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ABSTRACT

This paper presents an efficient method for computing Maximum Likelihood (ML) direction-of-arrival
(DOA) estimates in scenarios in which the sensor noise powers are nonuniform and unknown. The
method combines the Alternating Projection (AP) algorithm for coarsely locating additional DOAs and
Newton iterations for finally obtaining the ML estimates. Compared with the existing approaches, the
method reduces the computational burden significantly due to the small number of Newton iterations
required and to the efficient computation of each iteration. Specifically, the iterations are computed in a
small number of arithmetic operations thanks to the closed-form formulas for the gradient and Hessian
of the ML cost functions presented in this paper. The method’s total computational burden is of just a
few mega-flops (mega floating-point operations) in typical cases. We present the method for the deter-
ministic and stochastic ML estimators. Then, an analysis of the deterministic ML cost function’s gradient
reveals an unexpected drawback: its associated estimator is either degenerate or inconsistent. Finally, we
assess the method’s root-mean-square (RMS) error and computational burden numerically and compare

it with other relevant estimators in the literature.

© 2022 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The DOA estimators for several narrowband sources are usually
designed for uniform noise scenarios, i.e, they may be used when-
ever the noise is uncorrelated, both spatially and temporally, and
of the same power at each sensor. This noise uniformity greatly
simplifies DOA estimation, because it allows one to describe the
noise through a single parameter, its power, and makes it pos-
sible to employ estimators such as MUSIC (MUItiple Signal Clas-
sification) and ESPRIT (Estimation of Signal Parameters via Rota-
tional Invariance Techniques), [1,2], and simplifies the derivation of
ML estimators, [3-5]. However, in a variety of applications, though
the noise is spatially and temporally uncorrelated, its power dif-
fers from sensor to sensor. This is the case in some seismic and
biomedical applications [6], in applications involving sparse arrays
[7-12], or whenever there exist imperfections in the sensors’ pro-
cessing chains [13-16]. DOA estimation in these applications be-
comes more complex, given that the noise powers must be taken
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into account in the estimation as additional unknown parameters.
Actually, the unknown noise powers (UNPs) prevent the direct use
of subspace methods such us MUSIC and ESPRIT and significantly
increase the complexity of computing ML estimates. There have
been attempts to adapt subspace methods to the UNP case, such
as [7] and [12], in which the impinging signals are assumed to be
uncorrelated. Regarding ML estimation, the UNP ML cost functions
depend on a large number of parameters of three different kinds,
signal, noise and DOA parameters, and the computation of the cor-
responding ML estimates involves the location of the cost func-
tion’s global maximum in all of them. This is a hard optimisation
problem that is usually addressed by alternating maximisations in
each of these three kinds of parameters in a proper way. In [14,17],
the authors proposed an iterative method for the deterministic ML
(DML) cost function, that exploited the fact that this function can
be concentrated in the signal samples and noise powers separately.
They proposed an iteration in which the remaining DOA parame-
ters were obtained through a genetic algorithm. In [18], a more
efficient computation method for the UNP DML estimator was pre-
sented. This method exploited the relationship between the UNP
DML cost function and its equivalent for uniform noise. Fundamen-
tally, the author combined the AP algorithm [19] with a closed-
form noise-powers estimation step. This last method outperforms
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that in [14,17] because it replaces the expensive global-search ge-
netic algorithm with the AP method. In [9], the authors presented
a method that resembles that in [18] but for the Stochastic ML
(SML) cost function. It is also based on a two-step iteration com-
bining the AP algorithm with an iterative method for the noise
powers, termed the Power-Domain (PD) method.

We can see that all these approaches are variants of the stan-
dard ascendant direction method in numerical analysis [20, Sec
10.7], in which the maximum of a given cost function is ap-
proached iteratively by maximising in sub-sets of the parameters
involved. The main advantage of ascendant direction is that it ap-
proximately locates the global maximum of the cost function with
low complexity. However, it is inefficient for refining an initial
coarse estimate, given that the number of iterations required for
locating the actual global maximum is usually large. For this re-
finement, a better alternative is a Newton method given that its
convergence rate is quadratic [21, Sec 6.3.1]. The purpose of this
paper is to present a method for computing UNP ML estimates
based on Newton’s method, whose complexity is low due to the
efficient implementation of the Newton iterations, which is made
possible by the closed-form gradient and Hessian expressions pre-
sented in this paper.

The paper has been organised as follows. In the next section,
we introduce the signal model and the UNP ML cost functions.
Then, we recall the state of the art two-step methods for the com-
putation of the UNP ML estimates in Section 3 and comment on
their limitations in Section 4, where we also outline the solution
to these limitations. After that, we present the proposed method
in Section 5, which is based on Newton iterations, and the gra-
dient and Hessian expressions in Section 6. In Section 7, we check
whether the DML and SML estimators are non-degenerate and con-
sistent. Finally, we assess the proposed method in Section 8 nu-
merically.

1.1. Notations and basic concepts
We employ the following notations:

e Column vectors and matrices are written in lower- and upper-
case bold font respectively. Thus x denotes a column vector and
X a matrix.

* [X]p.q denotes the (p, q) component of matrix X, and [X]p. and

[X]. 4 its pth row and gth column respectively.

diag(x) is the diagonal matrix formed by the components of x.

e For square X, tr{X} denotes the trace of X, i.e, the sum of its
diagonal components.

o [x;y] denotes the column vector formed by concatenating the
column vectors ¥ and y vertically.

o X" stands for the conjugate transpose of X.

« X' stands for the pseudo-inverse of matrix X. If X has full col-
umn rank then X7 = (X"X)~1xH.

e Given a matrix X of full column rank, its projection matrix is
XXt

o I; denotes the M x M identity matrix.

e Given a matrix A of size M x K, its QR decomposition is A = QR,

where Q has size M x K and follows Q#Q = Ix and R is upper

triangular. For the properties of this decomposition, see [22, Th.

5.2.3].

The operator '=’ indicates a symbol or function definition.

» Given two variables a and b, the arrow a — b denotes the re-
placement of a with b in a given expression.

* g p denotes a K x 1 Dirac vector

0, I
[&(,P]k = {l l: i g
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Throughout the paper, we often omit the dependency on the
various parameters in writing for simplicity. Thus, for example, ®
stands for ®(f, 1) and ®, for ®,(#). The actual dependencies are
evident from the context.

The starting point for the cost function derivations in the paper
is the complex Gaussian probability density function (PDF), [23, Th.
15.1]. Specifically, if the expected value of matrix Z is E; and the
columns of Z are independent and have equal covariance matrix
C,, then the PDF of Z is
f@ = sy (1)

exp(—tr{C; (Z — E;)(Z — E))"}).

We denote the various ML cost functions in the paper using the
subscripts “o0”, “D”, and “S”,

e Lp,(#) denotes the concentrated deterministic ML cost function
for equal but unknown sensor noise power.

e Lp(0, 1) and Lg(0, L) respectively denote the concentrated de-
terministic and stochastic ML cost functions for unknown sen-
sor noise powers.

2. Signal model and UNP maximum likelihood cost functions

We present in the sequel the signal model under unknown
noise powers and then the two main ML cost functions, the deter-
ministic and stochastic, in separate subsections. Consider a linear
array formed by M sensors and K waves impinging from angles of

arrival 6y, k=1, ..., K. If the receiver takes N snapshots, the data
model is

Z=®,0)S+N, (2)
where:

o [Z]n.n is the nth sample from the mth sensor.

« 6 contains the K angles of arrival (AOAs) 6y, [0]; = 6.

e ¢o(0) is the array’s response to a wave from angle 6 and

®,(0) is a matrix stacking the responses to the angles in 6,

[‘I)o(o)].,k = ¢o(9k)-

[Slk.n is the nth sample from the kth impinging signal. There are

two different models for S called deterministic and stochastic.

In the deterministic, the whole matrix S is modeled as a set of

unknown parameters while, in the stochastic, the columns of

S are modeled as independent samples of a complex Gaussian

vector of zero mean and covariance matrix Rs.

o All components [N];,., are independent noise samples that fol-
low a complex normal circularly-symmetric distribution of zero
mean and deviation 1/An, where we refer to A, as the inverse
noise deviation at the mth sensor. Additionally, we define the
following vector and diagonal matrix from An,

[Alm=Am, A =diag()).

Using A, we have that the columns of N have covariance matrix
A2,

2.1. Deterministic maximum likelihood (DML) cost function

If S is viewed as a deterministic matrix, then Z in (2) has mean
E, — ®,S and covariance C; - A2 and, from (1), the PDF of Z is

fo(Z]0.X.8) =
|;T\1\|/121;v exp (—tr{Az(Z - ®,5)(Z - <I>,,S)”]>, (3)

where we have written ®, rather than ®,(0) for simplicity. If we
take the logarithm of this expression and introduce the following
“whitened” signature matrix

0,0 = AD,0), (4)
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then, after straightforward manipulations, we obtain from (3) the
cost function
Lp(@,X,S) = —NMlogm +2Nlog|A| (5)
—tr{(AZ — ®S)(AZ — ®S)1}).

Next, as is well known, this expression is maximized in § for fixed
0 and A, if the product ®S is replaced with PAZ, where P is the
projection matrix of ®. For later use, we express this last matrix
as

P = ®MP",
where M is the inverse correlation matrix of ®,
M= (®"®) .

So if we replace ®S with PAZ in (5) and perform straight-forward
manipulations, we obtain the new cost function

Lp(0.1) = N(2log |A| — tr{(ly — P)R,}). (6)

where we have neglected the constant —NMlogm in (5) and R,
denotes the “whitened” data correlation matrix

R, = %AZZ”A. (7)

(6) is the concentrated DML cost function that is used in the rest
of the paper.

For uniform noise, the cost function equivalent to Ly is obtained
form (6), simply by setting A = I,;/o, where o is the noise devi-
ation. Thus, setting A = I;/o0 and noting that P turns out to be
independent of o, we obtain

1
N(-2Mlogo — —tr{(ly — P)R}). (8)
where
— 1 H
R, = NZZ .

As can be easily checked, (8) can be maximized in o and @ inde-
pendently. This implies that we may obtain a #-only cost function
simply by setting o equal to a fixed value, say o = 1. Thus, from
(8), we obtain the cost function

Lpo(8) = —Ntr{(Iy — Po)R.}), (9)

where the sub-script “0” indicates that the matrices are computed
with A = I

2.2. Stochastic maximum likelihood (SML) cost function

In the stochastic modeling, the columns of S are viewed as in-
dependent trials of a complex Gaussian distribution of zero mean
and covariance Ry and, from (2), this leads to the PDF in (1) with
E; — 0 and G, — ®,R;®F + A~2. For simplicity, let us write this
last covariance matrix as

ORP! + A2 = A (®R D + ) A

Substituting these values of E, and C; into (1), we obtain the PDF
in the stochastic case

f5(ZI0. A, R,) = AP (10)
ST = g MN Ly ®R,®F|N
exp (—Ntr{ Iy + <I>RS<I>”)*1RZ,\]>, (10)

where we have inserted the signature matrix in (4) and the
whitened correlation matrix in (7).
Taking the logarithm of (10), we obtain the cost function

Ls(6. 1. Rs) = —MNlog () + 2Nlog | A|

_Nlog Iy + ®R,®"| —Ntr{(IM+<I>R5<I>”)_1RZ } (an)
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This expression can be maximised in R; for fixed # and A and the
maximum is attained at

R, = 'R, (" — M. (12)

(See [24] for a proof.)

In order to replace R; with R in (11), it is convenient to start
by performing this same replacement on the covariance matrix ap-
pearing twice in (11), namely the matrix

C=1Iy+ ®R®". (13)

More precisely, we proceed to derive compact expressions of C and
C!in terms of ® and P.

First, noting that ®M®" = P and ®®' = P, the substitution of
(12) into (13) yields the desired expression for C,

C =Iy+ ®®R, (®HH — M) D!

—Iy —P+PR,,P. (14)

Second, regarding C~!, consider the QR decomposition ® =QR,
with QFQ =I; and invertible R, and an M x (M —K) matrix
Q. spanning the orthogonal complement to Q, (QYQ, =1Iy g,
QfQ. =0). Noting that P=QQ" and I, —P=Q,Q", we may
write C in (14) as

H
c-[e.q] [IMO ' Q”I(?)zAQ} [gﬁ]'

From this factorisation, its clear that C~! is given by

_ Iy_ 0 H
c'=le Q][MOK (QHRMQ)-I} [%H]'

And, finally, replacing Q — ®R~!, we obtain an expression for C-!
in terms of ® and P only:

C1-Q.Q"+Q(Q"R,Q) Q"
—Iy-P
. -1
+<I>R*1((R*1) <I>”R2A<I>R*1) (R)
—Iy—P+®(®"R, @) .

H(DH

We may write this formula concisely as

C'=1,-P+P, (15)
where
P, = ®M,, ®" and M,, = (®"R,, ®) . (16)

Coming back to (11), the replacement of Ry with R; can be ef-
fected by substituting into that equation the identities (14), (15),
and

tr{PszA} =K

This last identity can be easily deduced from (16). The result of
these substitutions, neglecting constant summands, is the concen-
trated cost functions

Ls(0.1) = N(2log |A| - tr{(ly — P)R;;} — log|C|). (17)

This is the concentrated stochastic ML cost function that is anal-
ysed in the rest of the paper. Note that Lg in (17) is formed by
adding a single term to Lp in (6). Actually, we have

Ls = Lp + Lc, where Lc = —Nlog|C|. \ (18)
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3. State of the art two-step approach for the computation of
UNP ML estimates

Let us now recall the usual two-step approach for computing
UNP ML estimators [9,18]. Fundamentally, this approach consists
of maximising a given cost function in # and A alternately until
convergence is achieved. Since it has the same form for either the
DML or SML cost function, let us only recall the version in [18] for
the DML estimator. The DML estimate of the pair (@, 1) is the ab-
scissa of the global maximum of Lp(#,A) in (6), and the method
in [18] exploits two basic properties of this last cost function:

1. For a fixed value of A, say A,, Lp(#, A,) can be easily cast as a
uniform-noise DML cost function. This allows one to maximise
Lp(0,Xo) in @ using the AP algorithm [19]. This last algorithm
is based on line searches and consists of two steps:

o AP initial step. A K x 1 vector 90 of coarse estimates is
computed in K sub-steps as follows. At the kth sub-step, a
(k — 1)-length vector éovk_] is extended to a k-length vector

0}”< by appending the result of a line search, i.e,

Ok = [éo.k—l; arg m§XLD([éO,I<—1§ 0], %0)]. (19)

The initial vector 6010 is empty and the output coarse esti-
mate is éo = 0AO,K.

o AP refinement step. This sub-step is iterative and, in each
iteration, performs one line search for each component of
the previous iteration’s output ék_1 independently. In other
words, if 0},{‘9 denotes §; but with its kth component re-
placed with the variable 6, then the next iteration output is
given by (r>0,k=1, 2,...,K)

[ér+1 lk =arg meax Lp (ér,kﬁv Xo). (20)

2. If @y is the output of step 1) and is close to the true value of 6,
then we may expect
R, ~ ®,(0))SS" ®,(0)" + A2

and, therefore, the columns of R, — A~2 approximately lie in
the span of ®,(6y). This implies that their projection onto the
orthogonal complement to this last span is approximately zero,
ie,

(Iy — Py(60)) (R, — A™%) ~ 0.

Thus, we may estimate A as the vector minimising the Frobe-
nius norm of this last matrix, given by

tr{ (IM - Po(oo))(Rz - Aiz)(Rz - Aiz)H}-
As can be readily checked [18], the resulting estimate of A is,
(1’1’1:‘1,27 P M),

1- [Po(oo)]m.m
[A-O]m = .
Re{[Rz(IM _Po(oo))]m,m}
These two procedures can be used to approach the maximum
of Lp(#,A) by means of an iterative procedure, in which 1) and

2) are performed alternatively. In [18], this procedure is simplified
further by substituting (21) into the alternative cost function

Lpmg(8.X) = —Ntr{(Ily — P)R;;}. (22)

which is identical to Lp but neglecting the term log|A|. The result
of this substitution is a, so called, PD cost function, given by

(21)

Lep(0) = — Yy (r;i (Iy — Po)Frm — “{:,’3;’) (23)

where 1y, = [R;]..m.
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4. Limitations of the state of the art two-step approach and
outline of the proposed method

The computation of UNP ML estimates consists of locating the
global maximum of either Lp and Ls and this process has two fun-
damental stages. In the first, the global maximum is coarsely lo-
cated by avoiding the convergence to any local maximum and, in
the second stage, the coarse location just obtained is refined until
the global maximum is attained. The state of the art approach in
the previous section performs these two stages in the same way,
i.e, by ascending to the global maximum through searches per-
formed in either a single parameter (AOA 6) or a parameter sub-
set (vector A). This is probably the best approach for the first stage,
given that it avoids the convergence to any local minimum due to
the line search in (19). However, once a coarse location [fy; Ag]
is known, there is additional information available, namely, the
fact that the cost function’s shape is approximately known around
[6o: Ao], and this additional information can be exploited by a suit-
able method, such as a Newton method [21, Ch. 5], [25,26]. To be
more precise, if [6y; Ag] is close to the global maximum position,
say position [#; L], then a second-order Taylor expansion around
[0o: Ao] may have some accuracy at [@; A]; that is, if L denotes ei-
ther Lp or Lg, we have the approximation

0 -6,
L(0. 1) ~ L(6o. Lo) + (6o, Xo)" |:X 2
’ (24)

+1[0 — 60: A — Ao]"H (86, Xo) {):ﬁ]’

where g(0,1) and H(#,)) denote the gradient and Hessian of
L(0, L) respectively. This implies that we may approach the po-
sition of the global maximum by iteratively maximising (24) or,
in other words, by performing Newton iterations of the form (r =
0,1..))

bt & | -l 0,00 86,1, (25)
)\'r+1 )vr

where [0;; A;] is the current iterate and the parameter ., is usually
set to 1 but may be between 0 and 1 in case there is no increase
in the cost function value; (see [21, Ch. 6] for further details on
Newton’s method.).

This Newton method improves on the state of the art approach
for the following two reasons. First, (25) involves no repeated one-
dimensional maximisations such as (20). And second, (25) con-
verges quadratically to the global maximum [21, Sec. 6.3.1] and
this implies, in practice, that a small number of iterations is suf-
ficient. However, a drawback is that (25) requires the value of the
gradient and Hessian of either Lp or Lg and this may, in principle,
involve a high computational burden. In this paper, we overcome
this drawback by presenting closed-form formulas of the gradient
and Hessian of both Lp and Lg in Section 6, that make it possible to
obtain the values of these differentials in a small number of flops.
These formulas have been derived following the approach in [27],
[28, Ch. 5].

One unexpected spin-off of these closed-form formulas is the
analysis in Section 7, where it is shown that the DML estimator is
either inconsistent or degenerate, i.e, either its performance fails
to improve with the number of snapshots or the DML cost func-
tion has no global maximum. This is a drawback that is readily
observed in the numerical examples (Section 8.1): the Newton iter-
ations for the DML cost function produce diverging values of some
component of A.

In the next section, we present the proposed method in de-
tail and then the expressions of the gradients and Hessians in
Section 6.
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5. Proposed method

The proposed method consists of the following steps:

1.1 Computation of coarse estimate of @, denoted ;.
1.2 Computation of coarse estimate of A, denoted A,
2 Refinement of [): A;] using a Newton method.

We explain these steps in corresponding sub-sections.
5.1. Step 1.1: Initial DOA estimates 6y

This sub-step computes the argument 6, that globally max-
imises Lp, in (9). §p will be the input argument of Step 2. The
method employed for obtaining this last vector is the AP initial
step in Section 3, but complemented with a Newton refinement
after each angle is added. Specifically, starting with an empty vec-

tor 6, 0,’{“ is constructed from 0,’( in the following two sub-steps,

1. Add angle. The method finds out the approximate location of

the global maximum of Lp,([#; #]) through a line search in 6,
and appends the corresponding abscissa to @/, in order to form

a new vector 01/<+1 o (0,’(Jrl o =10, 0D
2. Refinement. A Newton refinement of the form in (25) is ap-
plied to 0,’<+1.O. Specifically, with initial vector 6 , = 01/<+1 o
the corresponding Newton iteration is (r =0, 1,...),
l/<,o,r+1 = ol/co,r - I’Lk.rHl;o] (012.0.r)gD0(0l/<.0.r)’ (26)

where p, is the iteration’s scale factor, and gpo(;,,) and
Hp, (0 ,,) are the gradient and Hessian (or Hessian approxima-
tion) of Lp, respectively. (26) is repeated until ||ol/<.o,r+l - 0;{_“”
is sufficiently small. Then, the last iteration’s vector is the out-

put 6,.

1) and 2) are repeated K times and the final output 6} is the
input to Step 2, 6y = 6.

5.2. Step 1.2: Initial noise parameter estimates Ag

In this sub-step, we employ the estimate of A in (21) presented
in [18].

5.3. Step 2: Newton refinement

In this final step, we refine the initial estimate [y; Ag]
through the Newton iterations in (25). They are computed un-
til [|[6r11; Ari1] — [0r; Ar]]l is sufficiently small. The final vector
[6,.1; A;11] is the corresponding DML or SML estimate.

6. Gradients and Hessians of the DML and SML cost functions

For simplicity, we introduce the gradients and Hessians of Lp
and L, given that the corresponding differentials of Lg can be read-
ily obtained through the equation Lg = Lp + L. We let gp and g¢
denote the gradients and Hp and H¢ the Hessians of Lp and L¢ re-
spectively. Besides, we divide all these differentials into blocks cor-
responding to the # and A vectors. Thus, for the gradient gp we

have the block structure
— | 8po _ | 8co
&= |:gmi|’ ge= I:gox]'

and the corresponding expressions are
2NRe{diag{®'R;; (I — P)D}}

gp. = 2NA~'diag{ly — (Iy — P)R,; (Iy — P)}
2o = — 2NRe{diag{M_, ®"R,; (Iy — P)D}}

8py =
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g = 2NA~'Re{diag{P — 2R, P.}}, (27)

where
d
[D]k = ATG,{¢0(9]<), k = 1, ey I<

The derivation of gp; and g¢; can be found in Appendix B and that
of gpy and g in the complementary material.
Regarding the Hessians, we have the structure

Hp— H[T)HH Hpy), He = HcTee Heos. |

Hpy,  Hpu |’ Hey;,  Ho
The expressions of these blocks are in Appendix A and the corre-
sponding derivations are in the complementary material.

7. Consistency and non-degeneracy of the DML and SML
estimators

Let us consider first the value of R, for high N and with high
probability. This value is approximately

R, ~ ®,R;®, + A2, (28)

where the right hand side is evaluated at the true values of # and
A; and where R is the signal covariance matrix for the SML esti-
mator, or the asymptotic covariance

1
R, = lim —SS".
s=VmN

for the DML estimator. (We assume the existence of this limit. Note
that the number of columns of S is N.)

We have the following two desirable properties of both the
DML and SML estimators for high N and with high probability,

1. Consistency. The DML or SML estimate is close to the true val-
ues of @ and A. Therefore, (28) also holds if its right-hand side
is evaluated at the estimates of @ and A rather than at the true
values of these vectors.

2. Non-degeneracy. The DML or SML estimate corresponds to a
critical point of either Ly or Lg, i.e, we either have

gD(9 (07 A') = 07 8pa (07 )") =0 (29)
or
80 (0.2) =0, g5(0,1)=0. (30)

Now we can show that if 1) is true then 2) is false for the DML
estimator, while if 1) is true then 2) is also true for the SML es-
timator. For this, let us assume 1) and then prove that all equa-
tions in condition 2) hold except for the second one in (29), i.e,

gpy # 0.
First, note that the expressions of gp, and g in (27) are
formed by products containing the factor

®"R,, (I — P). (31)
But (28) implies the approximation
R,, = AR;A ~ ®R,®" 1 I, (32)

and we can easily combine the property (I; — P)® = 0 with this
last approximation to show that (31) is approximately zero. So, we
deduce gpy ~ 0 and g ~ 0 and in turn

8s0 = 8py +8co ~ 0.
Thus, the first equations of (29) and (30) hold.
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Second, let us check whether gp, ~0. For this, substitute
(32) into the expression for gp, in (27) and use (Iyy — P)® = ® and
(Iy — P)2 = I; — P. We have

gps. ~ 2Ndiag{A~!
—A~"(Iy — P)(Iy + ®R;®") (I — P)} (33)
= 2Ndiag{A~" — A~'(Iy — P)}
= 2Ndiag{A~'P}.

If Q denotes a matrix whose columns are an ortho-normal basis for
the span of @, then P = QQ! and the mth component of (33) can
be expressed as

lQlal?

m

[gDA ]m ~ 2N

Since [|[Q].m||? is positive for at least one index m, we have
8p, # 0. This proves that 1) and 2) are incompatible for the DML
estimator.

And finally, let us check whether gg; ~ 0. For this, we need to
consider the expression of g in (27), but let first us prove that
P;R,, ~ P. We have

PR, = ®(®"R, ®) '®"R,
~ ®(®" (I + PR, ") D)1 ®H (I}, + PR, D)
= ®(®"® + ¢ PR, " D)1 DY (I}, + PR, D)
= ®((Ix + " ®R,) 9" @) "' " (I + PR D")
= q)(q)Hq))_l (IK + <I)H<I>Rs)_1 <I)H(IM + q)qu)H)
= ®(®"®) 1 (Ix + ®TOR,) " (O OR, D" + ®F)
= ®(®"®) 1 (Ix + P PR,) ' (Ix + P PR;) B"
= ®(®"®) 1d" =P (34)
Now, let us operate on the expression of g, in (27) assuming this
last approximation, recalling that R,; = AR;A, and using the prop-
erty diag{PA~1} = diag{ A—1P}. We have
g = ZNgRe diag{PA~! - 2R,AP,}})
= 2N(Re{diag{PA~" —2A~'R,, P;}})
~ ZNERe diag{PA-1 - 2A1PW
= 2N(Re{diag{ A-'P - 2A-'P
= —2Ndiag{A~'P}.
Therefore, from (33), we have

8s). = 8p). +8c,. ~ 0.

So, we conclude that 1) implies 2) for the SML estimator.

8. Numerical examples

We have assessed the proposed method for the Lp and Lg cost
functions numerically in the following scenario:

» Received signals. The received signals were uncorrelated com-
plex Gaussian process of equal variance and there were K =2
of them.

e Sensor array. Uniform linear array formed by M = 10 sensors
with half-wavelength spacing.

o Angles of arrival. The angles of arrival were 6; =7° and
6, = 13° relative to the broadside.

» Sensor noise inverse deviations. They were the following:

A =diag([10,2,1.5,0.5,8,0.7,1.1, 3,6, 3]) /2. (35)

o Initial estimate. In all simulations, the initial estimates of €
and A were computed using the AP algorithm followed by the
estimator in ().

« Refinement methods. We tested the following estimators,
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Fig. 1. RMS error performance of MUSIC, DMLo, DML-alt, and SML for uncorrelated
signals.
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Fig. 2. Value of Lp(f, 1) and A,. The x-axis variable is the iteration number in
Newton’s method but applied to the A vector of Lp(#, 1) only. @ and A are initialised
with the true values of these vectors and SNR = 40 dB.

o MUSIC. Multiple Signal Classification estimator.

o DMLo. DML estimator for uniform noise. This is the output
of Step 1.1 of the proposed method.

e Chen. SML estimator computed using the method in [9].

o MDS. Approximate DML estimator in [18]

o DML-alt. Proposed method for the DML cost function but
alternating the iterations in 6 and A.

o DML. Proposed method for the DML cost function.

e SML. Proposed method for the SML cost function using the
full Hessian.

« Number of Monte Carlo trials. We performed 500 Monte Carlo
trials.

8.1. Degeneracy of the DML estimator

Fig. 1 shows the RMS error performance of MUSIC, DMLo, DML-
alt, and SML. We can see that DML-alt reaches an RMS error floor
above the Cramer-Rao bound (CRB), while MUSIC becomes close to
the Cramer-Rao (CR) bound only at high SNRs. Finally, SML reaches
the CR bound at intermediate and high SNRs. In this figure, DML is
missing because Newton’s method produces a divergent A estimate
and, therefore, DML is unavailable. This can be explained by the
problem related with the DML cost function already commented
in Section 7.

Fig. 2 shows this phenomenon for a specific realisation in
which Newton’s method is initialised with the true values of 6
and A and SNR =40 dB. We can see in this figure that the New-
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(b) Average number of flops required for the computation of the estima-
tors in Fig. 3(a).

Fig. 3. RMS error and average number of flops for several estimators.

ton iteration achieves an increase in the cost function value every
time, but max, A, diverges, i.e, at least one sensor noise power
is taken as zero approximately. Obviously, this is a degenerate
result.

8.2. Comparison with other estimators

Fig. 3 (a) shows the RMS in the estimation of 8; for several esti-
mators. Note that SML and Chen have the best performance, while
the RMS error of DMLo is slightly above the error of SML and Chen.
MDS'’s error is above the CR bound by roughly 10 dB at mid to high
SNRs. Fig. (b) shows the average computational burden of the es-
timators in 3(a) measured in flops. Note that the computational
burden of Chen is between factor 3.7 and 22.9 larger than that of
SML; (difference between 0.56 and 1.36 in log-10 scale). Finally,
though the RMS error of DMLo is slightly larger than that of SML
and Chen [Fig. 3(a)], its computational burden is far smaller than
that of SML and Chen.

The difference in performance between DMLo and SML be-
comes more significant if the disparity in the noise powers is in-
creased. Figs. 4(a) and 35(b) are the equivalents of Figs. 3(a) and
3(b) for A given by

A =diag([80,2,1.5,0.5,64,0.7,1.1, 3,48, 3])"1/2, (36)

where the noise variances are the same as in (34), except compo-
nents 1, 5 and 9, which have been multiplied by 8. Note that SML
and Chen outperform DMLo by roughly 10 dB.
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(b) Average number of flops required for the computation of the estima-
tors in Fig. 4(a).

Fig. 4. RMS error and average number of flops for several estimators and noise
parameters in (35).

9. Conclusions

We have presented an efficient method for computing maxi-
mum likelihood (ML) estimates of the directions of arrival (DOA) to
an array of sensors under unknown nonuniform sensor-noise pow-
ers. The method is based on the Newton method combined with
an initial Alternate Projection (AP) search. Its efficiency is based
on three factors. First, the Newton iterations converge in a small
number of iterations. Second, they involve no one-dimensional
searches. And third, the gradient and Hessian required in each it-
eration can be obtained with low complexity thanks to the closed-
form formulas for these differentials presented in this paper. The
analysis of the deterministic ML (DML) cost function’s gradient re-
veals an unexpected drawback of the corresponding estimator: it
is either degenerate or inconsistent. The method is assessed in the
paper numerically and compared with other methods in the liter-
ature.
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Appendix A. Hessian expressions
For introducing the Hessian blocks, define first the matrix
92
[D2].k = Aw‘ﬁo(@k), k=1,.... K
k

The blocks are the following:

HD99 = ZNREJ
Mo (D (Iy — P)R,; (Iyy — P)D)"
—(®'D) © (®'Ry; (Iy — P)D)"
7(<I)TR2A Iy — P)D) (<I>TD)T
_(®'R,, (®1)") © (D" (Iy — P)D)T
Ik © (TR, (Iy — P)DZ)T}.

(A1)

Hpg;, = 4NRe{ (®Ry; (I — P)) © ((Iv — P)D)"
+(DH (I — P)Ry, (Iy — P)) © (®1)*} A1,
Hp,, = 2NA*1(
Re[ (4P~ ) © ((y ~ P)Ro 1y~ P))' |
*IM)AA,

(A3)

Hgo = 2NRe{ (M, ®"'R,; (Iy - P)D) © (®D)"

+M o (D" (I — P)D)T
—Ix © (M, ®"'R;; (I — P)D,)"
—M,; ® (D" (Iy — R,, P,)R;; (Iy — P)D)"

+(M,;, ®"R ;D) © (My; BHR,; (I — P)D)T},

Heo = 4NRe{ (D" (Ily — P)) © (®7)*
(Mqu)H) © (RZA (IM - PZRzA)D)T
(D" (ly — R, P.) © (Rzmsz)T}A*,

Hoy = 2NA4Re{ Iy — 2P) © PT
— 4R, (Ily — PRy;)) 0 P
“2(R,P) o (Iy - 2RuPz)T}A*1.

The derivations of these blocks can be found in the complementary
material.

Appendix B. Derivation of gradient blocks gp, and g,

In the sequel, we let x denote any of the components of A and
the sub-script ()x denote differentiation in that variable. Thus, for
instance, if x is A, then P, denotes

0
0Am

We require the following formulas,

P.

o We repeatedly use the fact that the product of two diagonal
matrices can be commuted, i.e, A~TAy = AxA~1.
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« For a square invertible matrix A, Jacobi’s formula states that the
derivative in a variable x of log|A| is

(log|A])x = tr{A™'Ay}. (B.1)

« The derivatives in x of R,; and P can be computed by means of
the product derivative rule, and be concisely expressed as

Rz)n,x = AXA_]RzA +RzAA_1AX, (BZ)

P.=PA'Ay+ AyA TP — 2PATA,P. (B3)

e The product P,P, can be concisely written in terms of Ay
through orthogonality properties. Specifically, since P,P =P,
we have
Psz = (PZP)X _I)LXP:PZ‘X(I_P)

= (PxMy, o + <I”‘”zk,x‘pH + ®M,; ‘I’)I;I)(I -P)
= <I>MZ,\<I>5(I —P) = ®M,; ®'A 1A, (I - P)

= PA'A (I - P). (B.4)

B1. Gradient of Lp in A, gp;,

Let us derive the expression of gp, . First, we differentiate (6) in
x using (B.1),

Loy = N(z tr{A~1 Ay} + tr{PRyy ) — tr{(ly P)Rn,x}). (B.5)

Second, we substitute (B.3) and (B.2) into this last expression and
expand the product with (Iy; — P). The result of these operations
is

Lpy = N(Ztr{A‘]Ax} +tr{PA~'AR,}
+tr{AxA"PR,;} — 2tr{PA"'APR,,}
—tr{AXAilRZ)L} — tr{RZ)\A71 AX}

+tr{PAxA"'R,;} + tr{PR, A~! AX}). (B.6)

Third, we rotate the products inside the trace operators in order
to get Ay on the right hand side. Besides, we use the property
AxA~1 = A-1A,. We obtain

Lpy = 2N(tr{A*1Ax} +tr{R, PA " Ay}
+tr{PR,y A~'A,} — tr{PR,PA'A,} — tr{RﬂA—le}>

- 2N(tr{A*1AX} —tr{(I = P)R,, (I - P)A*Ax}). (B.7)

If x is one of the components of A, say Am, then Ay = SM,m‘SK/Lm'
and we have tr{AAx} = [A]mm for any matrix A of proper size.
So, to obtain the gradient, we just need to replace tr{AAx} with
diag{A} in (B.5) for every possible A. The result of this operation
is

gpy=2Ndiag{—A~'(Iy — P)R,, (Iy — P) + A~}
=2NA-'diag{ly; — (Iy — P)R,, (Iy — P)}.

which is the second formula in (27).

B2. Gradient of Lc in A, gy,

First, differentiate (18) in x using (B.1), (14), and (15):
(=Nlog [C|)x = —Ntr{C'G}

—=Ntr{(ly — P+ P;){ly — P + PR, P},}

= —Ntr{(Iyy — P + P,){—P + PR,, P},}.

Lex

(B.8)
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From (B.3), it can be easily checked that {—P + PR, P}x is equal

to a sum of terms whose row or column span lies in the span

of ®. This implies tr{(Iyy — P){—P + PR, P}x} = 0 and, therefore,

(B.6) simplifies to

LC,x = _Ntr{Pz{_P+ PRZ)LP}X}'

Applying the product derivative rule, we have

Lex = =N(—tr{P,P} + tr{P,P,R;, P}
+tr{P,PR;; P} + tr{P,PR,; P\}). (B.9)

Next, we rotate the trace arguments, leaving the derivatives on the
right, and apply the property

P,P = PP, =P,. (B.10)
We obtain
Lcx = —N(—tr{P,P} + tr{R;, P,P\}

+tr{P;R;; x}) + tr{P;R;; P} (B.11)

At this point, the fact that P, P;, and R,; are Hermitian implies that
—tr{P,P,} and tr{P;R,, ,} are real and tr{R,; P,P}* = tr{P;R,; P\}.
Using these two properties, we may write (B.8) more concisely as

Lex = —NRe{ — tr{P,P}} + 2tr{R, P,P}} + tr{P:R;; ,}}.  (B.12)

Now, the orthogonality properties and (B.4) imply tr{P,P} = 0. So,
we have

Lcx = —NRe{2tr{R; P,P}} + tr(PR;; )}

Next, we insert the formulas for Py and R, , in (B.2) and (B.3),

Lex = —NRe{2tr{ R, P,(PA™" Ax + A~ AxP
—2PAT'AP)} + tr{P,(RuA T A+ ATTAR,) ). (BA3)

This expression can be readily expanded into a sum of trace terms.
Then, rotating the trace arguments so that Ay appears on the
right-hand side, applying (B.7) and noting that tr{R, P,A~1Ax}* =
tr{P;R,; A—' Ay}, we obtain
Lex = 2NRe{tr{ PR, P,A- 1Ay} — 2tr{R,, P, A1 Ay

= 2NRe{tr{PR,; P, A7 Ay} — 2tr} A-1R,, P A

= 2NRe{tr{PR;; A" A} — 2tr{R, AP, A\ } }.
Finally, noting that PR,, P, = P, we obtain

Lex = 2NReftr{PA~" A} — 2tr{R,AP,A,}}. (B.14)

If we let x run through the variables in A in the same way as we
did for (B.5), the result is

g.=2NRe{diag{PA~! — 2R, AP,}}
=2NA-'Re{diag{P — 2R, P,}},

where we have used R;A = A~'R,;. This is the formula for g¢; in
(27).

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.sigpro.2022.108879
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