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This paper presents an efficient method for computing Maximum Likelihood (ML) direction-of-arrival 

(DOA) estimates in scenarios in which the sensor noise powers are nonuniform and unknown. The 

method combines the Alternating Projection (AP) algorithm for coarsely locating additional DOAs and 

Newton iterations for finally obtaining the ML estimates. Compared with the existing approaches, the 

method reduces the computational burden significantly due to the small number of Newton iterations 

required and to the efficient computation of each iteration. Specifically, the iterations are computed in a 

small number of arithmetic operations thanks to the closed-form formulas for the gradient and Hessian 

of the ML cost functions presented in this paper. The method’s total computational burden is of just a 

few mega-flops (mega floating-point operations) in typical cases. We present the method for the deter- 

ministic and stochastic ML estimators. Then, an analysis of the deterministic ML cost function’s gradient 

reveals an unexpected drawback: its associated estimator is either degenerate or inconsistent. Finally, we 

assess the method’s root-mean-square (RMS) error and computational burden numerically and compare 

it with other relevant estimators in the literature. 

© 2022 The Author(s). Published by Elsevier B.V. 
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. Introduction 

The DOA estimators for several narrowband sources are usually 

esigned for uniform noise scenarios, i.e, they may be used when- 

ver the noise is uncorrelated, both spatially and temporally, and 

f the same power at each sensor. This noise uniformity greatly 

implifies DOA estimation, because it allows one to describe the 

oise through a single parameter, its power, and makes it pos- 

ible to employ estimators such as MUSIC (MUltiple SIgnal Clas- 

ification) and ESPRIT (Estimation of Signal Parameters via Rota- 

ional Invariance Techniques), [1,2] , and simplifies the derivation of 

L estimators, [3–5] . However, in a variety of applications, though 

he noise is spatially and temporally uncorrelated, its power dif- 

ers from sensor to sensor. This is the case in some seismic and 

iomedical applications [6] , in applications involving sparse arrays 

7–12] , or whenever there exist imperfections in the sensors’ pro- 

essing chains [13–16] . DOA estimation in these applications be- 

omes more complex, given that the noise powers must be taken 
� This work was supported by the Spanish Ministry of Science and Innovation, the 

tate Agency of Research (AEI) and the European Funds for Regional Development 

EFRD) under Project PID2020-117303GB-C22. 
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nto account in the estimation as additional unknown parameters. 

ctually, the unknown noise powers (UNPs) prevent the direct use 

f subspace methods such us MUSIC and ESPRIT and significantly 

ncrease the complexity of computing ML estimates. There have 

een attempts to adapt subspace methods to the UNP case, such 

s [7] and [12] , in which the impinging signals are assumed to be 

ncorrelated. Regarding ML estimation, the UNP ML cost functions 

epend on a large number of parameters of three different kinds, 

ignal, noise and DOA parameters, and the computation of the cor- 

esponding ML estimates involves the location of the cost func- 

ion’s global maximum in all of them. This is a hard optimisation 

roblem that is usually addressed by alternating maximisations in 

ach of these three kinds of parameters in a proper way. In [14,17] ,

he authors proposed an iterative method for the deterministic ML 

DML) cost function, that exploited the fact that this function can 

e concentrated in the signal samples and noise powers separately. 

hey proposed an iteration in which the remaining DOA parame- 

ers were obtained through a genetic algorithm. In [18] , a more 

fficient computation method for the UNP DML estimator was pre- 

ented. This method exploited the relationship between the UNP 

ML cost function and its equivalent for uniform noise. Fundamen- 

ally, the author combined the AP algorithm [19] with a closed- 

orm noise-powers estimation step. This last method outperforms 
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hat in [14,17] because it replaces the expensive global-search ge- 

etic algorithm with the AP method. In [9] , the authors presented 

 method that resembles that in [18] but for the Stochastic ML 

SML) cost function. It is also based on a two-step iteration com- 

ining the AP algorithm with an iterative method for the noise 

owers, termed the Power-Domain (PD) method. 

We can see that all these approaches are variants of the stan- 

ard ascendant direction method in numerical analysis [ 20 , Sec 

0.7], in which the maximum of a given cost function is ap- 

roached iteratively by maximising in sub-sets of the parameters 

nvolved. The main advantage of ascendant direction is that it ap- 

roximately locates the global maximum of the cost function with 

ow complexity. However, it is inefficient for refining an initial 

oarse estimate, given that the number of iterations required for 

ocating the actual global maximum is usually large. For this re- 

nement, a better alternative is a Newton method given that its 

onvergence rate is quadratic [ 21 , Sec 6.3.1]. The purpose of this 

aper is to present a method for computing UNP ML estimates 

ased on Newton’s method, whose complexity is low due to the 

fficient implementation of the Newton iterations, which is made 

ossible by the closed-form gradient and Hessian expressions pre- 

ented in this paper. 

The paper has been organised as follows. In the next section, 

e introduce the signal model and the UNP ML cost functions. 

hen, we recall the state of the art two-step methods for the com- 

utation of the UNP ML estimates in Section 3 and comment on 

heir limitations in Section 4 , where we also outline the solution 

o these limitations. After that, we present the proposed method 

n Section 5 , which is based on Newton iterations, and the gra- 

ient and Hessian expressions in Section 6 . In Section 7 , we check

hether the DML and SML estimators are non-degenerate and con- 

istent. Finally, we assess the proposed method in Section 8 nu- 

erically. 

.1. Notations and basic concepts 

We employ the following notations: 

• Column vectors and matrices are written in lower- and upper- 

case bold font respectively. Thus x denotes a column vector and 

X a matrix. 
• [ X] p,q denotes the (p, q ) component of matrix X , and [ X ] p, · and 

[ X] ·,q its pth row and q th column respectively. 
• diag (x ) is the diagonal matrix formed by the components of x . 
• For square X , tr { X } denotes the trace of X , i.e, the sum of its

diagonal components. 
• [ x ; y] denotes the column vector formed by concatenating the 

column vectors x and y vertically. 
• X 

H stands for the conjugate transpose of X . 
• X 

† stands for the pseudo-inverse of matrix X . If X has full col- 

umn rank then X 

† = (X 

H X ) −1 X 

H . 
• Given a matrix X of full column rank, its projection matrix is 

X X 

† . 
• I M 

denotes the M × M identity matrix. 
• Given a matrix A of size M × K, its QR decomposition is A = QR , 

where Q has size M × K and follows Q 

H Q = I K and R is upper 

triangular. For the properties of this decomposition, see [ 22 , Th. 

5.2.3]. 
• The operator ’ ≡’ indicates a symbol or function definition. 
• Given two variables a and b, the arrow a → b denotes the re- 

placement of a with b in a given expression. 
• δK,p denotes a K × 1 Dirac vector 

[ δK,p ] k ≡
{

0 , k � = p 

1 , k = p. �

2 
Throughout the paper, we often omit the dependency on the 

arious parameters in writing for simplicity. Thus, for example, �
tands for �(θ, λ) and �o for �o (θ) . The actual dependencies are 

vident from the context. 

The starting point for the cost function derivations in the paper 

s the complex Gaussian probability density function (PDF), [ 23 , Th. 

5.1]. Specifically, if the expected value of matrix Z is E z and the 

olumns of Z are independent and have equal covariance matrix 

 z , then the PDF of Z is 

f (Z) = 

1 
πMN | C z | N ·

exp (−tr { C −1 
z (Z − E z )(Z − E z ) H } ) . (1) 

We denote the various ML cost functions in the paper using the 

ubscripts “o”, “D”, and “S”, 

• L Do (θ) denotes the concentrated deterministic ML cost function 

for equal but unknown sensor noise power. 
• L D (θ, λ) and L S (θ, λ) respectively denote the concentrated de- 

terministic and stochastic ML cost functions for unknown sen- 

sor noise powers. 

. Signal model and UNP maximum likelihood cost functions 

We present in the sequel the signal model under unknown 

oise powers and then the two main ML cost functions, the deter- 

inistic and stochastic, in separate subsections. Consider a linear 

rray formed by M sensors and K waves impinging from angles of 

rrival θk , k = 1 , . . . , K. If the receiver takes N snapshots, the data

odel is 

 = �o (θ) S + N, (2) 

here: 

• [ Z] m,n is the n th sample from the m th sensor. 
• θ contains the K angles of arrival (AOAs) θk , [ θ] k ≡ θk . 
• φo (θ ) is the array’s response to a wave from angle θ and 

�o (θ) is a matrix stacking the responses to the angles in θ, 

[ �o (θ)] ·,k ≡ φo (θk ) . 
• [ S] k,n is the n th sample from the k th impinging signal. There are

two different models for S called deterministic and stochastic. 

In the deterministic, the whole matrix S is modeled as a set of 

unknown parameters while, in the stochastic, the columns of 

S are modeled as independent samples of a complex Gaussian 

vector of zero mean and covariance matrix R s . 
• All components [ N] m,n are independent noise samples that fol- 

low a complex normal circularly-symmetric distribution of zero 

mean and deviation 1 /λm 

, where we refer to λm 

as the inverse 

noise deviation at the m th sensor. Additionally, we define the 

following vector and diagonal matrix from λm 

, 

[ λ] m 

≡ λm 

, � ≡ diag (λ) . 

Using �, we have that the columns of N have covariance matrix 

�−2 . 

.1. Deterministic maximum likelihood (DML) cost function 

If S is viewed as a deterministic matrix, then Z in (2) has mean 

 z → �o S and covariance C z → �−2 and, from (1) , the PDF of Z is 

f D (Z| θ, λ, S) ≡
| �| 2 N 
πMN 

exp 

(
−tr 

{ 

�2 (Z − �o S)(Z − �o S) H 
} )

, (3) 

here we have written �o rather than �o (θ) for simplicity. If we 

ake the logarithm of this expression and introduce the following 

whitened” signature matrix 

(θ, λ) ≡ ��o (θ) , (4) 
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hen, after straightforward manipulations, we obtain from (3) the 

ost function 

 D (θ, λ, S) ≡ −NM log π + 2 N log | �| 
−tr { (�Z − �S)(�Z − �S) H } ) . (5) 

ext, as is well known, this expression is maximized in S for fixed 

and λ, if the product �S is replaced with P �Z, where P is the 

rojection matrix of �. For later use, we express this last matrix 

s 

 ≡ �M�H , 

here M is the inverse correlation matrix of �, 

 ≡ (�H �) −1 . 

o if we replace �S with P �Z in (5) and perform straight-forward 

anipulations, we obtain the new cost function 

L D (θ, λ) ≡ N 

(
2 log | �| − tr { (I M 

− P ) R zλ} 
)
, (6) 

here we have neglected the constant −NM log π in (5) and R zλ

enotes the “whitened” data correlation matrix 

 zλ ≡ 1 

N 

�Z Z 

H �. (7) 

6) is the concentrated DML cost function that is used in the rest 

f the paper. 

For uniform noise, the cost function equivalent to L D is obtained 

orm (6) , simply by setting � = I M 

/σ , where σ is the noise devi-

tion. Thus, setting � = I M 

/σ and noting that P turns out to be 

ndependent of σ , we obtain 

 

(
− 2 M log σ − 1 

σ 2 
tr { (I M 

− P ) R z } 
)
, (8) 

here 

 z ≡ 1 

N 

Z Z 

H . 

s can be easily checked, (8) can be maximized in σ and θ inde- 

endently. This implies that we may obtain a θ-only cost function 

imply by setting σ equal to a fixed value, say σ = 1 . Thus, from 

8) , we obtain the cost function 

L Do (θ) ≡ −N tr { (I M 

− P o ) R z } 
)
, (9) 

here the sub-script “o” indicates that the matrices are computed 

ith � = I M 

. 

.2. Stochastic maximum likelihood (SML) cost function 

In the stochastic modeling, the columns of S are viewed as in- 

ependent trials of a complex Gaussian distribution of zero mean 

nd covariance R s and, from (2) , this leads to the PDF in (1) with

 z → 0 and C z → �o R s �H 
o + �−2 . For simplicity, let us write this

ast covariance matrix as 

o R s �
H 
o + �−2 = �−1 (�R s �

H + I M 

) �−1 . 

ubstituting these values of E z and C z into (1) , we obtain the PDF

n the stochastic case 

f S (Z| θ, λ, R s ) ≡ | �| 2 N 
πMN | I M 

+ �R s �H | N · (10) 

exp 

(
−N tr 

{ 

(I M 

+ �R s �
H ) −1 R zλ

} )
, (10) 

here we have inserted the signature matrix in (4) and the 

hitened correlation matrix in (7) . 

Taking the logarithm of (10) , we obtain the cost function 

 S 

(
θ, λ, R s 

)
≡ −MN log ( π) + 2 N log | �| 

N log | I M 

+ �R s �H | − N tr 

{ (
I M 

+ �R s �H 
)−1 

R zλ

} 

. 
(11) 
3 
his expression can be maximised in R s for fixed θ and λ and the 

aximum is attained at 

ˆ 
 s ≡ �† R zλ(�

† ) H − M. (12) 

See [24] for a proof.) 

In order to replace R s with 

ˆ R s in (11) , it is convenient to start 

y performing this same replacement on the covariance matrix ap- 

earing twice in (11) , namely the matrix 

 ≡ I M 

+ � ˆ R s �
H . (13) 

ore precisely, we proceed to derive compact expressions of C and 

 

−1 in terms of � and P . 

First, noting that �M�H = P and ��† = P , the substitution of 

12) into (13) yields the desired expression for C, 

 = I M 

+ �(�† R zλ(�
† ) H − M) �H 

= I M 

− P + P R zλP . 
(14) 

Second, regarding C −1 , consider the QR decomposition � = QR , 

ith Q 

H Q = I K and invertible R, and an M × (M − K) matrix 

 ⊥ spanning the orthogonal complement to Q , ( Q 

H 
⊥ Q ⊥ = I M−K ,

 

H Q ⊥ = 0 ). Noting that P = Q Q 

H and I M 

− P = Q ⊥ Q 

H 
⊥ , we may

rite C in (14) as 

 = 

[
Q ⊥ , Q 

][I M−K 0 

0 Q 

H R zλQ 

][
Q 

H 
⊥ 

Q 

H 

]
. 

rom this factorisation, its clear that C −1 is given by 

 

−1 = 

[
Q ⊥ , Q 

][I M−K 0 

0 (Q 

H R zλQ ) −1 

][
Q 

H 
⊥ 

Q 

H 

]
. 

nd, finally, replacing Q → �R 

−1 , we obtain an expression for C −1 

n terms of � and P only: 

 

−1 = Q ⊥ Q 

H 
⊥ + Q 

(
Q 

H R zλQ 

)−1 
Q 

H 

= I M 

− P 

+ �R 

−1 

((
R 

−1 
)H 

�H R zλ�R 

−1 

)−1 (
R 

−1 
)H 

�H 

= I M 

− P + �
(
�H R zλ�

)−1 
�H . 

e may write this formula concisely as 

 

−1 = I M 

− P + P z , (15) 

here 

 z ≡ �M zλ�
H and M zλ ≡ (�H R zλ�) −1 . (16) 

Coming back to (11) , the replacement of R s with 

ˆ R s can be ef- 

ected by substituting into that equation the identities (14), (15) , 

nd 

r { P z R zλ} = K. 

his last identity can be easily deduced from (16) . The result of 

hese substitutions, neglecting constant summands, is the concen- 

rated cost functions 

L S (θ, λ) ≡ N 

(
2 log | �| − tr { (I M 

− P ) R zλ} − log | C| ). (17) 

his is the concentrated stochastic ML cost function that is anal- 

sed in the rest of the paper. Note that L S in (17) is formed by

dding a single term to L D in (6) . Actually, we have 

L S = L D + L C , where L C ≡ −N log | C| . (18) 
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. State of the art two-step approach for the computation of 

NP ML estimates 

Let us now recall the usual two-step approach for computing 

NP ML estimators [9,18] . Fundamentally, this approach consists 

f maximising a given cost function in θ and λ alternately until 

onvergence is achieved. Since it has the same form for either the 

ML or SML cost function, let us only recall the version in [18] for

he DML estimator. The DML estimate of the pair (θ, λ) is the ab-

cissa of the global maximum of L D (θ, λ) in (6) , and the method

n [18] exploits two basic properties of this last cost function: 

1. For a fixed value of λ, say λo , L D (θ, λo ) can be easily cast as a

uniform-noise DML cost function. This allows one to maximise 

L D (θ, λo ) in θ using the AP algorithm [19] . This last algorithm 

is based on line searches and consists of two steps: 

• AP initial step. A K × 1 vector ˆ θ0 of coarse estimates is 

computed in K sub-steps as follows. At the k th sub-step, a 

(k − 1) -length vector ˆ θ0 ,k −1 is extended to a k -length vector 

ˆ θ0 ,k by appending the result of a line search, i.e, 

ˆ θ0 ,k = 

[
ˆ θ0 ,k −1 ; arg max 

θ
L D ([ ̂  θ0 ,k −1 ; θ ] ,λo ) 

]
. (19) 

The initial vector ˆ θ0 , 0 is empty and the output coarse esti- 

mate is ˆ θ0 = 

ˆ θ0 ,K . 
• AP refinement step. This sub-step is iterative and, in each 

iteration, performs one line search for each component of 

the previous iteration’s output ˆ θk −1 independently. In other 

words, if ˆ θr,k,θ denotes ˆ θr but with its k th component re- 

placed with the variable θ , then the next iteration output is 

given by ( r ≥ 0 , k = 1 , 2 , . . . , K) 

[ ̂  θr+1 ] k = arg max 
θ

L D ( ̂  θr,k,θ , λo ) . (20) 

2. If θ0 is the output of step 1) and is close to the true value of θ,

then we may expect 

R z ≈ �o (θ0 ) S S 
H �o (θ0 ) 

H + �−2 

and, therefore, the columns of R z − �−2 approximately lie in 

the span of �o (θ0 ) . This implies that their projection onto the 

orthogonal complement to this last span is approximately zero, 

i.e, 

(I M 

− P o (θ0 ))(R z − �−2 ) ≈ 0 . 

Thus, we may estimate λ as the vector minimising the Frobe- 

nius norm of this last matrix, given by 

tr 
{
(I M 

− P o (θ0 ))(R z − �−2 )(R z − �−2 ) H 
}
. 

As can be readily checked [18] , the resulting estimate of λ is, 

(m = 1 , 2 , . . . , M) , 

[ λ0 ] m 

= 

√ 

1 − [ P o (θ0 )] m,m 

Re { [ R z (I M 

− P o (θ0 ))] m,m 

} . (21) 

These two procedures can be used to approach the maximum 

f L D (θ, λ) by means of an iterative procedure, in which 1) and

) are performed alternatively. In [18] , this procedure is simplified 

urther by substituting (21) into the alternative cost function 

 Dmd (θ, λ) ≡ −N tr { (I M 

− P ) R zλ} , (22) 

hich is identical to L D but neglecting the term log | �| . The result

f this substitution is a, so called, PD cost function, given by 

 PD (θ) ≡ −∑ M 

m =1 

(
r H m 

(I M 

− P o ) r m 

− Re { [ I M −P o ] m, · ·r m } 
[ I M −P o ] m,m 

)
, (23) 

here r m 

≡ [ R z ] ·,m 

. 
4 
. Limitations of the state of the art two-step approach and 

utline of the proposed method 

The computation of UNP ML estimates consists of locating the 

lobal maximum of either L D and L S and this process has two fun- 

amental stages. In the first, the global maximum is coarsely lo- 

ated by avoiding the convergence to any local maximum and, in 

he second stage, the coarse location just obtained is refined until 

he global maximum is attained. The state of the art approach in 

he previous section performs these two stages in the same way, 

.e, by ascending to the global maximum through searches per- 

ormed in either a single parameter (AOA θ ) or a parameter sub- 

et (vector λ). This is probably the best approach for the first stage, 

iven that it avoids the convergence to any local minimum due to 

he line search in (19) . However, once a coarse location [ θ0 ;λ0 ] 

s known, there is additional information available, namely, the 

act that the cost function’s shape is approximately known around 

 θ0 ;λ0 ] , and this additional information can be exploited by a suit- 

ble method, such as a Newton method [ 21 , Ch. 5], [25,26] . To be

ore precise, if [ θ0 ;λ0 ] is close to the global maximum position, 

ay position [ θ;λ] , then a second-order Taylor expansion around 

 θ0 ;λ0 ] may have some accuracy at [ θ;λ] ; that is, if L denotes ei-

her L D or L S , we have the approximation 

 (θ, λ) ≈ L (θ0 , λ0 ) + g(θ0 , λ0 ) 
T 

[
θ − θ0 

λ − λ0 

]

+ 

1 
2 

[ θ − θ0 ;λ − λ0 ] 
T H(θ0 , λ0 ) 

[
θ − θ0 

λ − λ0 

]
, 

(24) 

here g(θ, λ) and H(θ, λ) denote the gradient and Hessian of 

 (θ, λ) respectively. This implies that we may approach the po- 

ition of the global maximum by iteratively maximising (24) or, 

n other words, by performing Newton iterations of the form ( r = 

 , 1 . . . ) 

θr+1 

λr+1 

]
= 

[
θr 

λr 

]
− μr H 

−1 (θr , λr ) g(θr , λr ) , (25) 

here [ θr ;λr ] is the current iterate and the parameter μr is usually 

et to 1 but may be between 0 and 1 in case there is no increase

n the cost function value; (see [ 21 , Ch. 6] for further details on

ewton’s method.). 

This Newton method improves on the state of the art approach 

or the following two reasons. First, (25) involves no repeated one- 

imensional maximisations such as (20) . And second, (25) con- 

erges quadratically to the global maximum [ 21 , Sec. 6.3.1] and 

his implies, in practice, that a small number of iterations is suf- 

cient. However, a drawback is that (25) requires the value of the 

radient and Hessian of either L D or L S and this may, in principle, 

nvolve a high computational burden. In this paper, we overcome 

his drawback by presenting closed-form formulas of the gradient 

nd Hessian of both L D and L S in Section 6 , that make it possible to

btain the values of these differentials in a small number of flops. 

hese formulas have been derived following the approach in [27] , 

 28 , Ch. 5]. 

One unexpected spin-off of these closed-form formulas is the 

nalysis in Section 7 , where it is shown that the DML estimator is 

ither inconsistent or degenerate, i.e, either its performance fails 

o improve with the number of snapshots or the DML cost func- 

ion has no global maximum. This is a drawback that is readily 

bserved in the numerical examples ( Section 8.1 ): the Newton iter- 

tions for the DML cost function produce diverging values of some 

omponent of λ. 

In the next section, we present the proposed method in de- 

ail and then the expressions of the gradients and Hessians in 

ection 6 . 
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. Proposed method 

The proposed method consists of the following steps: 

1.1 Computation of coarse estimate of θ, denoted θ′ 
0 
. 

1.2 Computation of coarse estimate of λ, denoted λ′ 
0 
. 

2 Refinement of [ θ′ 
0 ;λ′ 

0 ] using a Newton method. 

We explain these steps in corresponding sub-sections. 

.1. Step 1.1: Initial DOA estimates θ0 

This sub-step computes the argument θ0 that globally max- 

mises L Do in (9) . θ0 will be the input argument of Step 2. The

ethod employed for obtaining this last vector is the AP initial 

tep in Section 3 , but complemented with a Newton refinement 

fter each angle is added. Specifically, starting with an empty vec- 

or θ′ 
0 , θ

′ 
k +1 

is constructed from θ′ 
k 

in the following two sub-steps, 

1. Add angle. The method finds out the approximate location of 

the global maximum of L Do ([ θ′ 
k 
; θ ]) through a line search in θ , 

and appends the corresponding abscissa to θ′ 
k 
, in order to form 

a new vector θ′ 
k +1 ,o 

, ( θ′ 
k +1 ,o 

= [ θ′ 
k,o 

; θ ] ). 

2. Refinement. A Newton refinement of the form in (25) is ap- 

plied to θ′ 
k +1 ,o 

. Specifically, with initial vector θ′ 
k +1 ,o, 0 

= θ′ 
k +1 ,o 

, 

the corresponding Newton iteration is ( r = 0 , 1 , . . . ), 

θ′ 
k,o,r+1 = θ′ 

k,o,r − μk,r H 

−1 
Do (θ

′ 
k,o,r ) g Do (θ

′ 
k,o,r ) , (26) 

where μk,r is the iteration’s scale factor, and g Do (θk,o,r ) and 

H Do (θk,o,r ) are the gradient and Hessian (or Hessian approxima- 

tion) of L Do respectively. (26) is repeated until ‖ θ′ 
k,o,r+1 

− θ′ 
k,o,r 

‖ 
is sufficiently small. Then, the last iteration’s vector is the out- 

put θ′ 
k 
. 

1) and 2) are repeated K times and the final output θ′ 
K is the 

nput to Step 2, θ0 = θ′ 
K 

. 

.2. Step 1.2: Initial noise parameter estimates λ0 

In this sub-step, we employ the estimate of λ in (21) presented 

n [18] . 

.3. Step 2: Newton refinement 

In this final step, we refine the initial estimate [ θ0 ;λ0 ] 

hrough the Newton iterations in (25) . They are computed un- 

il ‖ [ θr+1 ;λr+1 ] − [ θr ;λr ] ‖ is sufficiently small. The final vector 

 θr+1 ;λr+1 ] is the corresponding DML or SML estimate. 

. Gradients and Hessians of the DML and SML cost functions 

For simplicity, we introduce the gradients and Hessians of L D 
nd L C , given that the corresponding differentials of L S can be read- 

ly obtained through the equation L S = L D + L C . We let g D and g C 
enote the gradients and H D and H C the Hessians of L D and L C re-

pectively. Besides, we divide all these differentials into blocks cor- 

esponding to the θ and λ vectors. Thus, for the gradient g D we 

ave the block structure 

 D ≡
[

g Dθ

g Dλ

]
, g C ≡

[
g Cθ

g Cλ

]
. 

nd the corresponding expressions are 

 Dθ = 2 N Re 
{

diag 
{
�† R zλ( I M 

− P ) D 

}}
 Dλ = 2 N�−1 diag { I M 

− ( I M 

− P ) R zλ( I M 

− P ) } 
g Cθ = − 2 N Re 

{
diag 

{
M zλ�

H R zλ( I M 

− P ) D 

}}

5 
g Cλ = 2 N�−1 Re { diag { P − 2 R zλP z } } , (27) 

here 

 D ] ·,k ≡ �
∂ 

∂θk 

φo (θk ) , k = 1 , . . . , K. 

he derivation of g Dλ and g Cλ can be found in Appendix B and that

f g Dθ and g Cθ in the complementary material. 

Regarding the Hessians, we have the structure 

 D ≡
[

H Dθθ H Dθλ

H 

T 
Dθλ

H Dλλ

]
, H C ≡

[
H Cθθ H Cθλ

H 

T 
Cθλ

H Cλλ

]
. 

he expressions of these blocks are in Appendix A and the corre- 

ponding derivations are in the complementary material. 

. Consistency and non-degeneracy of the DML and SML 

stimators 

Let us consider first the value of R z for high N and with high 

robability. This value is approximately 

 z ≈ �o R s �o + �−2 , (28) 

here the right hand side is evaluated at the true values of θ and 

; and where R s is the signal covariance matrix for the SML esti- 

ator, or the asymptotic covariance 

 s = lim 

N→∞ 

1 

N 

S S H . 

or the DML estimator. (We assume the existence of this limit. Note 

hat the number of columns of S is N.) 

We have the following two desirable properties of both the 

ML and SML estimators for high N and with high probability, 

1. Consistency. The DML or SML estimate is close to the true val- 

ues of θ and λ. Therefore, (28) also holds if its right-hand side 

is evaluated at the estimates of θ and λ rather than at the true 

values of these vectors. 

2. Non-degeneracy. The DML or SML estimate corresponds to a 

critical point of either L D or L S , i.e, we either have 

g Dθ (θ, λ) = 0 , g Dλ(θ, λ) = 0 (29) 

or 

g Sθ (θ, λ) = 0 , g Sλ(θ, λ) = 0 . (30) 

Now we can show that if 1) is true then 2) is false for the DML

stimator, while if 1) is true then 2) is also true for the SML es-

imator. For this, let us assume 1) and then prove that all equa- 

ions in condition 2) hold except for the second one in (29) , i.e,

 Dλ � = 0 . 

First, note that the expressions of g Dθ and g Cθ in (27) are 

ormed by products containing the factor 

H R zλ(I M 

− P ) . (31) 

ut (28) implies the approximation 

 zλ = �R z � ≈ �R s �
H + I M 

, (32) 

nd we can easily combine the property (I M 

− P ) � = 0 with this 

ast approximation to show that (31) is approximately zero. So, we 

educe g Dθ ≈ 0 and g Cθ ≈ 0 and in turn 

 Sθ = g Dθ + g Cθ ≈ 0 . 

hus, the first equations of (29) and (30) hold. 
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Fig. 1. RMS error performance of MUSIC, DMLo, DML-alt, and SML for uncorrelated 

signals. 

Fig. 2. Value of L D (θ, λ) and λm . The x-axis variable is the iteration number in 

Newton’s method but applied to the λ vector of L D (θ, λ) only. θ and λ are initialised 

with the true values of these vectors and SNR = 40 dB . 
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Second, let us check whether g Dλ ≈ 0 . For this, substitute 

32) into the expression for g Dλ in (27) and use (I M 

− P ) � = � and

I M 

− P ) 2 = I M 

− P . We have 

 Dλ ≈ 2 N diag 
{
�−1 

−�−1 (I M 

− P )(I M 

+ �R s �H )(I M 

− P ) 
}

= 2 N diag { �−1 − �−1 (I M 

− P ) } 
= 2 N diag { �−1 P } . 

(33) 

f Q denotes a matrix whose columns are an ortho-normal basis for 

he span of �, then P = Q Q 

H and the m th component of (33) can 

e expressed as 

 g Dλ] m 

≈ 2 N 

‖ [ Q ] ·,m 

‖ 

2 

λm 

≥ 0 . 

ince ‖ [ Q ] ·,m 

‖ 2 is positive for at least one index m , we have

 Dλ � = 0 . This proves that 1) and 2) are incompatible for the DML 

stimator. 

And finally, let us check whether g Sλ ≈ 0 . For this, we need to

onsider the expression of g Cλ in (27) , but let first us prove that

 z R zλ ≈ P . We have 

 z R zλ = �(�H R zλ�) −1 �H R zλ

≈ �(�H (I M 

+ �R s �
H ) �) −1 �H (I M 

+ �R s �
H ) 

= �(�H � + �H �R s �
H �) −1 �H (I M 

+ �R s �
H ) 

= �((I K + �H �R s ) �
H �) −1 �H (I M 

+ �R s �
H ) 

= �(�H �) −1 (I K + �H �R s ) 
−1 �H (I M 

+ �R s �
H ) 

= �(�H �) −1 (I K + �H �R s ) 
−1 (�H �R s �

H + �H ) 

= �(�H �) −1 (I K + �H �R s ) 
−1 (I K + �H �R s ) �

H 

= �(�H �) −1 �H = P . (34) 

ow, let us operate on the expression of g Cλ in (27) assuming this 

ast approximation, recalling that R zλ = �R z �, and using the prop- 

rty diag { P �−1 } = diag { �−1 P } . We have 

 Cλ = 2 N 

(
Re 

{
diag 

{
P �−1 − 2 R z �P z 

}})
= 2 N 

(
Re 

{
diag 

{
P �−1 − 2 �−1 R zλP z 

}})
≈ 2 N 

(
Re 

{
diag 

{
P �−1 − 2 �−1 P 

}})
= 2 N 

(
Re 

{
diag 

{
�−1 P − 2 �−1 P 

}})
= −2 N diag 

{
�−1 P 

}
. 

herefore, from (33) , we have 

 Sλ = g Dλ + g Cλ ≈ 0 . 

o, we conclude that 1) implies 2) for the SML estimator. 

. Numerical examples 

We have assessed the proposed method for the L D and L S cost 

unctions numerically in the following scenario: 

• Received signals. The received signals were uncorrelated com- 

plex Gaussian process of equal variance and there were K = 2 

of them. 
• Sensor array. Uniform linear array formed by M = 10 sensors 

with half-wavelength spacing. 
• Angles of arrival. The angles of arrival were θ1 = 7 ◦ and 

θ2 = 13 ◦ relative to the broadside. 
• Sensor noise inverse deviations. They were the following: 

� = diag ([10 , 2 , 1 . 5 , 0 . 5 , 8 , 0 . 7 , 1 . 1 , 3 , 6 , 3]) −1 / 2 . (35)

• Initial estimate. In all simulations, the initial estimates of θ
and λ were computed using the AP algorithm followed by the 

estimator in (). 
• Refinement methods. We tested the following estimators, 
6 
• MUSIC. Multiple Signal Classification estimator. 
• DMLo. DML estimator for uniform noise. This is the output 

of Step 1.1 of the proposed method. 
• Chen. SML estimator computed using the method in [9] . 
• MDS. Approximate DML estimator in [18] 
• DML-alt. Proposed method for the DML cost function but 

alternating the iterations in θ and λ. 
• DML. Proposed method for the DML cost function. 
• SML. Proposed method for the SML cost function using the 

full Hessian. 
• Number of Monte Carlo trials. We performed 500 Monte Carlo 

trials. 

.1. Degeneracy of the DML estimator 

Fig. 1 shows the RMS error performance of MUSIC, DMLo, DML- 

lt, and SML. We can see that DML-alt reaches an RMS error floor 

bove the Cramer-Rao bound (CRB), while MUSIC becomes close to 

he Cramer-Rao (CR) bound only at high SNRs. Finally, SML reaches 

he CR bound at intermediate and high SNRs. In this figure, DML is 

issing because Newton’s method produces a divergent λ estimate 

nd, therefore, DML is unavailable. This can be explained by the 

roblem related with the DML cost function already commented 

n Section 7 . 

Fig. 2 shows this phenomenon for a specific realisation in 

hich Newton’s method is initialised with the true values of θ
nd λ and SNR = 40 dB . We can see in this figure that the New- 
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Fig. 3. RMS error and average number of flops for several estimators. 
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on iteration achieves an increase in the cost function value every 

ime, but max m 

λm 

diverges, i.e, at least one sensor noise power 

s taken as zero approximately. Obviously, this is a degenerate 

esult. 

.2. Comparison with other estimators 

Fig. 3 (a) shows the RMS in the estimation of θ1 for several esti- 

ators. Note that SML and Chen have the best performance, while 

he RMS error of DMLo is slightly above the error of SML and Chen.

DS’s error is above the CR bound by roughly 10 dB at mid to high

NRs. Fig. (b) shows the average computational burden of the es- 

imators in 3 (a) measured in flops. Note that the computational 

urden of Chen is between factor 3.7 and 22.9 larger than that of 

ML; (difference between 0.56 and 1.36 in log-10 scale). Finally, 

hough the RMS error of DMLo is slightly larger than that of SML 

nd Chen [ Fig. 3 (a)], its computational burden is far smaller than 

hat of SML and Chen. 

The difference in performance between DMLo and SML be- 

omes more significant if the disparity in the noise powers is in- 

reased. Figs. 4 (a) and 35 (b) are the equivalents of Figs. 3 (a) and

 (b) for λ given by 

= diag ([80 , 2 , 1 . 5 , 0 . 5 , 64 , 0 . 7 , 1 . 1 , 3 , 48 , 3]) −1 / 2 , (36)

here the noise variances are the same as in (34) , except compo- 

ents 1, 5 and 9, which have been multiplied by 8. Note that SML 

nd Chen outperform DMLo by roughly 10 dB. 
7 
. Conclusions 

We have presented an efficient method for computing maxi- 

um likelihood (ML) estimates of the directions of arrival (DOA) to 

n array of sensors under unknown nonuniform sensor-noise pow- 

rs. The method is based on the Newton method combined with 

n initial Alternate Projection (AP) search. Its efficiency is based 

n three factors. First, the Newton iterations converge in a small 

umber of iterations. Second, they involve no one-dimensional 

earches. And third, the gradient and Hessian required in each it- 

ration can be obtained with low complexity thanks to the closed- 

orm formulas for these differentials presented in this paper. The 

nalysis of the deterministic ML (DML) cost function’s gradient re- 

eals an unexpected drawback of the corresponding estimator: it 

s either degenerate or inconsistent. The method is assessed in the 

aper numerically and compared with other methods in the liter- 

ture. 
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ppendix A. Hessian expressions 

For introducing the Hessian blocks, define first the matrix 

 D 2 ] ·,k ≡ �
∂ 2 

∂θ2 
k 

φo (θk ) , k = 1 , . . . , K. 

he blocks are the following: 

H Dθθ = 2 N Re 

{ 

M � (D 

H (I M 

− P ) R zλ(I M 

− P ) D ) T 

−(�† D ) � (�† R zλ(I M 

− P ) D ) T 

−(�† R zλ(I M 

− P ) D ) � (�† D ) T 

−(�† R zλ(�
† ) H ) � (D 

H (I M 

− P ) D ) T 

+ I K � (�† R zλ(I M 

− P ) D 2 ) 
T 

} 

. 

(A.1) 

H Dθλ = 4 N Re 
{
(�† R zλ(I M 

− P )) � ((I M 

− P ) D ) T 

+(D 

H (I M 

− P ) R zλ(I M 

− P )) � (�† ) ∗
}
�−1 , 

(A.2) 

 Dλλ = 2 N�−1 

(
e 

{ 

(4 P − I M 

) � ((I M 

− P ) R zλ(I M 

− P )) T 
} 

− I M 

)
�−1 , 

(A.3) 

 Cθθ = 2 N Re 

{ 

(M zλ�
H R zλ(I M 

− P ) D ) � (�† D ) T 

+ M � (D 

H (I M 

− P ) D ) T 

−I K � (M zλ�
H R zλ(I M 

− P ) D 2 ) 
T 

−M zλ � (D 

H (I M 

− R zλP z ) R zλ(I M 

− P ) D ) T 

+(M zλ�
H R zλD ) � (M zλ�

H R zλ(I M 

− P ) D ) T 
} 

, 

(A.4) 

H Cθλ = 4 N Re 

{ 

(D 

H (I M 

− P )) � (�† ) ∗

(M zλ�
H ) � (R zλ(I M 

− P z R zλ) D ) T 

(D 

H (I M 

− R zλP z )) � (R zλ�M zλ) T 
} 

�−1 , 

(A.5) 

H Cλλ = 2 N�−1 Re 

{ 

(I M 

− 2 P ) � P T 

− 4(R zλ(I M 

− P z R zλ)) � P T z 

− 2(R zλP z ) � (I M 

− 2 R zλP z ) T 
} 

�−1 . 

(A.6) 

he derivations of these blocks can be found in the complementary 

aterial. 

ppendix B. Derivation of gradient blocks g Dλ and g Cλ

In the sequel, we let x denote any of the components of λ and 

he sub-script () x denote differentiation in that variable. Thus, for 

nstance, if x is λm 

then P x denotes 

∂ 

∂λm 

P . 

We require the following formulas, 

• We repeatedly use the fact that the product of two diagonal 

matrices can be commuted, i.e, �−1 �x = �x �−1 . 
8 
• For a square invertible matrix A , Jacobi’s formula states that the 

derivative in a variable x of log | A | is 
( log | A | ) x = tr { A 

−1 A x } . (B.1) 

• The derivatives in x of R zλ and P can be computed by means of 

the product derivative rule, and be concisely expressed as 

R zλ,x = �x �
−1 R zλ + R zλ�

−1 �x , (B.2) 

P x = P �−1 �x + �x �
−1 P − 2 P �−1 �x P . (B.3) 

• The product P z P x can be concisely written in terms of �x 

through orthogonality properties. Specifically, since P z P = P z , 

we have 

P z P x = (P z P ) x − P z,x P = P z,x (I − P ) 

= (�x M zλ�
H + �M zλ,x �

H + �M zλ�
H 
x )(I − P ) 

= �M zλ�
H 
x (I − P ) = �M zλ�

H �−1 �x (I − P ) 

= P z �
−1 �x (I − P ) . (B.4) 

1. Gradient of L D in λ, g Dλ

Let us derive the expression of g Dλ. First, we differentiate (6) in 

 using (B.1) , 

L D,x = N 

(
2 tr { �−1 �x } + tr { P x R zλ} − tr { (I M 

− P ) R zλ,x } 
)
. (B.5)

econd, we substitute (B.3) and (B.2) into this last expression and 

xpand the product with (I M 

− P ) . The result of these operations 

s 

 D,x = N 

(
2 tr { �−1 �x } + tr { P �−1 �x R zλ} 

+ tr { �x �
−1 P R zλ} − 2 tr { P �−1 �x P R zλ} 

−tr { �x �
−1 R zλ} − tr { R zλ�

−1 �x } 
+ tr { P �x �

−1 R zλ} + tr { P R zλ�
−1 �x } 

)
. (B.6) 

hird, we rotate the products inside the trace operators in order 

o get �x on the right hand side. Besides, we use the property 

x �−1 = �−1 �x . We obtain 

 D,x = 2 N 

(
tr { �−1 �x } + tr { R zλP �−1 �x } 

+ tr { P R zλ�
−1 �x } − tr { P R zλP �−1 �x } − tr { R zλ�

−1 �x } 
)

= 2 N 

(
tr { �−1 �x } − tr { (I − P ) R zλ(I − P ) �−1 �x } 

)
. (B.7) 

f x is one of the components of λ, say λm 

, then �x = δM,m 

δT 
M,m 

,

nd we have tr { A �x } = [ A ] m,m 

for any matrix A of proper size.

o, to obtain the gradient, we just need to replace tr { A �x } with

iag { A } in (B.5) for every possible A . The result of this operation

s 

g Dλ= 2 N diag {−�−1 (I M 

− P ) R zλ(I M 

− P ) + �−1 } 
= 2 N�−1 diag { I M 

− (I M 

− P ) R zλ(I M 

− P ) } , 
hich is the second formula in (27) . 

2. Gradient of L C in λ, g Cλ

First, differentiate (18) in x using (B.1), (14) , and (15) : 

 C,x = (−N log | C | ) x = −N tr { C −1 C x } 
= −N tr { (I M 

− P + P z ) { I M 

− P + P R zλP } x } 
= −N tr { (I M 

− P + P z ) {−P + P R zλP } x } . (B.8) 
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rom (B.3) , it can be easily checked that {−P + P R zλP } x is equal

o a sum of terms whose row or column span lies in the span

f �. This implies tr { (I M 

− P ) {−P + P R zλP } x } = 0 and, therefore,

B.6) simplifies to 

 C,x = −N tr { P z {−P + P R zλP } x } . 
pplying the product derivative rule, we have 

 C,x = −N(−tr { P z P x } + tr { P z P x R zλP } 
+ tr { P z P R zλ,x P } + tr { P z P R zλP x } ) . (B.9) 

ext, we rotate the trace arguments, leaving the derivatives on the 

ight, and apply the property 

 z P = P P z = P z . (B.10) 

e obtain 

 C,x = −N(−tr { P z P x } + tr { R zλP z P x } 
+ tr { P z R zλ,x } ) + tr { P z R zλP x } . (B.11) 

t this point, the fact that P , P z , and R zλ are Hermitian implies that

tr { P z P x } and tr { P z R zλ,x } are real and tr { R zλP z P x } ∗ = tr { P z R zλP x } .
sing these two properties, we may write (B.8) more concisely as 

 C,x = −N Re 
{

− tr { P z P x }} + 2 tr { R zλP z P x }} + tr { P z R zλ,x } 
}
. (B.12)

ow, the orthogonality properties and (B.4) imply tr { P z P x } = 0 . So,

e have 

 C,x = −N Re 
{

2 tr { R zλP z P x }} + tr { P z R zλ,x } 
}
. 

ext, we insert the formulas for P x and R zλ,x in (B.2) and (B.3) , 

 C,x = −N Re 
{

2 tr 
{

R zλP z (P �−1 �x + �−1 �x P 

− 2 P �−1 �x P ) 
}

+ tr 
{

P z (R zλ�
−1 �x + �−1 �x R zλ) 

}}
. (B.13) 

his expression can be readily expanded into a sum of trace terms. 

hen, rotating the trace arguments so that �x appears on the 

ight-hand side, applying (B.7) and noting that tr { R zλP z �−1 �x } ∗ = 

r { P z R zλ�−1 �x } , we obtain 

 C,x = 2 N Re 
{

tr 
{

P R zλP z �−1 �x 

}
− 2 tr 

{
R zλP z �−1 �x 

}}
= 2 N Re 

{
tr 
{

P R zλP z �−1 �x 

}
− 2 tr 

{
�−1 R zλP z �x 

}}
= 2 N Re 

{
tr 
{

P R zλP z �−1 �x 

}
− 2 tr 

{
R z �P z �x 

}}
. 

inally, noting that P R zλP z = P , we obtain 

L C,x = 2 N Re 
{

tr 
{

P �−1 �x 

}
− 2 tr 

{
R z �P z �x 

}}
. (B.14) 

f we let x run through the variables in λ in the same way as we

id for (B.5) , the result is 

g Cλ= 2 N Re { diag { P �−1 − 2 R z �P z }} 
= 2 N�−1 Re { diag { P − 2 R zλP z }} , 

here we have used R z � = �−1 R zλ. This is the formula for g Cλ in

27) . 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.sigpro.2022.108879 
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