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Abstract: Machine learning algorithms are being used for multiple real-life applications and in
research. As a consequence of digital technology, large structured and georeferenced datasets are
now more widely available, facilitating the use of these algorithms to analyze and identify patterns,
as well as to make predictions that help users in decision making. This research aims to identify
the best machine learning algorithms to predict house prices, and to quantify the impact of the
COVID-19 pandemic on house prices in a Spanish city. The methodology addresses the phases of data
preparation, feature engineering, hyperparameter training and optimization, model evaluation and
selection, and finally model interpretation. Ensemble learning algorithms based on boosting (Gradient
Boosting Regressor, Extreme Gradient Boosting, and Light Gradient Boosting Machine) and bagging
(random forest and extra-trees regressor) are used and compared with a linear regression model. A
case study is developed with georeferenced microdata of the real estate market in Alicante (Spain),
before and after the pandemic declaration derived from COVID-19, together with information from
other complementary sources such as the cadastre, socio-demographic and economic indicators, and
satellite images. The results show that machine learning algorithms perform better than traditional
linear models because they are better adapted to the nonlinearities of complex data such as real estate
market data. Algorithms based on bagging show overfitting problems (random forest and extra-trees
regressor) and those based on boosting have better performance and lower overfitting. This research
contributes to the literature on the Spanish real estate market by being one of the first studies to use
machine learning and microdata to explore the incidence of the COVID-19 pandemic on house prices.

Keywords: machine learning; mass appraisal; real estate market; partial dependence plots; COVID-19

1. Introduction

Machine learning algorithms (hereafter ML) are increasingly being used for the mass
appraisal of real estate and in automated valuation models. In mass appraisals, standard-
ized procedures are used, in which data from real estate offers are collected and used to
make value estimates on large groups of properties, thus guaranteeing that appraisals are
carried out in a standardized and impartial way [1–3]. The advantage of using these sys-
tems is that a large number of valuations can be performed at a low cost per valuation and
in a short period of time [2]. Mass valuations using automated systems are commonly used
in the collection of recurring annual taxes, but can also be used for sporadic real estate taxes
(property transfer taxes, capital gains tax, and inheritance and gifts taxes), banking (loans,
mortgage risk), real estate portfolio estimation, real estate marketers, among others [2].
For a mass appraisal model to be uniform and accurate in estimating real estate prices, it
will be necessary for the data to be correct, complete and up-to-date [3]. There is a large
literature where ML algorithms are used in mass appraisal [4].

In recent years, machine learning methods have been applied to the estimation of
house prices, making these methodological technologies relatively new. Antipov et al. [5]
used the random forest (RF) technique with machine learning for the appraisal of 2695
properties located in St. Petersburg (Russia) and implemented algorithms such as the
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classification and regression tree (CART), the chi-squared automatic interaction detector
(CHAID) and k-nearest neighbors (K-NN), among others. The results showed this technique
to be highly effective. Some other advantages shown by this technique are that it allows for
appraisal even with faulty data, outliers, categorical variables, and high heteroscedasticity
in the data.

There are many approaches to applying machine learning algorithms to the mass
appraisal of real estate [6], a summary is shown in Figure 1. In the first approach, the
predictive behavior of the classical regression models (mainly the hedonic price models—
HPMs) is compared against the ML models through the use of different types of algorithms
based on decision trees, logistic regression, Bayesian algorithms, etc. The results show that
HPMs are less accurate when predicting house prices when compared to machine learning
algorithms. The following authors have used this strategy [5,7–18]. Regarding the second
approach, the authors study the ML algorithms that best predict the price of real estate, see,
for example, [6,19–24].

Land 2022, 11, x FOR PEER REVIEW 2 of 34 
 

In recent years, machine learning methods have been applied to the estimation of 
house prices, making these methodological technologies relatively new. Antipov et al. [5] 
used the random forest (RF) technique with machine learning for the appraisal of 2695 
properties located in St. Petersburg (Russia) and implemented algorithms such as the clas-
sification and regression tree (CART), the chi-squared automatic interaction detector 
(CHAID) and k-nearest neighbors (K-NN), among others. The results showed this tech-
nique to be highly effective. Some other advantages shown by this technique are that it 
allows for appraisal even with faulty data, outliers, categorical variables, and high heter-
oscedasticity in the data. 

There are many approaches to applying machine learning algorithms to the mass 
appraisal of real estate [6], a summary is shown in Figure 1. In the first approach, the 
predictive behavior of the classical regression models (mainly the hedonic price models—
HPMs) is compared against the ML models through the use of different types of algo-
rithms based on decision trees, logistic regression, Bayesian algorithms, etc. The results 
show that HPMs are less accurate when predicting house prices when compared to ma-
chine learning algorithms. The following authors have used this strategy [5,7–18]. Regard-
ing the second approach, the authors study the ML algorithms that best predict the price 
of real estate, see, for example, [6,19–24]. 

 
Figure 1. Classification of articles according to the research approach (left), and according to the 
type of research data (right). The legend (center) shows in color the research objective and the size 
of the circle shows the number of algorithms used by the authors. Source: own elaboration. Note: 
Studies used to create the figure: [5–24]. 

After a literature review, no consensus has been reached on which machine learning 
algorithm or algorithms are more suitable for predicting house prices. There is some con-
sensus that machine learning algorithms have better performance than traditional linear 
models. On the other hand, in the Spanish context, there is little literature analyzing the 
effect of the COVID-19 pandemic on house prices, especially in local studies and with 
microdata. Moreover, authors such as Renigier-Biłozor et al. [25] suggest the need to im-
plement new (automated) technologies to complement traditional solutions in the real es-
tate valuation domain. 

For this reason, two objectives are proposed in this research. The first objective is to 
identify the best machine learning algorithms to predict house prices in a case study. The 
second objective is to quantify the effect of the pandemic on house prices in the city of 
Alicante (Spain), before and after the pandemic. 

Figure 1. Classification of articles according to the research approach (left), and according to the type
of research data (right). The legend (center) shows in color the research objective and the size of the
circle shows the number of algorithms used by the authors. Source: own elaboration. Note: Studies
used to create the figure: [5–24].

After a literature review, no consensus has been reached on which machine learning
algorithm or algorithms are more suitable for predicting house prices. There is some
consensus that machine learning algorithms have better performance than traditional linear
models. On the other hand, in the Spanish context, there is little literature analyzing the
effect of the COVID-19 pandemic on house prices, especially in local studies and with
microdata. Moreover, authors such as Renigier-Biłozor et al. [25] suggest the need to
implement new (automated) technologies to complement traditional solutions in the real
estate valuation domain.

For this reason, two objectives are proposed in this research. The first objective is to
identify the best machine learning algorithms to predict house prices in a case study. The
second objective is to quantify the effect of the pandemic on house prices in the city of
Alicante (Spain), before and after the pandemic.

This study analyzed the performance of several ensemble learning algorithms in
the prediction of house prices using large datasets. Ensemble learning algorithms based
on boosting (Gradient Boosting Regressor—GBR, Extreme Gradient Boosting—XGBM
and Light Gradient Boosting Machine—LGBM) and bagging (random forest—RF and
extra-trees regressor—ETR) were used and compared with a linear regression model. A
case study was developed using pooled cross-sectional data consisting of georeferenced
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microdata on the real estate market in the city of Alicante in Spain. The data was taken
from real estate listings offered before and after the COVID-19 pandemic and thus the short-
and long-term effects on prices can be studied.

This document has been organized as follows: Section 1 presents a literature review
regarding the use of ML in the prediction of house prices. Section 2 outlines the materials
and the methods, detailing the sources that were used and the database generated. Section 3
describes the results of the training and validation process for the machine learning models,
as well as their interpretation. Section 4 details the discussion and finally, a summary of the
conclusions obtained is presented in Section 5.

1.1. House Prices and Machine Learning

Park et al. [6] researched what ML models were most accurate in determining house
prices. To this end, they used a sample of 5359 row houses in Virginia. They used two
techniques; the first was to resolve a classification problem through the RF technique, and
the second was to use a regression using the naïve Bayesian algorithm. The results showed
that the RIPPER algorithm improved the prediction of prices significantly.

In response to the classification problem in terms of determining whether house
prices would increase or decrease, Banerjee et al. [26] analyzed several machine learning
algorithms. To this end, they used a dataset published on the website Kaggle.com and
used different machine learning techniques such as support vector machines (SVM), neural
networks (NN), and the RF technique. The results show that the RF technique was the most
accurate and at the same time had the most overfitting. In contrast, the SVM technique was
the most consistent and was, therefore, the most reliable.

With regard to real estate appraisals, Kok et al. [14] analyzed the performance of
several machine learning techniques. They examined 84,305 observations from the states of
California, Florida, and Texas, during the period from 2011 to 2016, and compared different
learning techniques such as the ordinary least squares regression (OLS), RF, GBR, and
XGBM techniques. The results showed that, in general terms, XGBM was the algorithm
that worked best.

Čeh et al. [8] compared the RF algorithm against the hedonic price model with the
purpose of analyzing which technique would obtain better predictions. The authors used a
sample of 7407 properties during the period between 2008 and 2013 in Ljubljana (Slovenia).
The results showed that the RF model had a better predictive performance.

In a competition organized by Kaggle.com, in which participants had to propose an
algorithm for the prediction of house prices, Fan et al. [27] used predictive algorithms
based on regressions such as RF, SVM (several kernels), XGBM, ridge and LASSO linear
regression. The data were provided by Ames Housing in Iowa, with records from 2006 to
2010. The results showed that ridge, LASSO, and XGBM had a lower prediction error.

Hu et al. [23] analyzed predictive performance through supervised learning algorithms
for housing rental prices in Shenzhen (China). The authors used RF, ETR, GBR, SVR, multi-
layer perceptron neural network (MLP-NN), and k-NN algorithms. The results showed
that the RF and ETR algorithms had a better predictive performance.

To predict apartment rental prices in Dhaka (Bangladesh), Ahmed Neloy et al. [7]
compared several algorithms. They selected various algorithms: MLP-NN, RF, SVM,
decision tree (DT), LASSO, ridge, and elastic net. The results showed that the RF algorithms
had a lower mean square error.

Voutas Chatzidis [16] used different regression-based machine algorithms to predict
house prices in the Netherlands. The author used LGBM, XGBM, CatBoost, and RF
algorithms, with CatBoost obtaining the best results with an accuracy rate of 90%.

In a study that looked at the whole of Spain, Alfaro-Navarro et al. [19] proposed
a new methodology to carry out the automated prediction of house prices. A different
model was generated for each municipality and a sample of 790,631 properties for the
433 municipalities analyzed was achieved. The models were carried out using bagging,



Land 2022, 11, 2100 4 of 32

boosting, and random forest algorithms. The results show that the bagging and random
forest algorithms were slightly better.

Hong [11] compared the predictive behavior of the HPM versus machine learning
using three algorithms (XGBM, LGBM, CatBoost) to predict the transaction price of apart-
ments in Seoul. To this end, the author used a sample of 620,617 observations for the period
between 2009 and 2019. The results showed that ML algorithms had more predictive power
than OLS. Moreover, it was noted that the CatBoost algorithm was superior in terms of
predicting price even when outliers were involved. Furthermore, the ensemble model,
consisting of the three algorithms, was found to have a higher accuracy than the individual
algorithms.

To predict the transaction price of apartments in Gangnam (South Korea), Hong
et al. [12] compared the predictive behavior of HPM against machine learning through
the use of the RF technique. To this end, the authors used a sample consisting of 16,601
apartments for the period between 2006 and 2017. The results showed that the RF technique
was superior in terms of predicting price.

1.2. House Prices and COVID-19

The pandemic caused by COVID-19 has had a major impact in all countries, affecting
all areas [28]. The real estate market has been affected over the years by various economic,
environmental and health factors. This new pandemic has also had effects on the housing
market.

Mohammed et al. [29] conducted a review of recent literature about the consequences
of COVID-19 on the housing market, observing both negative and positive impacts on
house prices, supply and demand. In some cases, there was an increase in the price and
supply of housing with higher amenities or located in suburban areas. On the other hand, in
other areas, house prices, supply and demand decreased for different reasons. In addition,
other negative effects were identified, such as difficulties in mortgage return maintenance
and the delay of new construction due to health restrictions.

Other studies have analyzed the effects of the pandemic in different regions of the
world, such as the United States [30–32], the Eurozone [33], Spain [34], Poland [35],
China [36–38], Australia [39] and Turkey [40,41]. The main conclusion that can be drawn
from them is that the price varied differently from region to region and that consumer
preferences shifted towards less densely populated areas in the periphery.

In the United States, COVID-19 caused high-income households to seek single-family
homes with larger floor areas, leading to a decrease in the price of multifamily housing [32].
Other authors [30,31] observed that house prices fluctuated differently in different regions
and that housing demand increased in the periphery with lower population density and in
smaller cities far from urban centers with high population density.

In the Eurozone, Battistini et al. [33] described that initially there was a reduction in
real estate activity as a consequence of mobility restrictions, but that it did not affect the
upward trend in prices (third and fourth quarter of 2020) because of the political and fiscal
measures adopted by the governments.

In Spain, Alves Álvarez et al. [34] indicated that real estate market activity was in-
tensely reduced in the first months after the pandemic declaration, with activity recovering
as restrictions were lifted. House prices showed a generalized slowdown by regions, being
higher in areas of the Mediterranean coast and islands, mainly due to the reduction of
foreign buyers.

2. Materials and Methods
2.1. Study Area, Information Sources, and Database

The focus of this study was the city of Alicante (Valencian Community), the capital
of the province, which is home to 18% of the total population of the province of Alicante.
Alicante is considered one of the biggest municipalities in Spain as it ranks eleventh in
terms of population [42]. Alicante is a port city on the Mediterranean coast and forms



Land 2022, 11, 2100 5 of 32

a conurbation with other neighboring municipalities. The city of Alicante is of great
importance in the Spanish real estate market, since in 2021 it ranked seventh in terms of the
number of real estate transactions (1% of total transactions nationwide), the main Spanish
drivers being Madrid (6.6%), Barcelona (2.5%) and Valencia (1.8%) [43].

There is a large spatial difference in the distribution of house prices (Figure 2) in
the city of Alicante. The area with the highest prices is located in the northeast of the
municipality, in the areas of Playa de San Juan and El Cabo de la Huerta, which sit along
the widest coastline of the municipality. The properties with the lowest prices are located in
the north of the city, where the neighborhoods of Virgen del Remedio and Colonia Requena,
among others, can be found.
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Figure 2. Spatial distribution of sales prices of multifamily housing in the city of Alicante (2021). In-
terpolation method inverse distance weighting (IDW), pixel resolution 10 × 10 m, 33,200 observations
belonging to the municipalities of Alicante, San Vicente del Raspeig, and Campello.

The pandemic evolution derived from COVID-19 manifested itself differently in the
province of Alicante compared to the national context. For each case detected in the Alicante
province, 25 cases were identified in the national context. Figure 3 shows the evolution
of reported cases of COVID-19 to the Red RENAVE [44] in the province of Alicante (left
vertical axis), and the average monthly multifamily housing unit prices in the city of
Alicante (right vertical axis). In the last quarter of 2019, there was an upward trend in
prices, shifting to a downward trend during the first quarter of 2020. During the second
quarter of 2020, coinciding with the first alarm state, there was an upward trend in prices,
reaching a peak in June 2020. In the third and fourth quarters of 2020, there was a decline in
the average house price, with a 6.1% reduction in December 2020 compared to June 2020. It
is from May 2021, coinciding with the end of the second alarm state, when a slight upward
trend in prices began.

In Spain, there are no official sources with open and public data on transaction prices,
so it is common in these cases to use price lists from real estate portals. Several authors sug-
gest that real estate asking prices can be an adequate substitute for transaction prices [45–48].
For this reason, it should be taken into account that the results of this research are based on
asking prices, so they may not necessarily reflect the behavior of transaction prices.



Land 2022, 11, 2100 6 of 32Land 2022, 11, x FOR PEER REVIEW 6 of 34 
 

 
Figure 3. (left axis) Number of COVID-19 cases reported daily to the RENAVE Network in the 
province of Alicante (Source: own elaboration based on data from [44]). (right axis) Average unit 
price of multifamily house in €/m² by months (Source: own elaboration). 

In Spain, there are no official sources with open and public data on transaction prices, 
so it is common in these cases to use price lists from real estate portals. Several authors 
suggest that real estate asking prices can be an adequate substitute for transaction prices 
[45–48]. For this reason, it should be taken into account that the results of this research are 
based on asking prices, so they may not necessarily reflect the behavior of transaction 
prices. 

The information regarding the listing prices was taken from a real estate website, 
with the asking prices and features of both properties and buildings being collected. Data 
about the listing prices, the features of the property (type, floor area, number of bedrooms, 
bathrooms, etc.), the features of the building (elevator, parking space, swimming pool, 
etc.), and spatial location (geographic coordinates) were collected. 

From May 2019 to December 2021, around 49,875 different multifamily properties 
offered for sale were collected from a real estate portal. Each month, a search was carried 
out to identify whether there were new listing prices that had not been identified in pre-
vious months, to verify whether the existing properties were still for sale or whether the 
price had changed, and to omit the properties that were no longer found. By doing this, it 
was possible to document, for each property, the period that it was offered on the market 
as well as the changes in price over time (monthly changes). 

The information given by those advertising properties was sometimes incomplete or 
incorrect, which led to data inconsistencies that needed to be reviewed. Unlikely values 
were identified in several of the quantitative features, such as the size of the property, the 
number of bedrooms, and the prices. To identify the values, a univariate outlier analysis 
was carried out and those properties with values greater or less than six standard devia-
tions in all quantitative characteristics (area, number of bedrooms, and number of bath-
rooms/toilets) were discarded. Once the database had been revised, those cases in which 
data was missing for some relevant features were excluded; this included properties with 
no price given, properties without location coordinates, and properties that did not have 
their floor area and number of bedrooms or bathrooms/toilets listed. After the process of 
data cleansing had been completed, 2506 properties were discarded, leaving 47,369 differ-
ent properties for the sample. 

As it is common for identical properties to be marketed in the same building, a sec-
ond data cleansing process was carried out, which consisted of identifying and eliminat-
ing datasets for properties that had identical features. This was done with the purpose of 
avoiding data leakage between different subsets of data used in the subsequent analyses 

1400

1450

1500

1550

1600

1650

1700

1750

0k

1k

2k

3k

4k

5k

6k

01
/0

5
/2

01
9

01
/0

6
/2

01
9

01
/0

7
/2

01
9

01
/0

8
/2

01
9

01
/0

9
/2

01
9

01
/1

0
/2

01
9

01
/1

1
/2

01
9

01
/1

2
/2

01
9

01
/0

1
/2

02
0

01
/0

2
/2

02
0

01
/0

3
/2

02
0

01
/0

4
/2

02
0

01
/0

5
/2

02
0

01
/0

6
/2

02
0

01
/0

7
/2

02
0

01
/0

8
/2

02
0

01
/0

9
/2

02
0

01
/1

0
/2

02
0

01
/1

1
/2

02
0

01
/1

2
/2

02
0

01
/0

1
/2

02
1

01
/0

2
/2

02
1

01
/0

3
/2

02
1

01
/0

4
/2

02
1

01
/0

5
/2

02
1

01
/0

6
/2

02
1

01
/0

7
/2

02
1

01
/0

8
/2

02
1

01
/0

9
/2

02
1

01
/1

0
/2

02
1

01
/1

1
/2

02
1

01
/1

2
/2

02
1

01
/0

1
/2

02
2

A
ve

ra
g

e 
un

it 
pr

ic
e

 (
€/

m
²)

C
O

V
ID

-1
9

 d
a

ily
 c

as
e

s

Alarm states COVID-19 cases in Alicante Average unit price (€/m²)

Figure 3. (left axis) Number of COVID-19 cases reported daily to the RENAVE Network in the
province of Alicante (Source: own elaboration based on data from [44]). (right axis) Average unit
price of multifamily house in €/m2 by months (Source: own elaboration).

The information regarding the listing prices was taken from a real estate website,
with the asking prices and features of both properties and buildings being collected. Data
about the listing prices, the features of the property (type, floor area, number of bedrooms,
bathrooms, etc.), the features of the building (elevator, parking space, swimming pool, etc.),
and spatial location (geographic coordinates) were collected.

From May 2019 to December 2021, around 49,875 different multifamily properties
offered for sale were collected from a real estate portal. Each month, a search was carried out
to identify whether there were new listing prices that had not been identified in previous
months, to verify whether the existing properties were still for sale or whether the price
had changed, and to omit the properties that were no longer found. By doing this, it was
possible to document, for each property, the period that it was offered on the market as
well as the changes in price over time (monthly changes).

The information given by those advertising properties was sometimes incomplete or
incorrect, which led to data inconsistencies that needed to be reviewed. Unlikely values
were identified in several of the quantitative features, such as the size of the property,
the number of bedrooms, and the prices. To identify the values, a univariate outlier
analysis was carried out and those properties with values greater or less than six standard
deviations in all quantitative characteristics (area, number of bedrooms, and number of
bathrooms/toilets) were discarded. Once the database had been revised, those cases in
which data was missing for some relevant features were excluded; this included properties
with no price given, properties without location coordinates, and properties that did not
have their floor area and number of bedrooms or bathrooms/toilets listed. After the
process of data cleansing had been completed, 2506 properties were discarded, leaving
47,369 different properties for the sample.

As it is common for identical properties to be marketed in the same building, a second
data cleansing process was carried out, which consisted of identifying and eliminating
datasets for properties that had identical features. This was done with the purpose of
avoiding data leakage between different subsets of data used in the subsequent analyses
(training/validation/test). In this process, 7426 properties were discarded from the sample,
leaving a final sample that consisted of 39,943 different properties, which is 80.1% of the
initial sample.

The information provided by the real estate portal was georeferenced in a geographic
information system in order to create new features in the dataset. Kok et al. [14] consider
it to be particularly important to include information about the local neighborhood that
complements the usual features used in house price estimates. Other sources of information



Land 2022, 11, 2100 7 of 32

were used to create these new features, such as the Spanish National Statistics Institute
(INE), the General Directorate of Cadastre (DGC), the National Geographic Institute (IGN),
the Regional Ministry of Education, Culture and Sport (CECD), the Valencian Cartographic
Institute (ICV), and the U.S. Geological Survey (USGS).

Using the mapping of the census tract [49] and the census of the population by
municipality [42] obtained from the Spanish National Statistics Institute, population data
regarding the dependency ratio, the aging ratio, and the percentage of foreign population
corresponding to the year 2020 were extracted. Using the Atlas of Household Income
Distribution [50], an experimental statistic prepared by the INE, data regarding the net
income per household at the census tract level for the year 2019 (latest published statistic)
were extracted. All these features were calculated with data at the census tract level, in
order to ensure that all properties in the same census tract would have the same values.

Using the alphanumeric and vector information from the General Directorate for
Cadastre [51], and following the methodology developed by [52] for the processing of
cadastral data, a raster map was created, which detailed the average age of the environment
surrounding the properties and gave a ratio of the built-up area in the vicinity of each
building (150 m around the building).

To calculate the distances, the transport network prepared by the Spanish National
Geographic Institute [53], the location of the educational centers of the Regional Ministry
of Education, Culture and Sport [54], and the mapping of green areas obtained from the
Valencian Cartographic Institute [55], were all used. With this spatial information, the
distances between properties and public services (namely the distances from the educational
centers, green areas, and the coast) were calculated. The distances were calculated by
network, that is, using the distance between the origin and destination through a pre-
established layout of streets and crossroads, which simulates the reality of the urban
network (see Figure 4) [56]. The Network Analyst extension of ArcMap 10.3 was used,
calculating the distance by network from each property to each point of interest. The
network was modeled with street sections and the nodes or intersections, also simulating
the presence of bridges or tunnels. Distances between an origin (or a destination) and
the network were calculated as the minimum distance from the origin/destination to the
network.
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To calculate the normalized difference vegetation index (NDVI), the multispectral satellite
images from the USGS [57] were used. Images provided by the satellite Landsat 8 in 2020 with
path 199 and row 033 and low cloud cover (<20%) were selected. These images corresponded
to three different dates in an entire year and were selected to observe any variations between
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seasons (March, July, December). With the three rasters, and through the use of map algebra,
a raster with average values for an area of influence measuring 150 m was calculated. Each
property was assigned an NDVI value using a spatial overlap analysis.

The Raster Calculator and Focal Statistics tools of the Spatial Analyst extension of
ArcMap 10.3 were used to calculate the NDVI (feature D_NDVI_150m) (see Figure 5). The
NDVI was calculated with the Raster Calculator and the rasters of the red and near-infrared
bands of the three selected days of the year 2020, then the average of the three rasters was
calculated. Using the Focal Statistics analysis, the average in an area of influence of 150
m (circle neighborhood) was calculated for each pixel. Using the Extract Raster Values to
Point tool, the average NDVI value in the surrounding area was assigned to each property.
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Finally, to model the effect of time, a feature was created with different categories
that identified whether a particular property was being marketed in a given quarter. The
process of data appending for the temporal data is detailed in Figure 6, which shows that a
property can appear many times in a temporal dataset, depending on the quarter in which
it was marketed. This new pooled cross-sectional dataset was formed by 94,024 records,
corresponding to 39,943 different properties offered between May 2019 and December 2021.
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Table 1 presents the 28 features constructed from the data obtained for this research,
which are arranged according to five categories: Dwelling characteristics (A), Building
characteristics (B), Location characteristics (C), Neighborhood characteristics (D), and
Temporal characteristics (E). The unit with which each variable has been measured is also
indicated, as well as a brief description of the same.

Table 1. Set of features that make up the study, with their units and description.

Category Features Values Feature Descriptions

Dwelling characteristics
(A)

A_typology
(Categories)

Flat, Apartment, Penthouse,
Duplex, Studio_flat, Loft

Categorical feature identifying the dwelling
typology: Flat, apartment, penthouse, duplex,

studio flat, or loft

A_area_m2 Numerical Built dwelling surface (sqm), gross square meters
of the dwelling

A_bedrooms Numerical Number of bedrooms in the dwelling

A_bathrooms Numerical Number of bathrooms (×1) and toilets (×0.5) of
the dwelling

A_air_cond With (1), Without (0) Availability of air conditioning

A_heating With (1), Without (0) Availability of heating system

A_terrace With (1), Without (0) Availability of terrace

A_new_constr New construction (1)
Not new construction (0)

Newly build housing that can be a project, under
construction, or less than 3 years old.

Building characteristics
(B)

B_elevator With (1), Without (0) Availability of elevator

B_parking With (1), Without (0) Availability of garage slot

B_storeroom With (1), Without (0) Availability of storage room

B_pool With (1), Without (0) Availability of swimming pool

B_garden With (1), Without (0) Availability of garden

Location characteristics
(C)

C_coor_X_km Numerical Projected coordinates of the spatial location (in
kilometers). Coordinate Reference Systems

EPSG:25830, with ETRS89 datum and UTM30N
projection

C_coor_Y_km Numerical

Neighborhood
characteristics (D)

D_age_nbhd Numerical Average age of the neighborhood (reference year
2021)

D_FAR Numerical
Floor Area Ratio (total building floor area/gross

sector area), 150 m around the building, in m2

floor area/m2 of the sector

D_dependency Numerical Dependency ratio (sum of the population aged >
64 and <16/population aged 16–64).

D_elderly Numerical Aging ratio (population aged > 64/population
aged < 16)

D_foreigners Numerical Percentage of foreign population

D_net_income Numerical Net household income for 2019, in thousand euros

D_d_educ1_km Numerical Distance from the dwelling to level 1 educational
centers (infant and primary), in km

D_d_educ2_km Numerical Distance from the dwelling to level 2 educational
centers (secondary and high school), in km

D_d_park_km Numerical Distance to urban green spaces (parks), in km

D_d_coast_km Numerical Distance of the dwelling to the coastline, in km

D_NDVI_150m Numerical Normalized Difference Vegetation Index. Average
NDVI in a 150 m area of influence
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Table 1. Cont.

Category Features Values Feature Descriptions

Temporal characteristics
(E) E_quarter

(Categories)
2019Q2, 2019Q3, 2019Q4,
2020Q1, 2020Q2, 2020Q3,
2020Q4, 2021Q1, 2021Q2,

2021Q3 and 2021Q4

Categorical feature for modeling the time factor in
11 quarters

Dependent feature ln_price Numerical (natural log) The natural log of the asking price offered by the
seller (in Euro).

The selection of the features used was based on the literature review of other research,
the availability of data and the previous experience of other research conducted in the
Alicante real estate market [58–61].

In addition to the features mentioned, the data obtained from the real estate web
portal allowed for the creation of other features (floor, balcony availability, sports facilities,
marketer, etc.). However, these features were not included in Table 1 and were not used in
the research, since they were discarded in the feature engineering phase for having little
variability or a large number of missing values.

2.2. Descriptive Statistics

Table 2 shows the descriptive statistics for all features used in the analysis.

Table 2. Descriptive statistics for the features.

Category Features Continuous Features Dummy/Categorical Features
M SD Min. Max. Coding Frequency

Dwelling
characteristics (A)

A_typology

(Categories)
Flat

Apartment
Penthouse

Duplex
Studio_flat

Loft

34,073
2758
2397
437
154
124

A_area_m2 106.0 37.6 20.0 340.0

A_bedrooms 2.9 0.8 1.0 6.0

A_bathrooms 1.6 0.6 0.5 5.0

A_air_cond With (1)
Without (0)

19,555
20,388

A_heating With (1)
Without (0)

12,981
26,962

A_terrace With (1)
Without (0)

4820
35,123

A_new_constr New (1)
No new (0)

870
39,073

Building
characteristics (B)

B_elevator With (1)
Without (0)

27,600
12,343

B_parking With (1)
Without (0)

13,493
26,450

B_storeroom With (1)
Without (0)

8233
31,710

B_pool With (1)
Without (0)

9259
30,684

B_garden With (1)
Without (0)

4805
35,138
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Table 2. Cont.

Category Features Continuous Features Dummy/Categorical Features
M SD Min. Max. Coding Frequency

Location
characteristics (C)

C_coor_X_km 720.34 2.39 716.57 726.63

C_coor_Y_km 4248.35 1.44 4239.48 4252.26

Neighborhood
characteristics (D)

D_age_nbhd 43.70 11.66 11.50 100.40

D_FAR 1.78 0.98 0.00 4.95

D_dependency 0.53 0.10 0.24 0.92

D_elderly 1.87 1.17 0.10 6.45

D_foreigners 15.90 8.39 1.70 48.00

D_net_income 30.08 8.87 13.61 64.96

D_d_educ1_km 0.49 0.37 0.01 2.76

D_d_educ2_km 0.56 0.47 0.01 5.94

D_d_park_km 0.52 0.36 0.00 2.90

D_d_coast_km 1.60 1.00 0.03 5.56

D_NDVI_150m 0.08 0.03 0.04 0.26

Temporal
characteristics (E)

(*)
E_quarter

(Categories)
2019Q2
2019Q3
2019Q4
2020Q1
2020Q2
2020Q3
2020Q4
2021Q1
2021Q2
2021Q3
2021Q4

6264
7329
8203
8372
7232
8482
9516
9498
9462
9725
9941

Dependent feature
(*)

ln_price 11.88 0.64 9.44 14.27

price 178,123 129,611 12,600 1,578,000

Notes: Number of unique properties 39,943. (*) Total number of prices 94,024. M mean, SD standard deviation.

Figure 7 shows the distribution of the unit price (€/m2) for each of the quarters
analyzed. As can be noted, the price distribution over the quarters was very uniform,
with variations only being small. Specifically, the number of properties offered with prices
exceeding 1700 €/m2 reduced over time, with there having been more properties in the
900–1100 €/m2 price range in the last quarter of the analyzed series.
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Figure 8 shows the distribution of the unit price according to whether the properties
had an elevator. It can be noted that when an elevator is available, price distribution
is displaced and extends further in areas with higher prices than in the sample without
elevators. In the case of properties without elevators, prices are more concentrated and are
found in lower-priced areas.
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2.3. Methodology

In this study, 5 machine learning algorithms were used to develop a house price
prediction model for a case study with the city of Alicante. To this end, all the steps expected
in the usual machine learning workflow were addressed (Figure 9): data preparation,
feature engineering, hyperparameter training and optimization, model evaluation and
selection, and, finally, model interpretation.
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Figure 9. Usual machine learning workflow.

The Python (3.7.11) programming language was used and the pandas (1.3.2) and
numpy (1.19.5) libraries were used for data processing. To implement the ML algorithms,
machine learning libraries scikit-learn (0.23.2) with scikit-optimize (0.8.1) and pycaret (2.3.2),
as well as the lightgbm (3.2.1) and xgboost (1.4.2) libraries, were used. To create the graphs,
the matplotlib (3.4.2), seaborn (0.11.2), and yellowbrick (1.3. post1) libraries were used. The
interpretation of the model was implemented with scikit-learn (0.23.2) and eli5 (0.11.0).
Table 3 details the 6 algorithms used, indicating the origin of the library.

Data collection was carried out using web scraping through a specific program devel-
oped by the authors. The structured information was stored in a database that could be
exported to other exchange formats. The previous exploratory analysis of the data allowed
for the preprocessing phase. During the preprocessing phase, outliers were identified, data
were cleaned, missing data were treated and unrepresentative categorical variables were
pooled together, as described in Section 2.1. Finally, the dependent variable (house prices)
was transformed into the natural logarithm. The logarithmic transformation reduced
problems of heteroscedasticity and improved the goodness-of-fit of the data [45,62,63].
Moreover, the transformation facilitated the interpretation of the coefficients since they
show the percentage of variation in the dependent variable that would be obtained for each
one-unit increase in the explanatory variable [62].
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Table 3. Machine learning algorithms used.

Id Name Model Library

1 lr Linear Regression sklearn.linear_model.LinearRegression

2 rf Random Forest Regressor sklearn.ensemble.
RandomForestRegressor

3 et Extra Trees Regressor sklearn.ensemble.ExtraTreesRegressor

4 gbr Gradient Boosting
Regressor

sklearn.ensemble.
GradientBoostingRegressor

5 xgbm Extreme Gradient
Boosting xgboost.XGBRegressor

6 lgbm Light Gradient Boosting
Machine lightgbm.LGBMRegressor

Note: the lr algorithm is used as a baseline and for comparative purposes.

In the feature engineering phase, the correlations between features were analyzed
and some features were eliminated due to their high correlation. For this analysis of the
collinearity of the features, the variance inflation factor (VIF) was used, regarding which
many authors have suggested that there are collinearity problems if a VIF is higher than
10 [64,65]. Some features were also discarded for having low variance and others were
discarded for having a high percentage of missing values. It was not necessary to carry out
a process for the creation or extraction of new features.

For the development of the training and evaluation phases for the models, it was
necessary to divide the dataset (Figure 10). All divisions were carried out with the purpose
of separating datasets according to a group identifier (“GroupShuffleSplit” from the scikit-
learn library), with the property identifier being the attribute used to establish the groups.
In this way, the different prices for the property could only be assigned to a single dataset
division, thus avoiding data leakage between the training and test sets.
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Two divisions were made with the full dataset, one division was for training and the
search for hyperparameters (70%) and the other was for carrying out tests (30%).

In the model training phase, different potential algorithms were used to estimate their
predictive power. To evaluate the performance of the models, several error metrics (mean
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absolute error—MAE, mean square error—MSE, root mean squared error—RMSE) and
goodness-of-fit (R2 score) were used. This training phase was repeated for each combination
of hyperparameters created in the following optimization phase.

Hyperparameter optimization was done with the intention of improving the goodness-
of-fit of the models and minimizing prediction errors. Through the selection of algorithms,
the incidence of their hyperparameters was evaluated and they were adjusted by means of
cross-validation techniques on the training set. In the training set, a strategy using k-fold
cross-validation based on non-overlapping groups (“GroupKFold” from the scikit-learn
library) with 10 folds was used, allowing a performance metric of the trained model to be
obtained [66]. The cross-validation process consisted of extracting a subset of data formed
by k-1 folds that was used to train the model (CV-training), and the subset formed by the
excluded fold was used to estimate the performance (CV-validation). The process was
repeated k times and excluded a different fold each time, quantifying the performance in
all the k rounds. The average value of the scores obtained for all of the rounds and the
standard deviation were used as metrics to identify the best hyperparameters and classify
the algorithms according to their performance (Figure 10). The search for hyperparameters
was carried out using two different algorithms; a random search and a Bayesian search.
In these training and optimization phases, it was particularly important to separate the
rows according to the group in order to avoid data leakage between the CV-validation and
CV-training sets.

For the model evaluation process, the test datasets, and the algorithms and the hyper-
parameters obtained in the previous phase were used. Performance metrics and graphical
techniques for prediction visualization, such as residual plots, were used to evaluate pre-
diction errors. Moreover, the possible existence of overfitting was studied through the
use of the learning curves obtained by cross-validation. The model selection process was
carried out using the performance metrics (error and goodness-of-fit) obtained from the
test dataset with the purpose of identifying the algorithm that performed best in predicting
the dependent variable.

For the model interpretation process, tools were used to identify the most important
features through the use of global approaches; namely, the permutation importance and
the partial dependence plot (PDP).

For the deployment of the final model, once the most suitable algorithms and hyper-
parameters had been chosen, the algorithms were trained using all available data, and
performance metrics were extracted.

The workflow would conclude with the deployment of the model and its monitoring.
In this phase, it would be usual to develop a web platform to put the model into production,
allowing predictions to be made from initial data, monitoring the model over time.

3. Results
3.1. Model Training and Optimization

In the feature engineering phase, correlated features that caused multicollinearity were
identified and were eliminated from the dataset accordingly. The number of bedrooms
(A_bedrooms) shows a high positive correlation with the properties’ floor area. The garden
feature (B_garden) is positively correlated with having a pool. The aging ratio (D_elderly) is
correlated with the dependency ratio, with the latter remaining in the model. The floor area
ratio (D_FAR) is positively correlated with the NDVI, the X and Y coordinates, and having
a pool, and is negatively correlated with the average age of the neighborhood. Finally,
regarding distances, the distance to level 2 educational centers (D_d_educ2_km) is positively
correlated with the distance to level 1 educational centers and the distance to the coast
(D_d_coast_km) is positively correlated with coordinate x. For the other features, the VIF
was calculated and there were no values over 3.2.

Once the dataset and the training pipeline had been prepared, the models were trained
with the hyperparameters preconfigured in the algorithms. Each algorithm was then trained
using a randomized search (with 200 iterations) and a Bayesian search (with 100 iterations).
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Table 4 shows the results from the training and optimization of the ML algorithms together
with the results of an ordinary least squares regression model that was used as a baseline
to be exceeded. Figure 11 shows a box diagram of all the algorithms and the two types
of hyperparameter searches, showing the CV-training, CV-validation, and initial model
performance values.

Table 4. Results from the initial performance and hyperparameter adjustment by cross-validation (R2

score in CV-validation and standard deviation in parentheses).

Model Name
Initial

Hyperparameters
Hyperparameter Optimization

Random (200) Bayesian (100) Best

Linear Regression lr 0.8048
(0.0060) - - -

Random Forest
Regressor rf 0.9036

(0.0049)

0.8869
(0.0037)

[time 37 min 56 s]

0.8855
(0.0038)

[time 30 min 11 s]

Initial
hyperparameters

Extra-Trees
Regressor et 0.9101

(0.0040)

0.8628
(0.0044)

[time 20 min 7 s]

0.8800
(0.0039)

[time 38 min 42 s]

Initial
hyperparameters

Gradient Boosting
Regressor gbr 0.8581

(0.0054)

0.9101
(0.0035)

[time 53 min 28 s]

0.9125
(0.0034)

[time 39 min 32 s]
Bayesian

Extreme Gradient
Boosting xgbm 0.8921

(0.0034)

0.9094
(0.0041)

[time 1 h 3 min 36 s]

0.9077
(0.0039)

[time 45 min 10 s]
Bayesian

Light Gradient
Boosting Machine lgbm 0.8864

(0.0042)

0.9065
(0.0043)

[time 28 min 42 s]

0.9076
(0.0044)

[time 16 min 17 s]
Bayesian

The best hyperparameter search results were achieved with the gbr, xgbm and lgbm
algorithms, especially with the gbr algorithm since it has gone from being the worst in
terms of performance to being the best, with an improvement in R2 score of 6.3%. The rf
and et algorithms showed no improvement with regard to the performance obtained with
the initial preconfigured hyperparameters.
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Figure 12 shows the learning curves for the hyperparameter search. The first conclu-
sion that can be made is that a Bayesian hyperparameter search obtains better results than
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a random search in fewer iterations. In a random search, many inefficient hyperparameter
combinations are generated.
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3.2. Model Evaluation and Selection

Using the trained models with the best hyperparameters, performance metrics were
extracted for the training and test sets (Table 5). The values in the CV-validation column
correspond with the performance metrics from the best models (see Table 4) and are
replicated in this table for information and comparison purposes only. The overfitting
column was calculated as the percentage difference between the test set and the training
set. Figure 13 shows the residual plots from the trained algorithms and divides the training
and test sets.

Table 5. Performance results of the trained algorithms (R2 score).

Model Name
CV-Validation in
Training Set (SD)

R2 Score

Training Set Test Set Overfitting (%)

Linear
Regression lr 0.8048 (0.0060) 0.8056 0.8052 -

Random Forest
Regressor rf 0.9036 (0.0049) 0.9970 0.9135 +9.1

Extra-Trees
Regressor et 0.9101 (0.0040) 0.9997 0.9178 +8.9

Gradient
Boosting
Regressor

gbr 0.9125 (0.0034) 0.9952 0.9192 +8.3

Extreme
Gradient
Boosting

xgbm 0.9094 (0.0041) 0.9900 0.9178 +7.9

Light Gradient
Boosting
Machine

lgbm 0.9076 (0.0044) 0.9902 0.9140 +8.3

The results show that the rf and et algorithms are those with the most overfitting (close
to 9%), while the xgbm algorithm has the least overfitting, with there being a difference
of +7.9% between the test set and the training set. This can also be seen in the residual
graphs for the rf and et algorithms (Figure 13), in which the point cloud for the training
set errors is particularly concentrated on the 0 standard deviations line, while the point
cloud for the test set errors is more dispersed. The results are stable and consistent since
the difference between the performances (R2 score) of the test sets and those obtained in
the cross validation (CV-validation) are very low, between 0.00–0.01.

Figure 14 shows the learning curves for the algorithms and the time taken for their
training for different sample sizes. For the rf and et models, an almost perfect overfitting
can be noted in the training set, which does not vary with the increase of the sample
size, thus indicating an excessive overfitting of these algorithms. With the xgbm and lgbm
algorithms it can be observed that, as the size of the dataset increases (higher complexity),
the accuracy in the training set decreases, thus reducing overfitting. These results suggest
that the algorithms based on bagging tend to overfit the training data more than algorithms
based on boosting.
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Regarding the time taken in training according to the size of the dataset, it can be
observed that the xgbm and lgbm algorithms are the quickest; and gbr is the fastest for small
datasets. The rf and et algorithms can result in being prohibitive as the size of the dataset
increases.

To evaluate the final performance of the models, the algorithms were trained again
with the best hyperparameters using the entire dataset (training and test) and their new
performances were calculated. The results are shown in Table 6.

Table 6. Error and goodness-of-fit measures for the algorithms on different datasets (various metrics).

Model
Name

Test Dataset (30%) Complete Dataset (Training + Test, 100%)

MAE MSE RMSE R2 MAE MSE RMSE R2

lr 0.2166 0.0797 0.2823 0.8052 0.2163 0.0799 0.2826 0.8055

rf 0.1252 0.0354 0.1882 0.9135 0.0178 0.0012 0.0348 0.9971

et 0.1219 0.0336 0.1834 0.9178 0.0019 0.0002 0.0142 0.9995

gbr 0.1264 0.0331 0.1818 0.9192 0.0364 0.0029 0.0536 0.9930

xgbm 0.1298 0.0336 0.1834 0.9178 0.0507 0.0051 0.0714 0.9876

lgbm 0.1322 0.0352 0.1876 0.9140 0.0525 0.0057 0.0753 0.9862

Land 2022, 11, x FOR PEER REVIEW 20 of 34 
 

lgbm 

  

Figure 13. Residual plots of the trained algorithms. Note: Predicted price values on the abscissa axis 
in a natural logarithm, ordinate axis with standardized errors. 

Figure 14 shows the learning curves for the algorithms and the time taken for their 
training for different sample sizes. For the rf and et models, an almost perfect overfitting 
can be noted in the training set, which does not vary with the increase of the sample size, 
thus indicating an excessive overfitting of these algorithms. With the xgbm and lgbm algo-
rithms it can be observed that, as the size of the dataset increases (higher complexity), the 
accuracy in the training set decreases, thus reducing overfitting. These results suggest that 
the algorithms based on bagging tend to overfit the training data more than algorithms 
based on boosting. 

Regarding the time taken in training according to the size of the dataset, it can be 
observed that the xgbm and lgbm algorithms are the quickest; and gbr is the fastest for 
small datasets. The rf and et al.gorithms can result in being prohibitive as the size of the 
dataset increases. 

 Learning curves Scalability of the model 

rf 

 
Figure 14. Cont.



Land 2022, 11, 2100 20 of 32Land 2022, 11, x FOR PEER REVIEW 21 of 34 
 

et 

 

gbr 

 

xgbm 

 

Figure 14. Cont.



Land 2022, 11, 2100 21 of 32Land 2022, 11, x FOR PEER REVIEW 22 of 34 
 

lgbm 

 
Figure 14. Learning curves and training time according to training set size. 

To evaluate the final performance of the models, the algorithms were trained again 
with the best hyperparameters using the entire dataset (training and test) and their new 
performances were calculated. The results are shown in Table 6. 

Table 6. Error and goodness-of-fit measures for the algorithms on different datasets (various met-
rics). 

Model 
Name 

Test Dataset (30%) 
Complete Dataset (Training + Test, 

100%) 
MAE MSE RMSE R² MAE MSE RMSE R² 

lr 0.2166 0.0797 0.2823 0.8052 0.2163 0.0799 0.2826 0.8055 
rf 0.1252 0.0354 0.1882 0.9135 0.0178 0.0012 0.0348 0.9971 
et 0.1219 0.0336 0.1834 0.9178 0.0019 0.0002 0.0142 0.9995 

gbr 0.1264 0.0331 0.1818 0.9192 0.0364 0.0029 0.0536 0.9930 
xgbm 0.1298 0.0336 0.1834 0.9178 0.0507 0.0051 0.0714 0.9876 
lgbm 0.1322 0.0352 0.1876 0.9140 0.0525 0.0057 0.0753 0.9862 

At this stage, it is possible to select the most efficient algorithm, or algorithms, to 
predict the house prices in the city of Alicante. A simple option would be to choose the 
algorithm with the best performance in the test dataset (Table 5), without considering 
other aspects. In this case, the gbr algorithm would be chosen as it also obtained the best 
performance in the cross-validation process. However, the choice is not that simple as 
other aspects must be considered, such as: 
1. The difference in performance between the algorithms (in this case being minimal, 

varying between 0.9135 and 0.9192 (R² score)); 
2. The need to select an algorithm that has no overfitting problems and generalizes well 

with unseen data (in this case, the xgbm and lgbm algorithms may be good candi-
dates); 

3. The need to choose an algorithm with low prediction variability in the cross-valida-
tion process (low variance) (the gbr algorithm has had the lowest variability); 

4. The need to consider the necessary times for the training and optimization of the 
hyperparameters and whether they adapt to the project deadlines (in this case, the 
xgbm and lgbm algorithms are the best options); 

5. The need to consider the file sizes of the models required for deployment (in this case, 
the lgbm algorithm generates the smallest file and the rf and et al.gorithms generate 
the largest (77 to 112 times larger than the lgbm algorithm)). 

Figure 14. Learning curves and training time according to training set size.

At this stage, it is possible to select the most efficient algorithm, or algorithms, to
predict the house prices in the city of Alicante. A simple option would be to choose the
algorithm with the best performance in the test dataset (Table 5), without considering
other aspects. In this case, the gbr algorithm would be chosen as it also obtained the best
performance in the cross-validation process. However, the choice is not that simple as other
aspects must be considered, such as:

1. The difference in performance between the algorithms (in this case being minimal,
varying between 0.9135 and 0.9192 (R2 score));

2. The need to select an algorithm that has no overfitting problems and generalizes well
with unseen data (in this case, the xgbm and lgbm algorithms may be good candidates);

3. The need to choose an algorithm with low prediction variability in the cross-validation
process (low variance) (the gbr algorithm has had the lowest variability);

4. The need to consider the necessary times for the training and optimization of the
hyperparameters and whether they adapt to the project deadlines (in this case, the
xgbm and lgbm algorithms are the best options);

5. The need to consider the file sizes of the models required for deployment (in this case,
the lgbm algorithm generates the smallest file and the rf and et algorithms generate
the largest (77 to 112 times larger than the lgbm algorithm)).

The performance, existence of overfitting, and training time will vary depending on
the combination of hyperparameters used, so it is difficult to generalize the best algorithm.
For this reason, it is necessary to test a set of algorithms with different combinations of
hyperparameters and evaluate their results.

3.3. Model Interpretation

There is a wide collection of libraries dedicated to the interpretation of ML algo-
rithms [67]. In this case, two global strategies were used; the relative importance of features
by means of permutation and partial dependence plots.

The large majority of ML algorithms are able to calculate a measure of relative im-
portance of features and identify those that are more relevant for the prediction of the
dependent variable. These metrics used in the algorithms do not allow for their comparison
since they are calculated with different strategies. In linear regression, the importance of
the features is determined by the standardized regression coefficients, which are obtained
after standardizing the original features introduced into the model.

A strategy called permutation importance, which was implemented in the ELI5 li-
brary [68,69], was used to calculate the importance of a feature when it was not in the
model using performance metrics.
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Using this strategy has several advantages: (1) the strategy is agnostic and is, therefore,
independent from the model, meaning it can be used with any algorithm; (2) the metric
obtained is easy to interpret and allows for the comparison of results between different
algorithms. In this case, the R2 was used, which is interpreted as the reduction in the per-
centage of variance that would occur in the model by removing the corresponding feature;
and (3) it is much more computationally lightweight than other strategies (see [70,71]) since
it does not require more models with other feature combinations to be trained.

The permutation importance process is as follows: (1) for each feature, the dataset
values are shuffled (introducing random noise) in order to maintain the statistics of each
feature (mean, SD, min, max); (2) the predictions are extracted using the trained model and
the dataset that was shuffled in the previous step; (3) the decrease in performance (R2) is
calculated with regard to the performance obtained before shuffling the data; and (4) the
shuffling process is repeated as many times as necessary and for each of the features.

Figure 15 shows the most important features for the prediction of house prices using
the permutation importance when applied to two algorithms based on different strategies,
et and gbr. The location features (C_coor_X_km and C_coor_Y_km) are relevant in both
algorithms. The most important features of the properties are the floor area, the number
of bathrooms, and the availability of an elevator (A_area_m2, A_bathrooms and B_elevator).
Regarding the neighborhood features, the most relevant are the net household income,
the distance from the property to level 1 educational centers, and the average age of the
neighbourhood (D_net_income, D_d_educ1_km and D_age_nbhd).
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algorithm (et); and (b) the Gradient Boosting Regressor algorithm (gbr).

Through the use of partial dependence plots (PDP), it is possible to visualize the
marginal effect that a feature (or two) has on the predicted result of a machine learning
model [72]. This type of graph can show whether the relationship between a dependent
variable and an independent variable is linear, monotonic, or more complex [73]. This
technique implies that the feature for which the PDP is calculated is not correlated with
other model features since, in the case of high correlation, the interpretation of the PDP
may be erroneous [73]. Care must be taken also in the interpretation of the graphs in the
extreme areas where there are few observations.
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For the purpose of comparison, the partial dependence plots for the lr, et and gbr
algorithms are provided and show the feature to be analyzed on the horizontal axis and
the house price (in natural logarithm) on the vertical axis. Serving as complementary
information, and being used only for illustrative purposes, the slope of the lines with
the best fit for each partial dependence estimate and the coefficient of determination of
the fit are provided. In the case of linear regression, these graphs are shown as a linear
relationship, that is, as an average rate of change. The greater the magnitude of the slope,
the steeper the line and the greater the rate of change. Regarding the interior marks on the
axes, they represent the distribution of the sample in deciles (represented in gray). In order
to avoid misinterpretations of the extreme ends of the data distribution, the sample has
been trimmed by 5% (2.5% at each extreme).

Figure 16 summarizes the PDP graphs for the location features (C_coor_X_km and
C_coor_Y_km). It can be noted that house prices are higher when the property is located
further east and are lower when it is located further north. The et and gbr algorithms show
more complex relationships than the lr algorithm but do have the same trend (Figure 16a). It
can also be noted that the trend in the Y coordinate is not uniform in all the data distribution
since the lr model overestimates the effect in observations below the 30th percentile and
above the 90th percentile.

For a better understanding of the relationships between these two features, a two-way
directional partial dependence plots can be used. By combining the X and Y coordinates
in the graph, a continuous map showing the average value of a house depending on its
location can be displayed (Figure 16b). The graph does not trim the areas with no data,
meaning that its interpretation should be done with caution.
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Figure 16. (a) One-way partial dependence plots for X and Y coordinates with lr, et, and gbr algorithms.
(b) Two-way directional partial dependence plots for lr, et, and gbr algorithms.

The partial dependence plots for the most important property features are shown
in Figure 17. Floor area and the availability of an elevator show the same trend in all
three algorithms. Regarding floor area, it must be considered that the graph is cut off at
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210 m2, which leaves larger properties in that 2.5% of extreme cases that can distort the
representation. Regarding bathrooms, it can be noted that the lr model does not predict
correctly when there are more than two complete bathrooms. In this case, the et and gbr
algorithms interpret that having more than two bathrooms does not affect the price (slope
close to zero).
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algorithms. Regarding floor area, it must be considered that the graph is cut off at 210 m², 
which leaves larger properties in that 2.5% of extreme cases that can distort the represen-
tation. Regarding bathrooms, it can be noted that the lr model does not predict correctly 
when there are more than two complete bathrooms. In this case, the et and gbr algorithms 
interpret that having more than two bathrooms does not affect the price (slope close to 
zero). 
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Figure 17. One-way partial dependence plots for the surface area, number of bathrooms, and elevator
availability obtained with the lr, et, and gbr algorithms.

Regarding the three most important features of the neighborhood (Figure 18), it can
be noted that linearity is broken in some areas of the data distribution. In the case of net
household income, with values over 35 k euros, the positive slope with respect to the price
is broken and has an almost null slope. A similar situation occurs with the distance to level
1 educational centers as once the distance exceeds 1000 m, the slope tends to zero. In the
case of age, two different slopes can be noted; a negative slope for properties that are 0–45
years old, and a positive slope for older properties.
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Figure 18. One-way partial dependence plots for net household income, distance to level 1 educa-
tional centers, and average age of the neighborhood obtained with the lr, et, and gbr algorithms.

The temporal feature is shown in Figure 19, where each graph represents the partial
dependence concerning the average price of the entire dataset [73]. By using the logarithmic
transformation of the independent variable (price), the slopes of the straight lines can be
interpreted as the percentage variation in price when classifying a certain category of the
temporal feature (quarters), keeping the rest of the independent features constant.

It can be noted that the linear regression overestimates the impact of temporal feature,
while et underestimates it. When observing the gbr lines, it can be identified that between
the second quarter of 2019 and the second quarter of 2020 prices were below average, and
there was an increase in prices from the third quarter of 2020 (with respect to the average
price).
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Figure 19. One-way partial dependence plots for temporal features with lr, et, and gbr algorithms.

To complement the results of the ML models used in the research, a table with the
regression coefficients and the statistics of the least squares regression model, with in-
dependent results for the training and test set, is included in Appendix A (Table A1).

4. Discussion

All the machine learning algorithms performed better than the linear model based
on ordinary least squares. One of the main problems of the linear models is adopting this
linearity for the entire distribution of the data. This issue is partially resolved through the
use of ML algorithms, since they are able to model nonlinear behaviors in heterogeneous
data, such as those of the real estate market. Authors such as [11,14,15,23] have also arrived
at this same conclusion. The results in Section 3.3 show examples of features with nonlinear
relationships with house prices such as location (see the Y-coordinate in Figure 16a), number
of bathrooms (Figure 17), and some neighborhood features (Figure 18).

The ensemble learning algorithms based on boosting (gbr, xgbm and lgbm) have shown
the best behavior in various aspects, since they perform well and overfitting affects them less
than other algorithms such as rf and et. The fastest algorithms are xgbm and lgbm, especially
with large datasets, which may be an important factor in the training and hyperparameter
optimization phases, especially for ML project developments being carried out in the
business sector. The ensemble algorithms based on bagging (rf and et) have also proven to
perform well; however, more overfitting is shown in the training data, which may reduce
the generalization to unseen data. Overfitting is due to a higher complexity of the model,
which may suffer from a higher variance in the predictions [14]. The literature review
shows that there is a preference for the random forest algorithm over other types, however,
in the majority of cases the existence of overfitting is not analyzed. Other authors do not
limit themselves to the random forest algorithm and explore the performance of other
algorithms with good results such as extra-trees regressor, Gradient Boosting Regressor,
Extreme Gradient Boosting, Light Gradient Boosting Machine, and CatBoost [11,14,19,23].

Regarding the interpretation of the model, global strategies were used to identify the
features that are the most relevant in the prediction of house prices. The metrics based on
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permutation importance have many advantages and allow for the comparison of different
algorithms, favoring decision making in the selection of the features and algorithms to
be used. Moreover, the partial dependence plots allow us to describe the behavior of the
features and how they affect the price prediction, and also allow us to identify interactions
and (non) linearities between features. Although the partial dependence plots have a more
qualitative interpretation (trends, patterns, (non) linearity, and direction), they can also be
interpreted quantitatively with certain precautions and limitations, just as in the traditional
linear models. This phase of interpretation of the models is fundamental for the evaluation
of how the algorithms behave and whether their predictions are consistent or whether there
is some type of training error or error in the data itself.

In the interpretation of the models in this case study, it is identified that the most impor-
tant features for the prediction of house prices are floor area, the number of bathrooms, and
the availability of an elevator. These results are in line with those obtained in other studies
carried out in the province of Alicante [58,59]; however, there may be some significant
variations depending on the different regions and the time period analyzed [74]. It is also
worth noting that location is a determining factor, especially in a coastal municipality like
the one in this study [15]. The models were able to identify the areas with higher prices
(Playa de San Juan and El Cabo de la Huerta) and the areas with lower prices located to
the northwest of the municipality (see Figure 2). The net household income feature is an
excellent predictor of a house price since it determines the consumer’s purchasing power;
an issue that other authors have identified in their research [15,74].

The effects of the pandemic on the housing market in the city of Alicante were localized
and of transitory duration. The impact on prices was not as important or lasting as what
happened in the financial crisis of 2008. The months following the pandemic declaration
caused some uncertainty and paralysis in the market, motivated by the health restrictions
and the uncertainty of future economic and labor evolution. This paralysis in the real estate
market caused a drop in prices due to owners’ need to sell, accompanied by a reduction in
real estate offers and a standstill in the number of transactions. The first negative effects
on prices materialized in the third quarter of 2020. The results show that prices reached
the largest discount in the fourth quarter of 2020 and the first quarter of 2021. It was in the
third quarter of 2021 that the price recovery started; practically within a year and a half,
the market reached prices above those existing before the pandemic, the same duration as
estimated by Allen-Coghlan et al. [75] for the Irish market.

In Spain, as in other southern European countries, there is late emancipation from
the family home. This phenomenon is explained as a consequence of different factors,
such as the limitations of the housing market [76,77], the employment situation [78], low
incomes and high prices in rents [79], the difficulty of access to financing [80] and public
policies [81]. Authors such as Hromada et al. [82] indicate that the crisis caused by COVID-
19 has worsened this situation, as a result of the lack of employment for low-income
professionals.

Another issue to highlight is the rise in energy prices, which in recent years has been
increasing and has caused homeowners to be unable to meet basic energy supply needs
due to an insufficient level of income. According to the European Commission [83], in 2018,
9.1% of the Spanish population reported that they could not keep their home adequately
warm, while the EU average was 7.3%. Mastropietro et al. [84] highlight that during the
COVID-19 pandemic, energy poverty worsened worldwide. The causes were the massive
destruction of jobs and the increase in the energy needs of homes, as a consequence of the
measures adopted by governments to confine the population.

Currently, countries have articulated different policies aimed at intervening in the
housing market and making it more accessible. These policies can have an impact on the
supply side or the demand side. In the first case, this is done by providing greater legal
security to homeowners and introducing tax benefits to increase their profitability. In the
second case, through direct subsidies or tax deductions to reduce the burden of renting
(or buying a house) on the income of low-income households. Several authors [85,86] find
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advantages and disadvantages in both cases. They indicate that supply-side interventions
are only effective if the predominant market type is rental. In contrast, demand-side
interventions are effective in the short term and require efficient designs with significant
public investments.

5. Conclusions

The real estate industry is incorporating itself into the Big Data and artificial intel-
ligence revolution to offer new services and improve industry processes. There is an
explosive increase in the number of studies about the use of machine learning and deep
learning algorithms and how they are applied to the real estate industry, house prices,
mortgages, and the use of social networks to analyze consumer preferences. This study
contributes to the literature in this field through its analysis of the performance of various
machine learning algorithms in using large datasets to predict house prices.

This study uses several ensemble learning algorithms based on boosting and bagging
and determines their performance in order to compare them with a linear regression model.
Several hyperparameter search strategies were used, the performance of the algorithms
was evaluated, the existence of overfitting was examined, and the interpretation of the
models was carried out. Moreover, a large database with pooled cross-sectional data
regarding house prices was created with various information sources such as real estate
portals, cadastral information, socio-demographic and economic indicators, and satellite
information. A time span between 2019 and 2021 was analyzed with a sample of almost
40,000 properties, which has allowed us to describe the impact of COVID-19 on real estate
prices.

It can be concluded that the use of machine learning algorithms is a complex process
that consists of multiple phases, with these algorithms performing better than traditional
linear methods. It is not possible to generalize that one particular algorithm is better than
the other, since the value of the algorithms depends on the problem to be solved and the
type of data to be used (tabular data, text, image, sound, etc.). Moreover, it is necessary for
all studies with ML to address the problem of data leakage and analyze whether overfitting
in the algorithms used may reduce the precision of the predictions.

To the authors’ knowledge, this study is the first to use machine learning and geo-
referenced microdata to explore the incidence of the COVID-19 pandemic on house prices
in the Spanish real estate market.
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Abbreviations

CART Classification and Regression Tree
CECD Consejería de Educación,

Cultura y Deporte (Regional Ministry of Education, Culture and Sports)
CHAID Chi-squared Automatic Interaction Detector
DGC Dirección General de Catastro (Spanish General Directorate of Cadastre)
DT Decision Tree
EPSG European Petroleum Survey Group
ETR Extra-Trees Regressor
ETRS89 European Terrestrial Reference System 1989
GBR Gradient Boosting Regressor
HPM Hedonic Price Models
ICV Institut Cartogràfic Valencià (Valencian Cartographic Institute)
IDEV Infraestructura de Datos Espaciales Valenciana (Valencian Spatial Data Infrastructure)
IDW Inverse Distance Weighting
IGN Instituto Geográfico Nacional (Spanish National Geographic Institute)
INE Instituto Nacional de Estadística (Spanish National Institute of Statistics)
K-NN K-Nearest Neighbours
LGBM Light Gradient Boosting Machine
MAE Mean Absolute Error
ML Machine Learning
MLP-NN Multi-Layer Perceptron Neural Network
MSE Mean Square Error
NDVI Normalized Difference Vegetation Index
NN Neural Networks
OLS Ordinary Least Squares regression
PDP Partial Dependence Plot
RF Random Forest
RMSE Root Mean Squared Error
SVM Support Vector Machines
USGS U.S. Geological Survey
UTM Universal Transverse Mercator coordinate system
VIF Variance Inflation Factor
XGBM Extreme Gradient Boosting

Appendix A

Table A1. Summary of the results of the OLS regression model using dummy variables, for the
training and test set.

Train Set Test Set

Features B Std. Error Sig. VIF B Std. Error Sig. VIF

(Constant) 394.693 7.570 0.000 390.866 4.942 0.000

A_typology A_flat reference reference

A_apartment 0.081 0.007 0.000 1.076 0.053 0.004 0.000 1.080

A_penthouse 0.149 0.007 0.000 1.144 0.172 0.005 0.000 1.127

A_duplex 0.012 0.017 0.462 1.033 −0.004 0.010 0.679 1.049

A_studio_flat −0.052 0.027 0.057 1.020 −0.105 0.020 0.000 1.015

A_loft 0.231 0.027 0.000 1.018 0.204 0.020 0.000 1.008

A_area_m2 0.004 0.000 0.000 1.856 0.005 0.000 0.000 1.872

A_bathrooms 0.229 0.004 0.000 2.034 0.230 0.003 0.000 2.057

A_air_cond 0.060 0.004 0.000 1.256 0.068 0.002 0.000 1.285

A_heating 0.062 0.004 0.000 1.319 0.060 0.003 0.000 1.326
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Table A1. Cont.

Train Set Test Set

Features B Std. Error Sig. VIF B Std. Error Sig. VIF

A_terrace 0.010 0.006 0.043 1.195 0.005 0.004 0.146 1.187

A_new_constr 0.212 0.010 0.000 1.061 0.181 0.007 0.000 1.057

B_elevator 0.238 0.004 0.000 1.472 0.234 0.003 0.000 1.442

B_parking 0.075 0.005 0.000 1.653 0.057 0.003 0.000 1.735

B_storeroom 0.049 0.005 0.000 1.303 0.051 0.003 0.000 1.310

B_pool 0.081 0.006 0.000 1.983 0.077 0.004 0.000 2.023

C_coor_X_km 0.093 0.001 0.000 3.093 0.095 0.001 0.000 3.206

C_coor_Y_km −0.106 0.002 0.000 2.716 −0.106 0.001 0.000 2.740

D_age_nbhd 0.005 0.000 0.000 2.606 0.005 0.000 0.000 2.645

D_dependency −0.058 0.020 0.003 1.585 −0.046 0.013 0.000 1.595

D_foreigners −0.004 0.000 0.000 2.347 −0.004 0.000 0.000 2.342

D_net_income 0.017 0.000 0.000 2.695 0.016 0.000 0.000 2.693

D_d_educ1_km 0.156 0.006 0.000 1.844 0.163 0.004 0.000 1.875

D_d_park_km −0.094 0.006 0.000 1.713 −0.092 0.004 0.000 1.705

D_NDVI_150m −1.813 0.084 0.000 2.664 −1.826 0.056 0.000 2.731

E_quarter 2019Q2 −0.018 0.009 0.041 1.766 −0.023 0.006 0.000 1.736

2019Q3 −0.024 0.009 0.005 1.872 −0.030 0.006 0.000 1.854

2019Q4 −0.022 0.008 0.008 1.974 −0.020 0.005 0.000 1.940

2020Q1 −0.011 0.008 0.178 1.987 −0.011 0.005 0.037 1.959

2020Q2 reference reference

2020Q3 −0.020 0.008 0.018 1.974 −0.016 0.005 0.003 1.979

2020Q4 −0.014 0.008 0.072 2.125 −0.012 0.005 0.021 2.066

2021Q1 −0.007 0.008 0.367 2.122 −0.010 0.005 0.067 2.066

2021Q2 0.003 0.008 0.729 2.091 0.001 0.005 0.806 2.074

2021Q3 0.016 0.008 0.043 2.115 0.024 0.005 0.000 2.103

2021Q4 0.022 0.008 0.005 2.156 0.032 0.005 0.000 2.117

N 65,905 28,119

R2 0.807 0.808

Adj. R2 0.807 0.808

Std. Error 0.2810 0.2812

F (sig.) 3461.9 (p < 0.001) 8147.0 (p < 0.001)

Durbin–Watson 1.742 1.705

Note: dependent variable ln_price; B: Non-standardized coefficients; Sig.: Signification; VIF: Variance inflation
factor.
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