that means, adding benzaldehyde, the propargylamine and, after 30 min the NMM , heating the resulting reaction mixture in a pressure tube at $130^{\circ} \mathrm{C}$ (Table 1, entries 6 and 7). The reaction time of 18 h was necessary because lower reaction times furnished lower conversions (Table 1, entry 8). The employment of water or 1,4-dioxane did not improve the results achieved using toluene as solvent (Table 1, entries 9 and 10).

| Table 1 | Optimization of 1,3-DC between 1a and NMM^{a} |
| :--- | :--- | :--- | :--- |

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}$ NMR of the crude mixture. ${ }^{b}$ Impurified crude reaction material by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ pseudo-Multicomponent version. ${ }^{d}$
mixture some decomposition material was ibservearozgether with compound 2af and any other cycloadduct was isolated after flash chromatograpy. So, the chemoselesctivity for 2af can be estimated in >95:5.

Table 2 Scope of 1,3-DC between 1 and dipolarophiles. ${ }^{a}$

The relative configuration of all racemic compounds endo-2, as well as the absolute configuration of the resulting molecule endo-2ag7 obtained after the incorporation of the $N-[(R)-1-$ phenylethyl]maleimide as dipolarophile under the optimized reaction conditions, was determined by X-Ray diffraction analysis (Figure 1). ${ }^{8}$ The isolated chemical yield of the enantiomerically enriched compound endo-2ag was 67\%, and the diastereomeric ratio was very high (>95:5), despite of the high operational temperature used.

Figure 1 X-Ray diffraction pattern of compound endo-2ag. experiments confirmed the high chemoselectivity found when β-(phenylsulfonyl)acrylate was empoyed. In the ${ }^{1} \mathrm{H}$ NMR crude Reaction performed in water. ${ }^{e}$ Reaction performed in 1,4-dioxane.

Using the best reaction conditions (Table 1, entry 7), the effect of the structures of each component was next evaluated (Table 2). N-Alkyl and N-arylmalemides afforded the corresponding cycloadducts endo-2 in good yields. Aromatic aldehydes bearing electron-donating or electron-withdrawing groups gave very good results as well. Specially interesting resulted the high chemical yield obtained from halogenated benzaldehydes. Cycloadducts with heretoaromatic substituents bonded at 5position were also prepared in good yields. Other dipolarophiles, different to maleimides, as dimethyl fumarate and methyl β-(phenylsulfonyl)acrylate afforded the corresponding cycloadducts 2ae and 2af in good yields, respectively. In all these examples the high diasteresoelectivity ($>95: 5$) was calculated by ${ }^{1} \mathrm{H}$ NMR spectra of the crude residue, obtaining exclusively the pure major diasteroisomer after flash chromatography (silica-gel). β-(phenylsulfonyl)acrylate These

Analysing DFT calculations of the activation process using allylimines (Scheme 1, eq. c) ${ }^{5}$ it was justified the lower diastereoselectivity because the S-ylide I was the preferred (kinetic intermediate), although the W -ylide II was the most stable. In fact, S-ylide I afforded the most stable transheterocycle III (Scheme 2). ${ }^{5}$ The formation of the preferred Sylide IV is much more stable than S-ylide I by steric reasons due to the lineal triple bond character. As well, the energies between S-ylide V and W-Ylide VI remained closer to each other allowing a better 2,5-trans diastereoselectivity experimentally demonstrated in this work. According to the chemoselectivity observed in cycloadduct 2af we can propose that the negative charge of the ylide \mathbf{V} remains closer to the propargylic moiety. ${ }^{9}$

Scheme 2 Relative stability of intermediate azomethine ylides. In brackets relative energies in $\mathrm{kcal} \cdot \mathrm{mol}^{-1}$.

The high functional group density of these polysubstituted pyrrolidines endo-2 allowed the construction of more complex fused heterocycles. For this purpose, the preparation of the N propargyl pyrrolidine $\mathbf{3}$ was carried out previously to the cyclotrimerization step. Thus, endo-2 compounds were treated with propargyl bromide (5 equiv) in refluxing acetonitrile for two days using potassium carbonate as base. The intermediate diyne compounds were isolated in good yields (Scheme 3). These N-propargylpyrrolidines $\mathbf{3}$ were allowed to undergo a metal-promoted cyclotrimerization. As in the previous publication of our group involving chiral propargylamides, the cyclotrimerization using $\mathrm{CpCo}(\mathrm{CO})_{2}$ failed. ${ }^{10}$ But, fortunately, Wilkinson's catalyst proved to be appropriate to run the
reaction satisfactorily. ${ }^{11}$ The reaction of a $0.1 \mathrm{M}_{\text {iesalutionh }}$ of diynes in toluene, with 10 equivalents Dofl the hexyne, in the presence of $5 \mathrm{~mol} \%$ of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$, at $100{ }^{\circ} \mathrm{C}$ for 19 h , afforded tetracyclic heterocycles 4 in low to modest yields (Scheme 3). In general, yields of the reactions carried out in the presence of 2-butyne-1,4-diol or dimethyl acetylenedicarboxylate were higher than the transformations employing 3-hexyne.
The large number of examples reported in this section obeys to the importance of the condensed polycyclic skeleton A-B-C-D. Although only one patented example contained this A-B-C-D arrangement, these structures incorporate the A-B-C scaffold (Σ) which is crucial in the preparation of pharmaceuticals for the treatment of cystic fibrosis (CF), ${ }^{12}$ consisting in a genetic multiorgan disease (Scheme 3). F508del is the most common mutation causing defective formation and function of CFTR. ${ }^{13}$ In other different study, the N -allylation of products $\mathbf{2}$ was achieved with allyl bromide (5 equiv) in refluxing acetonitrile for 24 h using potassium carbonate as base. Enynes 5 were isolated in very high yields and immediately submitted to ring-closing metathesis using Grubbs' II catalyst ($20 \mathrm{~mol} \%$) under refluxing dichloromethane for $24 \mathrm{~h} .{ }^{14}$ Tricyclic dienes 6 were isolated in excellent yields and with high purity from the crude reaction mixture (Scheme 3). Next, the [4+2] cycloaddition took place in the presence of NPM, at room temperature for 24 h giving the desired pentacyclic scaffolds $\mathbf{7}$ in almost quantitative yields (9194\%) (Scheme 2). These new compounds are not registered in data bases but they can be also considered as potential active pharmaceuticals for the treatment of the CF.
The relative configuration of molecules $\mathbf{4}$ and $\mathbf{7}$ was assigned after analysis of NOESY experiments (see SI). In the case of compounds 7, this arrangement corresponded to the most favourable TS-1 where the NPM approached through the endofront face (according to structure shown in Scheme 3) rather than the endo-back position (see SI). The H_{a} of 7 , as well as the precursor 6, remained in trans-arrangement with R^{1}, which justified that no epimerization occurred at this stereogenic centre during the metathesis reaction. This fact, and the no epimerization of similar substrates during the Rh-catalyzed cyclotrimerization reported in the literature, ${ }^{11,14}$ ensures the relative configuration of 4 and $\mathbf{6}$ too.

Scheme 3 Synthesis of polyfused heterocycles 4 and 7 involving RCM together with cyclotrimerizations and Diels-Alder reactions.

Conclusions

The thermal activation of N-propargyl imines took place avoiding undesired allene isomerization in a pseudomulticomponent process in good to excellent yields. The reaction represented an almost total atom economy and constituted an advance in sustainability in this area avoiding difficult operational transformations. The stereochemical outcome followed the pattern of the allylated systems reported previously, that means, 2,5-trans and 3,4,5-cis arrangements. The control of the diastereoselectivity is excellent (>95:5) and also the stereochemistry of $\mathbf{2 a g}$ induced by the chiral information attached to the nitrogen atom of the maleimide is almost complete (>95:5). These details obeyed to the high stability of the corresponding fleeting S-ylide. In three very simple steps very complex fused heterocyclic entities were achieved. This process acquires an additional dimension because the cyclotrimerization derivatives are considered active candidates for the treatment of the cystic fibrosis. This family of tetracyclic compounds as well as the corresponding pentacyclic systems obtained by a sequential RCM-DA cycloaddition are currently tested as herbicides and in the control of plant growth.

Experimental Section

1. General

All commercially available reagents and solvents were used without further purification, only aldehydes were also distilled prior to use. Analytical TLC was performed on Schleicher \& Schuell F1400/LS 254 silica gel plates, and the spots were visualised under UV light ($\lambda=254 \mathrm{~nm}$). Flash chromatography was carried out on hand packed columns of Merck silica gel 60
(0.040-0.063 mm). Melting points were determined with a Reichert Thermovar hot plate apparatus and are uncorrected. Optical rotations were measured on a Perkin Elmer 341 polarimeter with a thermally jacketted 5 cm cell at approximately $25^{\circ} \mathrm{C}$ and concentrations (c) are given in g/100 mL . The structurally most important peaks of the IR spectra (recorded using a Nicolet 510 P-FT) are listed and wavenumbers are given in cm^{-1}. NMR spectra were obtained using a Bruker AC-300 or AC-400 and were recorded at 300 or 400 MHz for ${ }^{1} \mathrm{H}$ NMR and 75 or 100 MHz for ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$, using CDCl_{3} as the solvent and TMS as internal standard (0.00 ppm) unless otherwise stated. The following abbreviations are used to describe peak patterns where appropriate: $s=$ singlet, $d=$ doublet, $\mathrm{t}=$ triplet $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet or unresolved and br $s=$ broad signal. All coupling constants (J) are given in Hz and chemical shifts in ppm. ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectra were referenced to CDCl_{3} at 77.16 ppm . Low-resolution electron impact (EI) mass spectra were obtained at 70 eV using a Shimadzu QP-5000 by injection or DIP; fragment ions in m / z are given with relative intensities (\%) in parentheses. High-resolution mass spectra (HRMS) were measured on an instrument using a quadrupole time-of-flight mass spectrometer (QTOF) and also through the electron impact mode (EI) at 70 eV using a Finnigan VG Platform or a Finnigan MAT 95S.

2. Preparation of compounds 2

In a pressure tube propargylamine ($64 \mu \mathrm{~L}, 1 \mathrm{mmol}$) and the aldehyde (1 mmol) were added in toluene (1.5 mL). The solution was stirred 1 hour at room temperature and later, a solution of the corresponding dipolarophile (1 mmol) in toluene (1.5 mL) was added. The resulting mixture was stirred 130 C for 18 h . The solvent was evaporated, and the residue was purified by flash
chromatography (flash silica-gel) eluting with n-hexane:ethyl acetate mixtures affording pure compounds $\mathbf{2}$.

4-Ethynyl-2-methyl-6-phenyltetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (2aa):
Pale yellow prisms ($180 \mathrm{mg}, 71 \%$ yield), $\mathrm{mp} 161-162{ }^{\circ} \mathrm{C}$ ($n-$ hexane:EtOAc). IR (neat) $\mathrm{v}_{\text {max }}$: 1693, 1386, 1328, 1285, 1093, $993,894,745 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta: 2.42$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 2.45 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}$), 2.87 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 3.37 ($\mathrm{dd}, \mathrm{J}=7.6$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \equiv \mathrm{CCHCHC=O}), 3.43(\mathrm{dd}, J=8.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, PhCHCH), 4.60 (dd, $J=2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC} \equiv$), 4.89 (d, $J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PhCH}$), 7.28-7.37 (m, 5H, ArH). ${ }^{13} \mathrm{C}$ NMR (75 MHz) ס: 25.1 (CH3), 48.4, 50.3 ($2 \times \mathrm{CHC=O}$), 52.1 ($\mathrm{NCHC} \equiv$), 62.7 (PhCH), 72.9 (CCH), 83.3 ($\mathrm{C} \equiv \mathrm{CH}$), 127.3, 128.3, 128.5, 137.3 (ArC), 175.2, 176.9 ($2 \times \mathrm{C}=\mathrm{O}$). LRMS(EI) $m / \mathrm{z}: 254$ ($\mathrm{M}+, 22 \%$), 253 (14), 168 (11), 151 (19), 144 (16), 143 (100), 142 (45), 116 (22), 115 (42), 104 (11). HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: 254.1055; found: 254.1046.

2-Benzyl-4-ethynyl-6-phenyltetrahydropyrrolo[3,4-c]pyrrole-

 1,3(2H,3aH)-dione (2ab):Pale yellow prisms ($171 \mathrm{mg}, 52 \%$ yield); mp 148-153 ${ }^{\circ} \mathrm{C}$ ($n-$ hexane:EtOAc). IR (neat) $u_{\max }: 3327,3265,1696,1169,738,696$, $670,622,527 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}$, ArH), $7.29-7.18$ (m, 3H, ArH), $7.16-7.09$ (m, 2H, ArH), 4.89 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}), 4.65(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC} \equiv \mathrm{CH}), 4.61-$ 4.47 (m, 2H, NCH2Ph), 3.47-3.32 (m, 2H, 2xNCHCHCO), 2.44 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 2.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz) δ 176.7 (CO), 174.8 (CO), 137.1 (ArC), 135.8 (ArC), 129.2 (ArCH), 128.6 (ArCH), 128.4 (ArCH), 128.2 (ArCH), 128.0 (ArCH), 127.5 (ArCH), 83.4 ($\mathrm{C} \equiv \mathrm{CH}$), 72.8 ($\mathrm{C} \equiv \mathrm{CH}$), 62.9 (NCHPh), 52.3 (CHCO), 50.5 (CHCO), 48.3 ($\mathrm{NCHC}=\mathrm{CH}$), 42.8 (CH_{2}). LRMS (EI) $\mathrm{m} / \mathrm{z} 330$ ($\mathrm{M}^{+}, 17 \%$), 115 (24), 116 (12), 142 (24), 143 (100), 144 (12). HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: 330.1386; found: 330.1388.

4-Ethynyl-2,6-diphenyltetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (2ac):
Colourless needles ($209 \mathrm{mg}, 66 \%$ yield); mp 155-161 ${ }^{\circ} \mathrm{C}$ ($n-$ hexane:EtOAc). IR (neat) $u_{\text {max }}: 3334,1702,1391,1179,733,689$, $615 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta: 7.46-7.27(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 7.23-$ $7.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}), 4.75(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCHC} \equiv \mathrm{CH}$), $3.65-3.48(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{NCHCHCO}), 2.47$ (d, J $=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz) $\delta: 176.0$ (CO), 174.2 (CO), 137.3 (ArC), 131.8 (ArC), 129.2 (ArCH), 128.6 (ArCH), 128.6 (ArCH), 127.4 (ArCH), 126.2 (ArCH), 83.1 ($\mathrm{C} \equiv \mathrm{CH}$), 73.2 ($\mathrm{C} \equiv \mathrm{CH}$), 63.1 (NCHPh), 52.4 (CHCO), 50.7 (CHCO), 48.3 ($\mathrm{NCHC} \equiv \mathrm{CH}$). LRMS (EI) m/z: 316 ($\mathrm{M}^{+}, 15 \%$), 115 (25), 116 (12), 142 (26), 143 (100), 144 (12). HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: 316.1200; found 316.1202.

2-(4-Bromophenyl)-4-ethynyl-6-phenyltetrahydropyrrolo[3,4c] pyrrole-1,3(2H,3aH)-dione (2ad): Pale yellow plates (268 mg , 68% yield); mp 153-156,5 으 (n-hexane:EtOAc). IR (neat) $u_{\text {max }}$: $3341,3277,1702,1491,1384,1075,816,743,620,523 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta: 7.63-7.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.43-7.29(\mathrm{~m}, 5 \mathrm{H}$, ArH), 7.12 - 7.01 (m, 2H, ArH), 5.01 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}$), 4.73 (d, J = $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC} \equiv \mathrm{CH}$), $3.73-3.46$ ($\mathrm{m}, 2 \mathrm{H}$, $2 \times \mathrm{NCHCHCO}), 2.47(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}) .2 .14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz) : 175.7 (CO), 173.9 (CO), 137.3 (ArC), 132.4 (ArCH), 130.0 (ArC), 128.6 (ArCH), 127.7 (ArCH), 127.4 (ArCH), 122.4 (ArC), $83.0(\mathrm{C} \equiv \mathrm{CH}), 73.2(\mathrm{C} \equiv \mathrm{CH}), 63.1$ (NCHPh), 52.4 (CHCO), 50.8 (CHCO), 48.3 ($\mathrm{NCHC}=\mathrm{CH}$). LRMS (EI) m/z: 394 (M^{+},

6\%), 115 (19), 142 (20), 143 (100), 144 (12). HRMS (EST) calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2}$: 394.0317; found: 394.029510.1039/D3ОB00023K

4-Ethynyl-2-methyl-6-(naphth-2-yl)tetrahydropyrrolo[3,4c] pyrrole-1,3(2H,3aH)-dione (2ba): Colourless prisms (261 mg , 86\% yield); mp 182-186 으 (n-hexane:EtOAc). IR (neat) $u_{\text {max }}$: $3227,1682,1698,1437,1280,725 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz) δ : $7.93-7.65$ (m, 4H ArH), $7.52-7.36$ (m, 3H ArH), 5.07 (d, J = 8.5 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}-\mathrm{Ar})$), 4.68 ($\mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC} \equiv \mathrm{CH}$), $3.54(\mathrm{t}, \mathrm{J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}$), 3.43 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}$), 2.88 (s, 3H, CH ${ }_{3}$), $2.46(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz) ס: 176.9 (CO), 175.2 (CO), 134.7 (ArC), 133.4 (ArC), $133.4(\mathrm{ArC})$, 128.1 (ArCH), 128.1 (ArCH), $128.0(\mathrm{ArCH}), 126.3(\mathrm{ArCH}), 126.2$ (ArCH), 126. $0(\mathrm{ArCH}), 125.5(\mathrm{ArCH}), 83.1(\mathrm{C} \equiv \mathrm{CH}), 73.2(\mathrm{C} \equiv \mathrm{CH})$, 62.9 (NCHAr), 52.3 (CHCO), 50.4 (CHCO), 48.4 (NCHC $=\mathrm{CH}$), 25.2 $\left(\mathrm{CH}_{3}\right) . \operatorname{LRMS}(E I) \mathrm{m} / \mathrm{z}: 304$ ($\left.\mathrm{M}^{+}, 27 \%\right), 139$ (10), 151 (11), 154 (11), 165 (37), 166 (13) 191 (10), 192 (71), 193 (100), 194 (15). HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: 304.1212; found: 304.1203.

4-Ethynyl-2-methyl-6-[4-

(trifluoromethyl)phenyl)]tetrahydropyrrolo[3,4-c] pyrrole-1,3(2H,3aH)-dione (2ca): Pale yellow plates ($270 \mathrm{mg}, 84 \%$ yield); mp 150-154 ©C (n-hexane:EtOAc). IR (neat) $u_{\text {max }}$: 3249, 1694, $1324,1122,1065,704 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 7.59(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.43 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $4.94(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, NCHAr), 4.62 ($\mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC} \equiv C \mathrm{H}$), 3.48 ($\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, NCHCHCO), 3.41 (d, J=7.6 Hz, 1H, NCHCHCO), $2.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.45(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 2.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) ס: 176.7 (CO), 174.9 (CO), 141.6 (ArC), 130.5 ($q, J=32.4 \mathrm{~Hz}, C-$ $\left.\mathrm{CF}_{3}\right), 127.8(\mathrm{ArCH}), 125.5(\mathrm{q}, \mathrm{J}=3.7 \mathrm{~Hz}, \mathrm{ArCH}), 124.2(\mathrm{q}, \mathrm{J}=272.2$ $\left.\mathrm{Hz}, \mathrm{CF}_{3}\right), 83.1(\mathrm{C} \equiv \mathrm{CH}), 73.2(\mathrm{C} \equiv \mathrm{CH}), 62.3$ (NCHAr), $52.1(\mathrm{CHCO})$, 50.5 (CHCO), $48.4(\mathrm{NCHC} \equiv \mathrm{CH}), 25.2\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR $(282 \mathrm{MHz}) \delta$: -62.47. LRMS (EI) m/z: 322 ($\mathrm{M}^{+}, 15 \%$), 43 (21), 115 (22), 151 (17), 172 (11), 210 (21) 211 (21), 211 (100), 212 (14). HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$: 322.0929; found 322.0926 .

4-Ethynyl-6-(4-fluorophenyl)-2-methyltetrahydropyrrolo[3,4c] pyrrole-1,3(2H,3aH)-dione (2da): Pale yellow plates (234 mg , 86% yield); mp 145-149 으 (n-hexane:EtOAc). IR (neat) $u_{\text {max }}$: $3319,3270,1689,12881088,821,580 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) ס: 7.34-7.20 (m, 2H, ArH), 7.07-6.95 (m, 2H, ArH), 4.87 (d, $\mathrm{J}=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHAr}), 4.59(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC} \equiv C \mathrm{H}), 3.45-$ $3.26(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{NCHCHCO}), 2.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.44(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C}=\mathrm{CH}$), $2.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz) $\delta: 176.9$ (CO), 175.2 (CO), 162.58 ($d, J=246.3 \mathrm{~Hz}, C F), 133.15(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}$, $\mathrm{ArC}), 128.9$ (d, $J=8.1 \mathrm{~Hz}, \mathrm{ArCH}), 115.4(\mathrm{~d}, J=21.4 \mathrm{~Hz}, \mathrm{ArCH}), 83.2$ ($\mathrm{C} \equiv \mathrm{CH}$), $73.0(\mathrm{C} \equiv \mathrm{CH}), 62.1$ (NCHAr), 52.1 (CHCO), $50.3(\mathrm{CHCO})$, 48.4 ($\mathrm{NCHC} \equiv \mathrm{CH}$), $25.1\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (282 MHz) $\delta:-75.74$, 113.79. LRMS (EI) m/z: 272 (${ }^{+}$, 12\%), 122 (11), 133(40), 134 (22), 151 (13), 160 (18), 161 (100), 162 (12). HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{2}$: 272.0961 ; found: $272.0961 \mathrm{~m} / \mathrm{z}$.

4-(4-Chlorophenyl)-6-ethynyl-2-methyltetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (2ea): Pale yellow prisms (250 mg , 87% yield); mp 188-197 으 (n-hexane:EtOAc). IR (neat) $u_{\text {max }}$: 3280, 1685, 1279, 1069, $823 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR (300 MHz) ס: $7.49-$ 6.93 (m, 4H, ArH), 4.87 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}-\mathrm{Ar}), 4.61$ (d, $J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC} \equiv \mathrm{CH}), 3.54-3.29(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{NCHCHCO}), 2.89$ (s, 3H, CH ${ }_{3}$), $2.46(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz) ס: 176.8 (CO), 175.1 (CO), 135.9 (ArC), $134.0(\mathrm{ArC}), 128.7(\mathrm{ArCH})$, 128.6 (ArCH), $83.1(\mathrm{C} \equiv \mathrm{CH}), 73.1(\mathrm{C} \equiv \mathrm{CH}), 62.1$ (NCHAr), 52.1 $(\mathrm{CHCO}), 50.3(\mathrm{CHCO}), 48.3(\mathrm{NCHC} \equiv \mathrm{CH}), 25.1\left(\mathrm{CH}_{3}\right)$. LRMS (EI)
$\mathrm{m} / \mathrm{z}: 288$ ($\left.\mathrm{M}^{+}, 8 \%\right), 41(22), 115$ (42), 149 (33), 151 (27), 152 (20), 176 (100), 177 (66), 178 (68), 179 (26), 217 (31). HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}$: 288,0644; found: 288,0650.

4-(2-Bromophenyl)-6-ethynyl-2-methyltetrahydropyrrolo[3,4c] pyrrole-1,3(2H,3aH)-dione (2fa): Colourless prisms (373 mg , 84% yield); mp 160-165 ©C (n-hexane:EtOAc). IR (neat) $u_{\text {max }}$: 3270, 1692, 1433, 1284, 748, $653 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz) δ : $7.66-7.52$ (m, 1H, ArH), $7.42-7.31$ (m, 1H, ArH), $7.30-7.08$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}$), 5.14 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}-\mathrm{Ar}), 4.61(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCHC} \equiv C \mathrm{H}$), $3.79(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}), 3.40(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}), 2.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.47(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C} \equiv \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz) $\delta: 176.9$ (CO), 174.8 (CO), 137.0 (ArC), 132.6 (ArCH), 129.5 (ArCH), 127.7 (ArCH), 127.5 (ArCH), 124.1 (CBr), 83.0 ($\mathrm{C} \equiv \mathrm{CH}$), 73.3 (C $\equiv C H$), 61.8 (NCHAr), 51.7 (CHCO), 50.1 (CHCO), 45.6 ($\mathrm{NCHC} \equiv \mathrm{CH}$), $25.0\left(\mathrm{CH}_{3}\right)$. LRMS (EI) $\mathrm{m} / \mathrm{z}: 332$ ($\mathrm{M}^{+}, 9 \%$), 115 (75), 141 (23), 142 (61), 151 (45), 221 (100), 222 (22), 223 (96), 253 (27). HRMS (ESI) calcd. for: $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}$ - Br : 253.0977; found: 253.0973 .

4-Ethynyl-6-(furan-2-yl)-2-methyltetrahydropyrrolo[3,4c] pyrrole-1,3(2H,3aH)-dione (2ga): Colourless prisms (141 mg , 58% yield); mp 152-158 으 (n-hexane:EtOAc). IR (neat) $u_{\text {max }}$: $3232,1691,1381,1286,734,701,648,532 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}) \delta: 7.40(\mathrm{dd}, J=1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}), 6.34(\mathrm{dd}, J=3.3,1.8$ $\mathrm{Hz}, 1 \mathrm{H} . \mathrm{O}-\mathrm{CHCH}$), 6.27 (dt, $J=3.2,0.8 \mathrm{~Hz}, 1 \mathrm{H} . \mathrm{O}-\mathrm{CCH}$), 4.93 (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$-Furyl), $4.56(\mathrm{dt}, J=2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC} \equiv C \mathrm{H})$, $3.48(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}), 3.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, NCHCHCO), 2.94 (s, 3H, CH ${ }_{3}$), 2.43 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}$), 2.17 (s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR (101 MHz) $\delta: 176.7$ (CO), 175.3 (CO), 150.9 (FuryIC), 142.7 (FurylCH), 110.4 (FurylCH), 107.9 (FuryICH), 82.8 ($\mathrm{C} \equiv \mathrm{CH}$), 73.1 ($\mathrm{C} \equiv \mathrm{CH}$), 57.0 (NCHAr), 52.3 (CHCO), 50.3 (CHCO), 47.2 ($\mathrm{NCHC} \equiv \mathrm{CH}$), $25.3\left(\mathrm{CH}_{3}\right)$. LRMS (EI) $\mathrm{m} / \mathrm{z}: 244\left(\mathrm{M}^{+}, 17 \%\right), 78$ (17), 104 (41), 105 (12), 133 (100), 134 (11). HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$: 244.0848 ; found: 244.0838 .

4-Ethynyl-2-methyl-6-(thiophen-2-yl)tetrahydropyrrolo[3,4c] pyrrole-1,3(2H,3aH)-dione (2ha): Pale yellow prisms (161 mg , 62% yield); mp 168-170 ${ }^{\circ}$ C (n-hexane:EtOAc). IR (neat) $u_{\text {max }}$: $3317,3254,1691,3590,1088,693,518 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 7.23$ (dd, J = 5.1, 1.2 Hz, 1H, S-CH), $7.12-7.05$ (m, 1H, S-CCH), 7.01 (dd, $J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{S}-\mathrm{CHCH}$), $5.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, NCH -Thienyl), 4.57 ($\mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC} \equiv \mathrm{CH}$), $3.42(\mathrm{t}, \mathrm{J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}$), 3.36 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}$), 2.90 (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.43(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 2.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz})$): 176.7 (CO), 175.0 (CO), 141.7 (ThienylC), 127.2 (ThienylCH), 125.4 (ThienylCH), 125.2 (ThienylCH), 82.9 ($(\mathrm{CECH}$), 73.1 (CCC), 58.6 (NCHAr), 52.2 (CHCO), 50.2 (CHCO), 48.5 ($\mathrm{NCHC} \equiv \mathrm{CH}$), $25.2\left(\mathrm{CH}_{3}\right) . \operatorname{LRMS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}: 260\left(\mathrm{M}^{+}, 16.18 \%\right)$, 121(18), 122(30), 148(18), 149(100), 150(12), 151(21). HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: 260.0619$; found: 260.0606.

4-Ethynyl-2-methyl-6-(pyridin-2-yl)tetrahydropyrrolo[3,4-
c]pyrrole-1,3(2H,3aH)-dione (2ia): Colourless plates (183 mg, 72% yield); mp 140-144 ㅇC (n-hexane:EtOAc). IR (neat) $u_{\text {max }}$: $3299,3262,1689,1434,1282,1104,754,664 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}) \delta: 8.52$ (ddd, $J=4.8,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridyl-H), 7.66 (td, J $=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, pyridyl-H), $7.32(\mathrm{dt}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, pyridylH), 7.21 (ddd, $J=7.5,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, pyridyl-H), 4.97 (d, J = 8.5 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}$-pyridil), 4.66 (dq, $J=2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC} \equiv C H$), $3.61(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}$ NCHCHCO), 3.47 (dd, $J=7.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}$

View Article Online

 NMR (101 MHz) ס: 176.8 (CO), 175.5 (CO), 156.6 (pyridyIC), 149.3 (pyridylCH), 136.7 (pyridylCH), 123.3 (pyridylCH), 122.4 (pyridylCH), $83.2(\mathrm{C} \equiv \mathrm{CH}), 72.8(\mathrm{C} \equiv C \mathrm{CH}), 64.9(\mathrm{~N}-\mathrm{CH}$-pyridyl), 53.5 (CHCO), $51.5(\mathrm{CHCO}), 49.1(\mathrm{NCHC} \equiv \mathrm{CH}), 25.2\left(\mathrm{CH}_{3}\right)$. LRMS (EI) m/z: 255 ($\mathrm{M}^{+}, 37 \%$), 65 (18), 78 (22), 79 (20), 91 (16), 92 (35), 105 (23), 177 (60), 118 (17), 143 (91), 144 (100), 198 (23), 254 (62). HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: 255.1008; found: 255.0981.

Dimethyl 2-ethynyl-5-phenylpyrrolidine-3,4-dicarboxylate (2ae): Pale yellow needles ($203 \mathrm{mg}, 71 \%$ yield); $\mathrm{mp} 114-118{ }^{\circ} \mathrm{C}$ (n-hexane:EtOAc). IR (neat) $u_{\text {max }}: 3327,3245,1721,1099,1165$, 1013, 750, 699, $595 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 7.35-7.28(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{ArH}), 7.30-7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.95(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}$, NCHAr), $4.69-4.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHC} \equiv C \mathrm{H}), 3.97-3.77(\mathrm{~m}, 2 \mathrm{H}$, $2 \times \mathrm{CHCO}_{2} \mathrm{Me}$), $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.38(\mathrm{~d}, \mathrm{~J}=2.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 1.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz) $\delta: 172.1$ (CO), 170.9 (CO), 139.6 (ArC), 128.1 (ArCH), 127.9 (ArCH), 127.7 (ArCH), $82.3(\mathrm{C} \equiv \mathrm{CH}), 73.3(\mathrm{C} \equiv \mathrm{CH}), 62.8(\mathrm{NCHAr}), 52.4\left(\mathrm{CH}_{3}\right), 51.6$ $\left(\mathrm{CH}_{3}\right), 51.1$ (CHCO), 50.9 (CHCO), 49.9 ($\mathrm{NCHC} \equiv \mathrm{CH}$). LRMS (EI) m/z: 287 ($\mathrm{M}^{+}, 1 \%$), 104 (11), 115 (41), 116 (19), 119 (13), 125 (50), 142 (39), 143 (68), 146 (15), 167 (12), 168 (14), 177 (100), 178 (12), 256 (16). HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$: 287.1158; found: 287.1137.

Methyl 2-ethynyl-5-phenyl-4-(phenylsulfonyl)pyrrolidine-3carboxylate (2af): Pale yellow plates ($184 \mathrm{mg}, 50 \%$ yield); mp 155-160 ${ }^{\circ} \mathrm{C}$ (n-hexane:EtOAc). IR (neat) $u_{\text {max }}$ 2921, 1730, 1306, $1145,1081,685,603,531 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 8.06-7.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.80-7.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.66-$ 7.56 (m, 2H, ArH), $7.45-7.18$ (m, 5H, ArH), 4.86 (dd, $J=8.3,2.3$ $\mathrm{Hz}, 1 \mathrm{H}, 1 \mathrm{H}, \mathrm{NCHAr}), 4.73$ (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC} \equiv C \mathrm{H}$), 4.20 (dd, $\left.J=8.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHSO}_{2} \mathrm{Ph}\right), 3.73-3.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{Me}\right)$, $3.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.3$ (CO), 136.3 (ArC), 134.3 (ArC), 129.5 (ArCH), 129.4 (ArCH), 129.3 (ArCH), $129.2(\mathrm{ArCH}), 128.7(\mathrm{ArCH}), 128.6(\mathrm{ArCH}), 128.6(\mathrm{ArCH}), 128.1$ (ArCH), 127.9 (ArCH), $126.4(\mathrm{ArCH}), 83.8(\mathrm{C} \equiv \mathrm{CH}), 75.5(\mathrm{C} \equiv \mathrm{CH})$, 72.5 (CHS), 65.4 (NCHAr), $52.2\left(\mathrm{CH}_{3}\right), 52.2$ (CHCO), 49.7 ($\mathrm{NCHC} \equiv \mathrm{CH}$). LRMS (EI) m/z: 369 ($\mathrm{M}^{+}, 0.22 \%$), 188 (12), 195 (12), 216 (44), 217 (45), 218 (20), 219 (16), 242 (17), 243 (14), 265 (60), 266 (15), 326 (23), 327 (100), 328 (30), 329 (34). HRMS (ESI) calcd. for
$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}: 369.1035$; found 369.1045 .
(3aR,4R,6R,6aS)-4-Ethynyl-6-phenyl-2-[(R)-1-phenylethyl]tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)dione (2ag): Colourless needles ($230 \mathrm{mg}, 67 \%$ yield); mp 142$146{ }^{\circ} \mathrm{C}$ (n-hexane:EtOAC). $[\alpha]_{D}^{25}=-0.210$ (c 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (neat) $v_{\text {max }}: 3284,1696,1359,1186,746,700,653,605,531 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.34-7.20(\mathrm{~m}, 6 \mathrm{H}$, ArH), $7.18-7.10$ (m, 1H, ArH), $7.10-6.98$ (m, 1H. ArH), $5.33-$ $5.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3}\right), 4.89-4.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHPh}), 4.60(\mathrm{dd}, \mathrm{J}=$ $6.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC} \equiv \mathrm{CH}), 3.55-2.84(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{NCHCHCO})$, $2.39(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 1.96(\mathrm{dd}$, broad signal, $J=8.2,3.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}$), 1.71 (dd, $\left.J=22.3,7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz) $8: 176.8$ (CO), 174.9 (CO), 139.8 (ArC), 137.3 (ArC), 128.4 (ArCH), $128.4(\mathrm{ArCH}), 128.3(\mathrm{ArCH}), 128.3(\mathrm{ArCH}), 128.1(\mathrm{ArCH})$, $128.0(\mathrm{ArCH}), 127.9(\mathrm{ArCH}), 127.8(\mathrm{ArCH}), 127.5(\mathrm{ArCH}), 127.4$ (ArCH), $83.4(\mathrm{C} \equiv \mathrm{CH}), 72.8(\mathrm{C} \equiv \mathrm{CH}), 62.9(\mathrm{NCHPh}), 52.0(\mathrm{CHCO})$, $51.0(\mathrm{CHCO}), 50.5(\mathrm{CHPh}), 47.9(\mathrm{NCHC} \equiv \mathrm{CH}), 16.89\left(\mathrm{CH}_{3}\right)$. LRMS
(EI) m/z: 344 ($\mathrm{M}^{+}, 12 \%$), 105 (18), 115 (21), 116 (10), 142 (22), 143 (100), 144 (12). HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: 344.1525; found: 344.1518 .

3. Preparation of compounds 3

In a pressure tube with a magnetic bar, containing 3 mL of acetonitrile, was added the corresponding cycloadduct 2 (0.5 mmol), propargyl bromide ($80 \%, 236 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$) and potasium carbonate ($139 \mathrm{mg}, 1 \mathrm{mmol}$). The resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 72 h . Ethyl acetate (10 mL) was added and washed with water $(2 \times 10 \mathrm{~mL})$, the organic phase was dried with MgSO_{4} and the solvent evaporated under reduced pressure. The residue was purified by flash chromatography (flash silica-gel) eluting with mixtures of n-hexane:ethyl acetate affording pure compounds 3 .

4-Ethynyl-2-methyl-6-phenyl-5-(prop-2-yn-1-
yl)tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (3aa): Colourless prisms ($103 \mathrm{mg}, 70 \%$ yield); mp 159,3-163o C (n hexane:EtOAc). IR (neat) $v_{\text {max }}$: 3290, 3252, 1694, 1100, 694, 645 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 7.39-7.29(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.25-7.13$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}$), $4.84(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}), 4.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCHC} \equiv \mathrm{CH}$), 3.51 (dd, $J=9.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}$), 3.39 (d , $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}$), 3.24 (dd, $J=16.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-$ $\mathrm{C} \equiv \mathrm{CH}$), 3.11 (dd, $J=16.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$), $2.94-2.85(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.52(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 2.21(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz) $\delta: 176.5$ (CO), $175.2(\mathrm{CO}), 135.6$ (ArC), 129.1 (ArCH), 128.9 (ArCH), 128.8 (ArCH$), 128.3(\mathrm{ArCH})$, $79.3(\mathrm{C} \equiv \mathrm{CH}), 77.7(\mathrm{C} \equiv \mathrm{CH}), 76.4(\mathrm{C} \equiv \mathrm{CH}), 72.4(\mathrm{C} \equiv \mathrm{CH}), 67.4$ (NCHPh), $54.6(\mathrm{CHCO}), 50.5(\mathrm{CHCO}), 49.7(\mathrm{NCHC} \equiv \mathrm{CH}), 38.0\left(\mathrm{CH}_{2}\right)$ and $25.1\left(\mathrm{CH}_{3}\right)$. LRMS (EI) m/z: $292\left(\mathrm{M}^{+}, 43 \%\right)$, 77 (11), 91 (13), 115 (47), 118 (12), 142 (100), 143 (15), 180 (24), 181 (28), 206 (22), 215 (17), 291 (73). HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: 292.1212; found: 292.1178 .

4-Ethynyl-2-methyl-6-(naphth-2-yl)-5-(prop-2-yn-1-yl)tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (3ba): Colourless prisms ($135 \mathrm{mg}, 79 \%$ yield); mp 167-182 ${ }^{\circ} \mathrm{C}$ ($n-$ hexane:EtOAc). IR (neat) $u_{\text {max }}: 3314,3270,1692,1284,818,751$, $657 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR (300 MHz) ס: $7.92-7.69(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.63$ (s, 1H, ArH), 7.39 (dt, J = 6.2, 3.4 Hz, 2H, ArH), $7.27-7.09$ (m, $1 \mathrm{H}, \mathrm{ArH}$), $4.81(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}), 4.17(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCHC} \equiv \mathrm{CH}$), 3.50 ($\mathrm{dd}, J=9.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}), 3.35(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}$), 3.17 ($\mathrm{d}, \mathrm{J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$), 3.06 (dd, $J=16.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$). $2.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.46$ (d, J $=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 2.14\left(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}$ $(75 \mathrm{MHz})$ 8: $176.5(\mathrm{CO}), 175.2(\mathrm{CO}), 133.6(\mathrm{ArC}), 133.4(\mathrm{ArC})$, 133.1 (ArC), 128.6 (ArCH), $128.0(\mathrm{ArCH}), 127.9(\mathrm{ArCH}), 126.4$ (ArCH), $126.3(\mathrm{ArCH}), 79.3(\mathrm{C} \equiv \mathrm{CH}), 77.7(\mathrm{C} \equiv \mathrm{CH}), 76.4(\mathrm{C} \equiv \mathrm{CH})$, 72.5 (CミCH), 67.5 (NCHPh), 54.6 (CHCO), 50.6 (CHCO), 49.7 ($\mathrm{NCHC} \equiv \mathrm{CH}$), $38.1\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{3}\right)$. LRMS (EI) $\mathrm{m} / \mathrm{z}: 342\left(\mathrm{M}^{+}\right.$, 27\%), 127 (13), 139 (13), 164 (11), 165 (57), 166 (17), 191 (19), 192 (100), 193 (75), 194 (12), 230 (18), 231 (17), 304 (18), 341 (24). HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: 342.1368; found: 342.1358.

4-(4-Chlorophenyl)-6-ethynyl-2-methyl-5-(prop-2-yn-1-yl)tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione
(3da): Colourless needles ($122 \mathrm{mg}, 75 \%$ yield); mp 143-147으 (n hexane:EtOAc). IR (neat) $u_{\text {max }}$: 3254, 1698, 1286, 1099, 1010, $818,672 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}) \delta: 7.32(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 4.82 ($\mathrm{d}, \mathrm{J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}$), 4.07
(d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC} \equiv \mathrm{CH}), 3.50(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO})$,
 $\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$), $2.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.52(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 2.21$ ($\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz) $\delta: 176.3$ (CO), 175.1 (CO), 134.5 (ArC), 134.2 (ArC), 129.20 (ArCH), 79.0 (C=CH), $77.6(\mathrm{C} \equiv \mathrm{CH}), 76.54(\mathrm{C} \equiv \mathrm{CH})$, 72.6 ($\mathrm{C} \equiv \mathrm{CH}$), 66.7 (NCHPh), 54.6 (CHCO), $50.5(\mathrm{CHCO}), 49.6(\mathrm{NCHC} \equiv \mathrm{CH}), 38.05\left(\mathrm{CH}_{2}\right), 25.21\left(\mathrm{CH}_{3}\right)$. LRMS (EI) m/z: 326 ($\mathrm{M}^{+}, 32 \%$), 115 (16), 149 (29), 151 (15), 152 (19), 176 (100), 177 (20), 178 (40), 214 (12), 215 (38), 240 (16), 291 (15), 325 (50). HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2}$: 326.0822; found: 326.0799.

4-Ethynyl-6-(furan-2-yl)-2-methyl-5-(prop-2-yn-1yl)tetrahydropyrrolo [3,4-c] pyrrole-1,3(2H,3aH)-dione (3ga) Colourless prisms ($92 \mathrm{mg}, 65 \%$ yield); mp 157-162 oc ($n-$ hexane:EtOAc). IR (neat) $u_{\text {max }}: 3286,3229,1697,1283,1104$, $1005,753,659,598 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 7.38$ (dd, $J=1.9$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$, Furyl-CH), 6.33 (dd, $J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, Furyl-CH), 6.29 (dd, $J=3.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, Furyl-CH), 4.71 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}$), $4.17(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC} \equiv \mathrm{CH}), 3.57-3.42(\mathrm{~m}, 1 \mathrm{H}$, NCHCHCO), 3.36 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}$), 3.25 (dd, $J=16.1$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$), 3.14 (dd, $J=16.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$), $2.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.50(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 2.19(\mathrm{t}, \mathrm{J}=2.5$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz) $\delta: 176.2$ (CO), 175.3 (CO), 148.8 (FuryIC), 143.3 (FurylCH), 110.5 (FuryICH), 110.0 (FurylCH), $78.8(\mathrm{C} \equiv \mathrm{CH}), 77.3(\mathrm{C} \equiv \mathrm{CH}), 76.4(\mathrm{C} \equiv \mathrm{CH}), 72.7(\mathrm{C} \equiv \mathrm{CH})$, 60.9 (NCHPh), 54.2 (CHCO), 50.3 (CHCO), 47.7 (NCHC $=\mathrm{CH}$), 38.1 $\left(\mathrm{CH}_{2}\right), 25.35\left(\mathrm{CH}_{3}\right)$. LRMS (EI) m/z: $282\left(\mathrm{M}^{+}, 9 \%\right), 77(11), 108$ (11), 132 (100), 171 (37), 281 (19). HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: 282.1004; found: 282.0972.

4. Preparation of compouds 4

In a flask with a magnetic bar, containing 3 mL of degassed toluene (using freezing-pump conditions), containing $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(24 \mathrm{mg}, 0.025 \mathrm{mmol})$, was added the corresponding diine $3(0.5 \mathrm{mmol})$ and the symmetric alkyne (2.5 mmol). The resulting mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 19 h . The solvent was evaporated, and the residue was purified by flash chromatography (flash silica-gel) eluting with n-hexane:ethyl acetate mixtures affording pure compounds 4.

8,9-Diethyl-2-methyl-4-phenyl-3a,6,10b,10c-
tetrahydropyrrolo[$\left.3^{\prime}, 4^{\prime}: 3,4\right]$ pyrrolo[2,1-a]isoindole-1,3(2H,4H)dione (4aa): Pale pink plates ($69 \mathrm{mg}, 37 \%$ yield); mp $154-160{ }^{\circ} \mathrm{C}$ (n-hexane:EtOAc). IR (neat) $\cup_{\text {max }}$: 2962, 1698, 1434, 1284, 1060, $746,699,647 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) 8: $7.44-7.31(\mathrm{~m}, 5 \mathrm{H}$, ArH), 7.23 (s, 1H, ArH), 7.03 (s, 1H, ArH), 4.94 (s, 1H, NCHAr), 4.04 ($\mathrm{d}, \mathrm{J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), 3.97 ($\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}$), $3.69\left(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.64(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCHCHCO}), 3.38(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}), 2.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $2.68\left(\mathrm{dq}, \mathrm{J}=15.1,7.7 \mathrm{~Hz}, \mathrm{H}\right.$ and $\left.2 \mathrm{xCH}_{2} \mathrm{CH}_{3}\right), 1.27(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.22\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz})$ $\delta: 178.3,175.6,141.9,141.6,139.5,137.9,137.8,128.4,128.3$, 128.1, 124.0, 122.6, 72.3, 69.9, 56.7, 50.8, 49.0, 25.8, 25.7, 25.2, 15.6, 15.5. LRMS (EI) m/z: 374 ($\mathrm{M}^{+}, 24 \%$), 262 (27), 263 (100), 264 (21). HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}-\mathrm{CH}_{3}: 359.1760$; found: 359.1746.

8,9-Bis(hydroxymethyl)-2-methyl-4-phenyl-3a,6,10b,10ctetrahydropyrrolo
[3',4':3,4]pyrrolo[2,1-a]isoindole-1,3(2H,4H)-dione (4ab): Pale pink prisms ($104 \mathrm{mg}, 55 \%$ yield); mp 159-162 으 (n-hexane:EtOAc). IR (neat) $u_{\text {max }}$ 2923, 1692,

1436, 1284, 1017, $698 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta: 7.43$ (s, 1 H , ArH), 7.34 (dd, J = 5.7, $3.5 \mathrm{~Hz}, 5 \mathrm{H}, \mathrm{ArH}$), 7.24 (s, 1H, ArH), 4.94 (s, 1H, NCHAr), $4.91-4.56\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2} \mathrm{OH}\right), 4.05(\mathrm{~d}, \mathrm{~J}=15.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), 3.89 ($\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{NCHPh}$), 3.72 (d, $J=15.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), 3.64 (dd, $J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}$), 3.35 (m, $1 \mathrm{H}, \mathrm{NCHCHCO}), 2.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (126 MHz) $\delta: 178.1$, 175.3, 142.2, 140.8, 139.7, 139.5, 137.4, 131.1, 129.0, 128.5, 128.3, 128.2, 125.6, 124.3, 72.2, 70.0, 64.2, 64.2, 56.7, 50.6, 48.9, 25.3. LRMS (EI) m / z : 378 (${ }^{+}, 19 \%$), 43 (74), 44 (100), 45 (18), 55 (23), 57 (34), 69 (20), 77 (37), 83 (21), 91 (23), 247 (32), 249 (28), 263 (33), 265 (34). HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$: 378.1584; found 378.1580 .

8,9-Diethyl-2-methyl-4-(naphth-2-yl)-3a,6,10b,10c-
tetrahydropyrrolo $\left.3^{\prime}, 4^{\prime}: 3,4\right]$ pyrrolo $[2,1-a$]isoindole- $1,3(2 H, 4 H)$ dione (4ba): Pale pink needles ($40 \mathrm{mg}, 19 \%$ yield); mp 183-189 oc (n-hexane:EtOAc). IR (neat) $\mathrm{u}_{\text {max }}$: 2962, 1698, 1284, 1060, $821,740 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta: 8.05-7.63(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$, $7.59-7.38(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 5.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHAr})$, $4.21-3.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHPh}\right.$ and $\left.\mathrm{NCH}_{2}\right), 3.81-3.65(\mathrm{~m}, 2 \mathrm{H}$, NCHCHCO and NCH_{2}), $3.48(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}), 2.96(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{NCH}_{3}$), $2.84-2.54\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2} \mathrm{CH}_{3}\right), 1.34-1.26(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.22\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}) \delta:$ 178.3, 175.5, 142.0, 141.7, 139.5, 137.9, 135.4, 133.5, 133.4, 128.1, 128.0, 127.9, 127.1, 126.4, 126.1, 126.0, 124.1, 122.7, 72.4, 70.1, 56.8, 50.7, 49.1, 25.8, 25.7, 25.3, 15.6, 15.5. LRMS (EI) m/z: 424 (M $\left.{ }^{+}, 15 \%\right), 174$ (32), 312 (41), 313 (100), 314 (24). HRMS (ESI) calcd. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$: 424.2151; found: 424.2134.

Dimethyl 2-methyl-4-(naphthalen-2-yl)-1,3-dioxo-1,2,3,3a,4,6,10b,10c-octahydropyrrolo $\quad\left[3^{\prime}, 4^{\prime}: 3,4\right]$ pyrrolo[2,1a]isoindole-8,9-dicarboxylate (4bc): Pale pink needles (106 mg , 44% yield); mp 135-136 ${ }^{\circ} \mathrm{C}$ (n-hexane:EtOAc). IR (neat) $u_{\text {max }}$: 2921, 1696, 1431, 1286, 1117, 1072, $726 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz})$ 8: $8.02-7.70(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.53-7.42$ (m, 2H, ArH), 7.39 (dd, J = 8.5, 1.7 Hz, 1H, ArH), 5.05 (s, 1H, NCHAr), $4.15\left(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, NCHPh), 3.95 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), 3.91 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), 3.82 (d, $\mathrm{J}=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), 3.72 (dd, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}$), 3.46 $(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}), 2.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz) $\delta: 177.5,174.9,168.1,167.8,145.3,144.3,134.4,133.5$, 133.4, 132.8, 132.1, 128.1, 128.0, 127.2, 126.3, 126.2, 126.2, 124.9, 123.8, 72.1, 70.1, 56.7, 53.0, 52.9, 50.4, 48.7, 25.3. LRMS (EI) $\mathrm{m} / \mathrm{z}: 484$ ($\mathrm{M}^{+}, 2 \%$), 233 (13), 245 (12), 371 (41), 372 (100), 373 (24), 69 (20). HRMS (ESI) calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$: 484.1634; found: 484.1618.

4-(4-Chlorophenyl)-8,9-diethyl-2-methyl-3a,6,10b,10ctetrahydropyrrolo $\left[3\right.$ ', $\left.4^{\prime}: 3,4\right]$ pyrrolo $[2,1-a$] isoindole-1,3(2H,4H)dione (4da): Pale pink plates ($63 \mathrm{mg}, 31 \%$ yield); mp 162-168 ${ }^{\circ} \mathrm{C}$ (n-hexane:EtOAc). IR (neat) $u_{\text {max }}$: 2919, 1698, 1284, 1058, 1010, $821 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}) \delta: 7.30(\mathrm{q}, \mathrm{J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.22$ (s, 1H, ArH), 7.03 (s, 1H, ArH), 4.92 (s, 1H, NCHAr), 4.02 (d, $J=$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), 3.93 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}$), $3.66-3.58$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NCHCHCO}$ and NCH_{2}) , $3.36(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}$), $2.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.78-2.60\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2} \mathrm{CH}_{3}\right), 1.27(\mathrm{t}, \mathrm{J}=6.1$ $\mathrm{Hz}, 3 \mathrm{H} \mathrm{CH} \mathrm{CH}_{3}$), $1.22\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(101$ MHz) $\delta: 178.1,175.5,142.0,141.7,139.3,137.6,136.4,133.7$, 131.1, 129.6, 129.0, 128.7, 124.1, 122.6, 72.2, 69.2, 61.8, 50.6, 49.0, 25.8, 25.7, 25.2, 15.6, 15.5. LRMS (EI) m/z: 408 (${ }^{+}, 22 \%$),
 $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{2}$: 408.1605; found 408.1591.

4-(4-Chlorophenyl)-8,9-bis(hydroxymethyl)-2-methyl-3a,6,10b,10c-tetrahydropyrrolo
[3',4':3,4]pyrrolo[2,1$a]$ isoindole- $1,3(2 \mathrm{H}, 4 \mathrm{H}$)-dione (4 db): Pink solid ($15 \mathrm{mg}, 39 \%$ yield); mp 159-160 ${ }^{\circ} \mathrm{C}$ (n-hexane:EtOAc). IR (neat) $u_{\text {max }}$ 2921, 1696, 1434, 1284, 1058, 1010, $821 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR (400 MHz) δ : 7.45 (s, 1H, ArH), 7.34 (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.31-7.21$ (m, $4 \mathrm{H}, \mathrm{ArH}), 4.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHAr}), 4.91-4.66\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2} \mathrm{OH}\right)$, 4.07 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), 3.88 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}$), $3.78-3.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right.$ and NCHCHCO$), 3.36(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, NCHCHCO), $2.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz) $\delta: 177.8$, 175.1, 141.9, 140.5, 139.6, 139.4, 135.8, 133.8, 129.4, 128.6, 125.5, 124.2, 72.0, 69.1, 64.1, 64.0, 56.4, 50.4, 48.6, 25.2. LRMS (EI) m/z: 412 (M+, 21\%), 43 (19), 89 (14), 115 (19), 267 (18), 283 (13), 299 (20), 300 (30), 301 (100), 302 (27), 303 (32). HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{4}-\mathrm{H}_{2} \mathrm{ClO}: 360.1474$; found: 360.1465 .

5. Preparation of compounds 5

In a pressure tube with a magnetic bar, containing 3 mL of acetonitrile, was added the corresponding cycloadduct 2 (0.5 mmol), allyl bromide ($216 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$) and potasium carbonate ($139 \mathrm{mg}, 1 \mathrm{mmol}$). The resulting mixture was stirred at $60{ }^{\circ}$ C for 72 h . Ethyl acetate (10 mL) was added and washed with water $(2 \times 10 \mathrm{~mL})$, the organic phase was dried with MgSO_{4} and the solvent evaporated under reduced pressure. The residue was purified by flash chromatography (flash silica-gel) eluting with mixtures of n-hexane:ethyl acetate affording pure compounds 5.

5-Allyl-4-ethynyl-2-methyl-6-(naphth-2-
yl)tetrahydropyrrolo $[3,4-\mathrm{c}]$ pyrrole-1,3(2H,3aH)-dione (5ba): Colourless prisms ($103 \mathrm{mg}, 81 \%$ yield); mp 182-184 ${ }^{\circ} \mathrm{C}$ ($n-$ hexane:EtOAc). IR (neat) $u_{\text {max }}: 3256,1694,1434,1279,1104$, $931,821,751,664 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta: 7.81(\mathrm{dtd}, J=9.4$, $5.8,5.4,2.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{ArH}$), $7.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}$, ArH), $7.28\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}\right.$), $5.86-5.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.24(\mathrm{dq}, \mathrm{J}$ $=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), $5.13(\mathrm{dq}, J=9.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 4.61(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}), 4.32(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCHC} \equiv \mathrm{CH}$), 3.57 (dd, $J=9.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}), 3.41(\mathrm{~d}, \mathrm{~J}=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}), 3.18-2.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.91(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.50(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}) \delta$: 176.9, 175.5, 134.4, 134.2, 133.6, 133.5, 128.5, 128.0, 126.3, 126.2, 117.9, 78.3, 76.0, 67.9, 53.8, 51.1, 51.0, 49.6, 25.1. LRMS (EI) $m / z: 344$ ($\mathrm{M}^{+}, 51 \%$), 41 (20), 57 (14), 139 (21), 141 (19), 149 (14), 154 (14), 164 (11), 165 (59), 166 (18), 167 (14), 191 (26), 192 (100), 193 (20), 194 (29), 232 (40), 233 (33), 343(45). HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: 344.1525; found: 344.1506.

5-allyl-4-(4-chlorophenyl)-6-ethynyl-2-methyltetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione
(5 da): Pale yellow prisms ($146 \mathrm{mg}, 89 \%$ yield); mp $156-158{ }^{\circ} \mathrm{C}$ (n-hexane:EtOAc). IR (neat) $u_{\text {max }}: 3250,1685,1434,1380,1280$, $1107,750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz) 8: $7.37-7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, $7.13(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.85-5.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.26-$ $5.16\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.15-5.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.53(\mathrm{~d}, \mathrm{~J}=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHPh}), 4.11(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC} \equiv \mathrm{CH}), 3.48$ (dd, $J=9.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}), 3.37$ (d, J=7.8 Hz, 1H, NCHCHCO), $3.04-2.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.47(\mathrm{~d}, \mathrm{~J}=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta: 176.7,175.4,135.3$,
134.2, 134.1, 129.0, 118.1, 78.1, 76.1, 67.1, 53.8, 51.0, 50.8, 49.5, 25.1. LRMS (EI) m/z: 328 (${ }^{+}$, 33\%), 41 (22), 115 (18), 125 (14), 149 (31), 151 (18), 152 (20), 176 (100), 178 (50), 217 (36), 327 (36). HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{CIN}_{2} \mathrm{O}_{2}$: 328.0962; found: 328.0958.

6. Preparation of compounds 6

In a flask with a magnetic bar, containing 3 mL of dichloromethane, was added the corresponding compound 5 (0.5 mmol), 1,7-octadiene ($295 \mu \mathrm{~L}, 2.0 \mathrm{mmol}$) and Grubb's II catalyst ($84 \mathrm{mg}, 0.1 \mathrm{mmol}$). The resulting mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 19 h . The solvent was evaporated, and the residue was purified by flash chromatography (flash silica-gel) eluting with $3 / 1$ n-hexane:ethyl acetate affording pure compounds 6.

2-Methyl-4-(naphth-2-yl)-8-vinyl-3a,6,8a,8b-
tetrahydropyrrolo[3,4-a]pyrrolizine-1,3(2H,4H)-dione (6ba): Pale yellow needles ($46 \mathrm{mg}, 89 \%$ yield); mp 110-115 으 (n hexane:EtOAc). IR (neat) $u_{\max }: 2922,1694,1431,1279,814,746$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta: 7.98-7.71(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.55-7.39$ $(\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}), 6.63\left(\mathrm{dd}, \mathrm{J}=17.9,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.93-$ $5.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2}\right.$ and $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.35(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.02-4.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHNaph}), 4.35(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCHC}), 3.91-3.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2}\right), 3.61-3.25(\mathrm{~m}, 2 \mathrm{H}, 2 x$ NCHCHCO), $2.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz) $\delta: 178.4$, 175.4, 140.9, 135.7, 133.4, 133.2, 130.0, 128.1, 127.9, 127.8, 127.3, 126.7, 126.2, 126.1, 126.0, 117.4, 73.1, 71.5, 59.5, 50.8, 47.8, 25.0. LRMS (EI) m/z: 344 ($\mathrm{M}^{+}, 51 \%$), 41 (20), 57 (14), 139 (21), 141 (19), 149 (14), 154 (14), 164 (11), 165 (59), 166 (18), 167 (14), 191 (26), 192 (100), 193 (20), 194 (29), 232 (40). HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: 344.1525; found: 344.1506.

4-(4-Chlorophenyl)-2-methyl-8-vinyl-3a,6,8a,8b-tetrahydropyrrolo[3,4-a]pyrrolizine-1,3(2H,4H)-dione (6db): Pale yellow plates ($128 \mathrm{mg}, 78 \%$ yield); mp 149-154 으 (n hexane:EtOAc). IR (neat) $v_{\max }: 2921,1696,1433,1288,1088$, $816,644 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta: 7.48-7.18(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$, 6.60 (dd, $\left.J=18.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.74(\mathrm{q}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CHCH}_{2}\right), 5.69\left(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.33(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), $4.70(\mathrm{dt}, J=146.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHAr}), 4.15(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC}), 3.78-3.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2}\right), 3.42(\mathrm{t}, \mathrm{J}=8.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}$), 3.32 ($\mathrm{dt}, \mathrm{J}=17.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}$), $2.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}) \delta: 178.2,175.3,140.8$, 136.7, 133.5, 129.8, 129.3, 128.5, 127.1, 117.4, 72.9, 70.6, 59.2, 50.6, 47.5, 24.9. LRMS (EI) m/z: 328 (${ }^{+}$, 43\%), 41 (22), 43 (16), 115 (18), 125 (16), 149 (32), 151 (20), 152 (20), 176 (100), 177 (21), 216 (31), 217 (53), 327 (38). HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}$: 328.0979; found: 328.0935.

7. Preparation of compounds 7

In a flask with a magnetic bar, containing 2 mL of toluene, was added the corresponding compound 6 (0.5 mmol), and N phenylmaleimide ($87 \mathrm{mg}, 0.5 \mathrm{mmol}$). The resulting mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 24 h . The solvent was evaporated, and the residue was purified by flash chromatography (flash silica-gel) eluting with $3 / 1 \quad n$-hexane:ethyl acetate affording pure compounds 7.

7-methyl-9-(naphthalen-2-yl)-2-phenyl-3a,5b,5c,8a,9,11,11a,11b-octahydro-1H-pyrrolo[3,4-e]pyrrolo[3',4':3,4]pyrrolo[2,1-a]isoindole-1,3,6,8(2H,4H,7H)tetraone (7ba): Colourless plates ($235 \mathrm{mg}, 91 \%$ yield); mp 118-
 1179, 1074, 824, 752, $694 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($4001 \mathrm{M} 1 \mathrm{~Hz}, \mathrm{Q}$ Chsocoform d) $\delta 7.87-7.75(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 77.52-7.35(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.23-$ $7.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.17-5.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 4.31-4.25(\mathrm{~m}, 1 \mathrm{H}$, NCHAr), 4.18 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC}$), 3.74 (dd, $J=13.4,9.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCHCHCO}$), 3.52 ($\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}$), $3.41-3.33$ $\left(\mathrm{m}, 3 \mathrm{H}, 2 \times \mathrm{NCHCHCO}\right.$ and $\left.\mathrm{CH}_{2}\right), 3.21(\mathrm{dd}, J=13.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), 3.07 (dd, J = 15.5, $7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $2.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.36$ $-2.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.4$, $177.8,176.3,175.2,147.6,134.6,133.5,133.4,131.8,129.3$, 128.9, 128.1, 128.0, 127.1, 126.6, 126.2, 126.2, 126.1, 118.8, 69.3, 68.5, 50.9, 50.0, 49.1, 41.7, 41.4, 37.4, 26.0, 25.3.LRMS (EI) m/z: 517 ($\left.{ }^{+}, 80 \%\right) .77(14), 91$ (20), 118 (14), 130 (19), 141 (34), 152 (15), 165 (38), 166 (24), 232 (61), 233 (41), 265 (37), 267 (44), 343 (63), 406 (100), 407 (32). HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$: 517.2002; found: 517.1977.

9-(4-Chlorophenyl)-7-methyl-2-phenyl-
3a,5b,5c,8a,9,11,11a,11b-octahydro-1H-pyrrolo[3,4-
e]pyrrolo[3',4':3,4]pyrrolo[2,1-a]isoindole-1,3,6,8(2H,4H,7H)tetraone (7da):
Colourless plates ($235 \mathrm{mg}, 94 \%$ yield); mp 178-185 으; IR (neat) $u_{\max }: 1694,1392,1181,1170,979,827,694 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz})$ ס: $7.49-7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.35$ - $7.26(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.03(\mathrm{dq}, \mathrm{J}=5.9$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 4.22-4.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHAr}), 3.98(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCHC}$), 3.68 (dd, $J=13.2,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHCO}), 3.43-$ $3.27\left(\mathrm{~m}, 4 \mathrm{H}, 3 \times \mathrm{NCHCHCO}\right.$ and $\left.\mathrm{CH}_{2}\right), 3.14-2.97\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.91 (s, 3H, CH_{3}), $2.35-2.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz) $\delta: 178.3,177.6,176.2,175.1,147.4,135.7,134.0,131.8$, 129.5, 129.3, 128.9, 128.7, 126.6, 118.9, 69.2, 67.7, 50.8, 49.8, 49.0, 41.6, 41.4, 37.3, 26.0, 25.2. LRMS (EI) m/z: 501 (${ }^{+}, 0,4 \%$), 41 (18), 43 (100), 55 (41) 57 (60), 69 (41), 70 (22), 71 (39), 83 (36), 85 (29), 95 (32), 97 (40), 111 (30), 125 (21), 173 (50). HRMS (ESI) calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{CIN}_{3} \mathrm{O}_{4}$: 501.9670; found 501.9666.

Conflicts of interest

There are no conflicts to declare.

Author information

Corresponding Author: * imsansano@ua.es,
Author Contributions: The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.
\ddagger This author contributed in the experimental work.
ORCID M. Gracia Retamosa 0000-0003-1131-5916.
ORCID F Foubelo 0000-0001-7847-8440.
ORCID A. Sirvent 0000-0001-6127-4011 .
ORCID C. Nájera 0000-0003-0063-5527.
ORCID M. Yus 0000-0003-1088-6944 .
ORCID J. M. Sansano 0000-0002-5536-2717.

Acknowledgements

We gratefully acknowledge financial support from the Spanish Ministerio de Ciencia, Innovación y Universidades (project RED2018-102387-T) the Spanish Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER, EU) (projects CTQ2017-82935-P and PID2019-107268GB-IOO), the Generalitat Valenciana (IDIFEDER/2021/013, GVA-

COVID19/2021/079 and CIDEGENT/2020/058), Medalchemy S.
L. (Medalchemy-18T) and the University of Alicante (VIGROB068, UAUSTI21-05).

Notes and references

T. Dalton, T. Faber, F. Glorius, ACS Cent. Sci., 2021, 7, 245-261.

2 (a) G. Molteni, A. Silvani, Eur. J. Org. Chem., 2021, 1653-1675; (b) C. Nájera, J. M. Sansano, Pure Appl. Chem., 2019, 91, 575-596; (c) H. A. Dondas, M. G. Retamosa, J. M. Sansano, Synthesis, 2017, 49, 2819-2851; (d) B. Bdiri, B.-J. Zhao, Z.-M. Zhou, Tetrahedron: Asymmetry, 2017, 28, 876-899.
3 For asymmetric 1,3-DCs, see: (a) L. Wei, X. Chang, C.-J. Wang, Acc. Chem. Res., 2020, 53, 1084-1100; (b) J. Adrio, J. C. Carretero, Chem. Commun., 2019, 55, 11979-11991; (c) X. Fang, C.-J. Wang, Org. Biomol. Chem., 2018, 16, 2591-2601; (d) N. De, E. J. Yoo, ACS Catal., 2018, 8, 48-58.
4 (a) J. Otero-Fraga, S. Suárez-Pantiga, M. Montesinos-Magraner, D. Rhein, A. Mendoza, Angew. Chem. Int. Ed., 2017, 56, 12962-12966; (b) J. Olsen, P. Seiler, B. Wagner, H. Fischer, T. Tschopp, U. Obst-Sander, D. W. Banner, M. Kansy, K. Müller, F. Diederich, Org. Biomol. Chem., 2004, 2, 13391352; (c) E. Schweizer, A. Hoffmann-Röder, K. Schärer, J. A. Olsen, C. Fäh, P. Seiler, U. Obst-Sander, B. Wagner, M. Kansy, F. Diederich, ChemMedChem, 2006, 1, 611-621.
5 V. Selva, E. Selva, P. Merino, C. Nájera, J. M. Sansano Org. Lett., 2018, 20, 3522-3526.
6 See, for example: H. Liu, W. Feng, C. W. Kee, D. Leow, W.-T. Loh, C.-H. Tan, Adv. Synth. Catal., 2010, 352, 3373-3379.
7 Matching with the absolute configuration of molecules of ref. 5.
8 The data have been assigned the following deposition number in CCDC data base: 2191373.
9 The sulfonyl group is the directing group of the attack in the Michael step using iminoglicinates as azomethine precursors: R. Robles-Machín, A. López-Pérez, M. González-Esguevillas, J. Adrio, J. C. Carretero, Chem. Eur. J., 2010, 16, 9864-9873.

10 M. Petit, C. Aubert, M. Malacria, Tetrahedron, 2006, 62, 10582-10593.
11 A. Sirvent, M. J. García-Muñoz, M. Yus, F. Foubelo Eur. J. Org. Chem., 2020, 113-126.
12 M. P. Zawistoski, A. Deshpande, B. M. Cole, World Intellectual Property Organization, WO2017117239 A1 2017-07-06.
13 G. Migliorisi, M. Collura, F. Ficili, T. Pensabene, D. Bongiorno, A. Collura, F. Di Bernardo, S. Stefani Pharmaceuticals, 2022, 15, 606-618.

14 M. J. García-Muñoz, A. Sirvent, F. Foubelo, M. Yus, An. Acad. Bras. Cienc., 2018, 90 (1 Suppl. 2), 1059-1072.

[^0]: a Departamento de Química Orgánica e Instituto de Síntesis Orgánica (ISO), University of Alicante, E-03080 Alicante, Spain.
 ${ }^{\text {b }}$ Centro de Innovación en Química Avanzada (ORFEO-CINQA), University of Alicante, E-03080 Alicante, Spain.
 *Corresponding Author.
 Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

