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Abstract: The Stipa tenacissima S. is an endemic species of the Western Mediterranean countries, which
grows on the semi-arid grounds of North Africa and South Spain. This biomass offers an abundant,
renewable, and low-cost precursor for the production of activated carbon (AC). In that context, ACs were
prepared by chemical activation of Stipa tenacissima leaves (STL) using phosphoric acid (H3PO4). The
effects of activation temperature and impregnation ratio on the textural and chemical surface properties
of the prepared activated carbons were investigated. Activation temperatures of 450 and 500 ◦C turned
out to be the most suitable to produce activated carbons with well-developed porous textures. The
best results in terms of developed surface area (1503 m2/g) and micropore volume (0.59 cm3/g) were
observed for an STLs to phosphoric acid ratio of 1:2 and a carbonization temperature of 450 ◦C. The
adsorption capacity of the optimal activated carbon was found to be 110 mg/g for the atenolol drug. The
adsorption equilibrium was well explained by the pseudo-second-order model and Langmuir isotherm.
This study showed that the chemical activation method using H3PO4 as an activating agent was suitable
for developing STL-based activated carbon prepared for the removal of atenolol drug in an aqueous
solution and compared with commercial activated carbon supplied by Darco.

Keywords: activated carbon; Stipa tenacissima; chemical activation; adsorption; atenolol

1. Introduction

The rise in environmental concerns and pollution issues in recent years has prompted
the search for new and sustainable green sources for the production of environmentally
friendly materials for environmental applications. The use of biomass as precursors for the
production of carbon materials received important attention from many researchers since
this is a widely available and abundant source compared to traditional petroleum-based
materials, which are polluting, toxic and non-biodegradable [1,2]. Currently, increasing
focus is being paid to plant biomass as a raw material, and many industrial companies
are following this trend with a major interest in developing economic bio-based products
and materials from these renewable materials. Thus, the valorization of biomass into
activated carbon is the subject of various works [3–7]. The global activated carbon market
is expected to garner 2776 kilotons and 5129 million USD by 2022, registering a compound
annual growth rate of 6.83% and 9.32% during the forecast period 2016–2020 [8]. The
extensive use of activated carbon is mainly due to its large number of industrial applica-
tions, including water and wastewater treatment [9–11], wastewater reclamation [12], gas
purification [13–15], or as adsorbents for either CO2 capture or high-pressure CH4
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storage [16,17] and also as catalysts [18–20] and catalyst supports [21,22]. Among the
large variety of activation processes, chemical activation with phosphoric acid of biomass is
one of the most employed methods for the preparation of activated carbon with enhanced
physico-chemical properties [23,24]. It presents multiple advantages being the phosphoric
acid not toxic compared to other impregnating chemicals [25], the low activating temper-
ature required [25], a high yield obtained [26], and a well-developed mesoporosity [27].
Many factors, during preparation, play an important role in obtaining high-quality acti-
vated carbon. The knowledge and control of those variable factors during the activation
process is very important in developing the porous texture of the activated carbon that
is sought for given applications [9], as this last depends strongly on both, the activation
process [16,28] and the nature of the precursor [29–31]. Hence, the influence of the prepa-
ration condition parameters such as impregnation ratios and activation temperature was
deeply analyzed by many researchers [32,33].

Although there are many applications of activated carbon in different industries,
adsorption still remains an effective process that results in extensive use of activated carbons.
Consequently, the production of activated carbons with specific pore size distributions from
low-cost materials at moderate temperatures is an important challenge on both, economical
and energetical aspects [24]. Nowadays, ACs can be produced from a wide range of
natural and synthetic substances and lignocellulosic materials being this last one the most
used precursors [34–36]. The important content of cellulose and lignin in lignocellulosic
materials has promoted them to be the most desired precursors for the preparation of
activated carbon, being those two indispensables for getting a high carbon yield [37,38].

Removal of emergent pollutants from wastewater by different methods has been
an important challenge for recent society and the subject of several studies over the last
years [39–41]. Among them, pharmaceutical products have been widely reported due
to their harmful effects on the environment such as paracetamols, clofenac, and some
β-blocker species [42–44]. Atenolol is a beta blocker medicament usually used to treat high
blood pressure or hypertension, heart rhythm problems, and angina [45]. Around 50%
of the dose is not fully metabolized by the human body and is disposed of unchanged
through urine [46]. Therefore, it has been extensively detected in concentrations ranging
from about 0.78 µg/L to 6.6 µg/L in wastewater and hospital sewage [46,47].

In our previous study [48], the preparation of activated carbons from Stipa tenacis-
sima leaves (STLs), a lignocellulosic plant widely abundant in Southern Algeria, through
chemical activation with H3PO4 has been reported. It has been shown that relatively low
temperatures are preferred for the preparation of activated carbons. For this purpose and
with the attempt to obtain a well-developed porous texture at low temperatures, this study,
on one hand, investigated the preparation of activated carbons from STLs by chemical
activation with H3PO4 at different impregnation ratios (R) and activation temperatures (T).
These factors were extensively examined. The study range varied from 400 to 600 ◦C and
from 1 to 3 for both activation temperature and impregnation ratio, respectively. To check
further the quality of our obtained ACs, atenolol medicament removal was used as a test
to verify the adsorption capacities of three activated carbons, compared with commercial
activated carbon from Darco (commercial DARCO G60 derived from lignin delivered by
Fluka Chemika (ref. 05100), where the kinetics study was investigated and Freundlich and
Langmuir models were reported as well.

2. Materials and Methods
2.1. Preparation of Activated Carbon

Washed clean STLs (collected from Southern Algeria) were dried in an oven at
110 ◦C for 24 h, which proved effective to facilitate subsequent crushing and grinding. The
precursor was impregnated with an 85% H3PO4 solution at room temperature and dried
for 2 h at 110 ◦C. The impregnation ratio, R, (H3PO4/precursor mass) (wt./wt.) was varied
from 1 to 3. The samples were activated in a quartz reactor at different temperatures in
the range of 400 to 600 ◦C under nitrogen flow at a rate of 100 mL/min and for 1 h as an
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activation time. The activated samples were cooled inside the furnace maintaining the N2
flow. After that, the samples were washed with distilled water at 65 ◦C until neutral pH is
achieved before being dried at 110 ◦C. The obtained activated carbons were named Rx-y,
where R from ratio, while x and y correspond to the impregnation ratio and activation
temperature, respectively.

2.2. Adsorption Equipment and Procedures

Atenolol (C14H22N2O3) (molecular weight: 266,336 g/mol, melting point: 147 ◦C, solu-
bility of 13.3 mg/mL (at 25 ◦C), pKa1 = 9.6; pKa2 = 13.88, polar surface area
84.6 Å2 [49], solutions were prepared with distilled water at different initial concentrations.
The equilibrium test was carried out inside glass flasks using 50 mg of dried activated
carbon in contact with 100 mL of the atenolol solution at different initial concentrations
in an orbital incubator (Gallenkamp, model INR-250) with an equivalent stirring rate of
200 rpm at 25 ◦C. The kinetic tests of atenolol adsorption were performed using a 100 mL
atenolol solution with an initial concentration of 50 mg/L and 50 mg of activated carbon
samples under continuous stirring for different time intervals. The concentration of atenolol
was analyzed using double beam UV–visible spectrophotometer from Shimadzo (Series
UV-1900) at a maximum absorption wavelength of 274 nm.

Adsorption capacity, for each equilibrium concentration, was calculated as is expressed
in Equation (1):

qe =
C0 − Ce

w
·V (1)

where qe is the equilibrium adsorption capacity (mg/g), C0 and Ce are the initial and
equilibrium concentrations, respectively, in mg/L; V is the solution volume (L) and W is
the weight of the activated carbon (g).

The equilibrium adsorption data were fitted to the Langmuir, Freundlich, and Temkin
adsorption isotherm models (Equations (2), (3) and (4), respectively).

qe =
qL · KL ·Ce

1 + KL·Ce
(2)

qe = K f ·(Ce)
1/n (3)

qe =
R T
K1

· ln(K2Ce) (4)

where KL is the equilibrium constant of Langmuir equation (L/mg), qL is the maximum
adsorption capacity (mg/g), Kf is the Freundlich constant associated to the adsorption
capacity ((mg/g)(L/mg)1/n) and n is the empirical parameter related to the energetic
heterogeneity of the adsorption sites, where K1 (J/mol) and k2 (L/mg) is Temkin constant
related to the heat of adsorption and isotherm constant, respectively [5].

The adsorption data were fitted to the first-order (Equation (5)), and second-order
(Equation (6)) kinetic models for adsorption [48]:

Ln (qe − qt) = Ln(qe)− k1t (5)

t
qt

=
1

k2·qe2 +
1
qe

t (6)

where k1 (L/min) and k2 (g/mg·min) are the kinetic constants for the pseudo-first-order
and second-order equation, respectively, and qe is related to the adsorption capacity at
equilibrium (mg/g).

2.3. Characterization

Thermal drying method is used for the determination of moisture content of the raw
material. The STLs were dried at 110 ◦C until the consistency of weight was obtained. The
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moisture percentage in the sample was expressed as the loss in the mass due to drying as a
percentage of the total mass of the sample.

Elemental analysis of the precursor and activated carbons was carried out in a CHNS
Analyzer. Prior to analysis, the samples were dried overnight at 105 ◦C and cooled in
desiccators. Oxygen content was obtained by the difference between the total percentage
(100 wt.%) and the sum of percentages (wt.% dry ash-free) of nitrogen, carbon, hydrogen,
and sulfur.

The textural properties of the prepared samples were assessed by nitrogen adsorption–
desorption measurements at −196 ◦C using a Quantachrome Autosorb-6 apparatus. The
materials were previously degassed at 250 ◦C for 4 h. The surface area (SBET) was calculated
from isotherms using the Brunauer–Emmett–Teller (BET) equation [50]. The volume of
liquid nitrogen corresponding to the amount adsorbed at a relative pressure of P/P0 = 0.99
was defined as total pore volume (VT). The micropore volume (Vµp) was determined from
Dubinin–Radushkevich equation [51].

3. Results and Discussion
3.1. Characterization

The results of the proximate analysis are compiled in Table 1. It can be seen that Stipa
Tenacissima leaves (STLs) contain 62.81% volatile matter, 24.50% fixed carbon, and 1.19% ash.
This composition follows the general trend of a typical biomass composition [34,52–54].
The high volatile matter and low ash content of biomass resources make them good starting
materials for preparing activated carbons [55].

Table 1. Proximate analysis of Stipa tenacissima leaves (STLs).

Proximate Analysis Weight (%)

Ash 1.19

Fixed carbon 24.50
Volatile matter 62.81

Moisture 11.50

Table 2 summarizes the elemental composition of the precursor and activated carbons
prepared from STLs at different activation temperatures and impregnation ratios. The
elemental composition, H/C, and O/C atomic ratios results indicate remarkable chemical
changes in the surface after the activation process, while no sulfur (S) traces were detected
for all the samples.

Table 2. Elemental analysis of the precursor and activated carbons produced at different activation
temperatures and impregnation ratios (wt.%).

Samples N C H O * O/C × 102 H/C × 102

STLs 1.10 47.70 6.40 44.80 93.92 13.42

R1-400 2.50 76.50 2.40 18.60 24.31 3.14
R1-450 0.50 81.60 2.10 15.80 19.36 2.57
R1-500 0.50 82.60 1.90 15.00 18.16 2.30
R1-600 0.40 91.00 1.60 7.00 7.69 1.76

R2-400 2.30 76.20 2.00 19.50 25.59 2.62
R2-450 0.40 78.40 1.70 19.50 24.87 2.17
R2-500 0.40 79.10 1.40 19.10 24.15 1.77
R2-600 0.30 81.60 1.40 16.70 20.47 1.72

R3-400 1.50 70.30 1.80 26.40 37.55 2.56
R3-450 0.20 72.00 1.50 26.30 36.53 2.08
R3-500 0.20 75.20 1.30 23.30 30.98 1.73
R3-600 0.20 78.30 1.30 20.20 25.80 1.66

(*): by difference.
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The results demonstrated that carbon is the major constituent of the obtained ACs
confirming the carbonaceous nature of the materials [55]. An increase in the carbon content
from 47.74 wt.% for raw STLs to more than 70 wt.% could be observed in all the activated
carbons with increasing activation temperature. As for the impregnation ratio of 1, the
carbon content in activated carbons increased from 76.46 to 91.04 wt.% with increasing
temperatures from 400 to 600 ◦C, which could be attributed to the increasing release
of volatile matter. On another hand, hydrogen and oxygen content highly decreased,
respectively, from 2.43 to 1.57 wt.%, and 18.56 to 6.99 wt.%, mainly as a result of the
cleavage and breakage of bonds within the ACs structure that occurs during the activation
process [56]. Moreover, the progressive decrease in the H/C and O/C atomic fractions
(see Figure 1) observed for the obtained activated carbons with the different activation
conditions, is indicative of the carbonization and activation processes.
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Figure 1. Effect of impregnation ratio and activation temperature on H/C and O/C fractions (H3PO4

concentration: wt. 85%; flow N2 100 mL/min; activation duration: 1 h).

Indeed, during the activation process, polymeric structures decompose and liberate
most of the non-carbon elements, mainly hydrogen, oxygen, and nitrogen in the form of
liquid and gases, leaving behind a rigid carbon material with a short-range order [57,58].

Furthermore, as the impregnation ratio increases, carbon, and hydrogen contents
decay, whereas the oxygen content increases from 15.53 wt.% for R1-500 to 34.80 wt.% for
R3-500. This increase can be due to the progressive incorporation of phosphorus species
with increasing the impregnation ratio.

Figure 2a–c, respectively, show the N2 adsorption–desorption isotherms at −196 ◦C
of the prepared activated carbons from STLs with different impregnation ratios and at
different activation temperatures. Figure 2a revealed that the isotherms of samples prepared
with an impregnation ratio of (1:1) at different activation temperatures are of type I (b)
based on IUPAC classification [59], showing a significant increase in the adsorption at low
P/P0 values, with barely defined knee, and long plateau which extends to P/P0 ≈ 1.0. This
is indicative of the presence of large micropores and mesopores. In addition, an absence of
hysteresis suggests that the obtained activated carbons contained mostly micropores with
only a small contribution of mesopores.
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Figure 2. Adsorption–desorption isotherms of N2 at −196 ◦C (a–c); and micropore size distribution
(d–f) of activated carbons from STLs at different impregnation ratios and activation temperatures.

Figure 2b represents the adsorption isotherms of samples prepared with an impreg-
nation ratio of (2:1) at different activation temperatures. The activated carbon obtained
at 400 ◦C provides isotherm type I(b) which is typical of microporous materials where
micropore filling may take place by primary filling at very low relative pressure. The
activated carbons obtained at higher temperatures, exhibit a combination of type I and
type IV(a) isotherms [59]. This indicates the presence of micro and mesoporosity leading to
a gradual increase in adsorption after the initial filling of the micropores. The isotherms
exhibit type H4 hysteresis, typical for slit-shaped pores.
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For the impregnation ratio of (3:1) (Figure 2c) the activated carbons prepared at 400 ◦C
exhibit type I (b) and the activated carbons prepared at 450, 500, and 600 ◦C a combination
of type I and type IV (a) isotherms [59], with the presence of a hysteresis loop type H4. A
small hysteresis in the shape was observed in the R3-400 and R3-450 samples. It means that
the mesopores are developed during activation with an increasing of impregnation ratio to
3. Additionally, a larger hysteresis loop was observed for R3-500 which suggests a higher
contribution of mesopores in their porosity.

The effect of activation temperature and impregnation ratio on the BET surface area,
total pores volume, micropores, mesopores volume, and average pore diameter are given
in Table 3. The optimum result in terms of surface area (1503 m2/g) was obtained for an
impregnation ratio of 2 as can be clearly seen in Table 4. The development of porosity
goes through a maximum with the activation temperature, which is typically observed in
phosphoric acid activation and is in agreement with our previous results [48]. It is known
that phosphoric acid treatment accelerates structural alteration at low temperatures [60].
In fact, it has been reported [61] that at temperatures above 500 ◦C, the carbon structure
shrinks, and the surface area decreases.

Table 3. Textural properties of the obtained activated carbons produced at different activation conditions.

Samples SBET
(m2/g)

Vtotal
(cm3/g)

Vµp
(cm3/g)

Vmeso
(cm3/g) Vµp/Vtot

Dp
(nm)

R1-400 1204 0.61 0.53 0.07 86.88 2.03
R1-450 1371 0.69 0.54 0.10 78.26 2.01
R1-500 1478 0.78 0.57 0.13 73.08 2.11
R1-600 1340 0.69 0.52 0.11 75.36 2.06

R2-400 1258 0.71 0.49 0.16 69.01 2.26
R2-450 1503 0.86 0.59 0.21 68.60 2.29
R2-500 1387 1.17 0.53 0.53 45.29 3.37
R2-600 1340 1.07 0.50 0.43 46.73 3.19

R3-400 1286 0.88 0.50 0.11 56.81 2.73
R3-450 1317 1.05 0.47 0.45 44.76 3.18
R3-500 1100 1.27 0.43 0.59 33.86 4.62
R3-600 838 1.18 0.33 0.33 27.97 5.63

SBET: BET specific surface area; VTotal: total pore volume; Vµp: micropore volume; Dp: average pore diameter.

Girgis et al. have explained that the acid introduced into the material plays a double
role [62]: (i) it produces hydrolysis of the lignocellulosic material with subsequent partial
extraction of some components, thus weakening the particle which swells, and (ii) the acid
occupies a volume which inhibits the contraction of the particle during the heat treatment,
thus leaving a porosity when it is extracted by washing after carbonization [62].

Additionally, Jagtoyen et al. have reported that the phosphoric acid combines with
organic species forming phosphate and polyphosphate bridges that connect biopolymer
fragments and partially hindering the contraction in materials when the temperature
increases [63]. Above 450 ◦C, these bridges become thermally unstable, and their loss
produces a contraction in the material, which will result in a decrease in porosity.

From this point of view, keeping the activation temperature at around 500 ◦C leads to
better development of the adsorbent porosity. Several investigators have established that in
the case of phosphoric acid activation of lignocellulosic material, temperatures neighboring
500 ◦C were suitable to obtain optimal properties of the activated carbons.

Impregnation ratio has been identified as one of the most important factors in the
chemical activation process. With the increase in ratio from 1 to 3, the surface area and,
mainly, total pore volumes also increased. The growth in porosity was attributed to
the release of tars from the cross-linked framework generated by the treatment with
phosphoric acid [64,65]. In fact, porosity is generated with phosphoric acid remaining in the
internal structure of the biopolymer material in the form of phosphate and polyphosphate
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compounds. As the amount of H3PO4 used increases, the volume filled by it and various
polyphosphates will increase, resulting in larger pore volume and pore size [57].

Figure 2d–f display the micropore size distribution of the different activated carbon
obtained from the N2 adsorption at −196 ◦C. As clearly observed the activated carbon with
an impregnation ratio of 1 contain micropores in the range of 12–14 nm (Figure 2d). The
increase in the impregnation ratios (Figure 2e,f) results in the appearance of a multimodal
pore size distribution.

On the other hand, the experimental data in Table 3 also shows an increase in the
percentage of mesoporosity with an increasing impregnation ratio, showing that the de-
velopment of porosity is also accompanied by a widening of the porosity as the amount
of H3PO4 is increased. These results support those extracted from the above-discussed
pore size distribution. When the temperature exceeds 500 ◦C for the samples prepared
with the impregnation ratio of (1:1) and 450 ◦C for the samples prepared with the impreg-
nation ratio of (2:1) and (3:1), this trend is reversed. This change may be attributed to
the increased merging and collapse of micropores which contributes to the reduction of
surface area. J. Donald et al. have reported that the phosphate ester cross-links reach their
limit of thermal stability at temperatures around 450–500 ◦C [66]. At higher temperatures,
the breakdown of these cross-links would cause contraction and consequent reduction in
porosity development.

3.2. Adsorption of Atenolol Drug

Three activated carbons were tested to check their removal efficiencies of a pharma-
ceutical drug “atenolol” from aqueous solution. A commercial activated carbon (CAC) was
also used for comparison purposes. The equilibrium and kinetic studies of carbons were
investigated. Table 4 contains the textual properties of the activated carbons used for the
adsorption of atenolol.

Table 4. Textural properties of the tested activated carbons.

Samples SBET
(m2/g)

Vtotal
(cm3/g)

Vµp
(cm3/g)

Vmeso
(cm3/g)

R1-500 1478 0.78 0.57 0.13
R2-500 1387 1.17 0.53 0.53
R3-500 1100 1.27 0.43 0.59
CAC 909 0.76 0.36 0.40

3.2.1. Equilibrium Adsorption

The amounts of adsorbed atenolol (qe) against the equilibrium concentration (Ce (mg/L))
at 25 ◦C are presented in Figure 3. The obtained isotherms are of type L and S for the
prepared activated carbons and commercial activated carbon, respectively, according to Giles
classification and commonly reported for adsorption in the liquid phase [67]. The L-shape
isotherm showed a fairly rapid rise in adsorbed quantity as atenolol concentration increases up
to saturation which is characterized by a plateau. This indicates a progressive occupancy of the
adsorbent surface as a function of concentration up until the entire surface area is coated with
a single layer. Such adsorption behavior could be explained by the high affinity of adsorbent–
adsorbate at low and moderate concentrations, which then decreases as concentration increases,
since vacant adsorption sites decrease as the adsorbent becomes covered.

The S-shape isotherm showed a small sorption at low concentrations of atenolol in the
solution and the sorption increased with the solute concentration. This type of isotherm
indicates that at low concentrations the surface has a low affinity for the adsorbate, which
increases at higher concentrations because of solute–solute attractive forces.
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Figure 3. Adsorption isotherms of atenolol on the different activated carbons at 25 ◦C (symbols:
experimental values; continuous lines: fitting to Langmuir, Freundlich and Temkin equations).

Furthermore, it can be observed that the adsorption capacity of the R1-500 and
R3-500 presented the same amount of about 75 mg/g. However, R2-500 displays a higher
adsorption capacity, above 110 mg/g and, with a similar adsorption capacity as for the
CAC and this result is much higher compared to the literature [46]. This could mean that
a high surface area of the adsorbents may not be the only parameter that determines the
removal of higher amounts of the pollutant, but also the distribution of porosity could be a
determining factor in this case [68]. This is confirmed by the porosity data (see Table 5),
where the R2-500 presents a combination of both a high volume of micropores and an
important mesoporous volume.

Three isotherms were used to fit the adsorption experimental results including Lang-
muir (Equation (2)), Freundlich (Equation (3)), and Temkin (Equation (4)) isotherms, taking
into account the effects of equilibrium concentration on adsorption capacity. The three
model parameters and correlation coefficients (R2) were listed in Table 5.

It can be observed that in general terms, the highest R2 values were obtained with the
Langmuir model for all the tested carbons. The Langmuir adsorption isotherm describes
the surface as homogeneous, assuming that there is no lateral interaction between adjacent
adsorbed molecules when a single molecule occupies a single surface site. However,
considering the shape of the CAC isotherm, this model is not found suitable and could not
give the proper information to describe the adsorption process because it does not take into
account adsorbate–adsorbate interactions. The maximum monolayer adsorption capacity
predicted by the Langmuir model was 98.65, 169.69, and 115.69 mg/g for R1-500, R2-500,
and R3-500, respectively.
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Table 5. Langmuir, Freundlich, and Temkin adsorption parameters obtained from equilibrium
isotherms of atenolol for the activated carbons.

ACs R1-500 R2-500 R3-500 CAC

Langmuir isotherm parameters

qL (mg/g) 98.65 169.69 115.69 126.52
KL (L/mg) 0.08 0.04 0.05 0.06

R2 0.99 0.95 0.99 0.99

Freundlich isotherm parameters

KF (m2/g) 14.24 13.66 11.09 12.54
1/n 0.44 0.56 0.51 0.62
R2 0.98 0.91 0.97 0.98

Temkin isotherm parameters

K1 (J/mol) 121.06 93.45 101.34 47.98
K2 (L/mg) 0.93 0.75 0.55 0.23

R2 0.81 0.81 0.83 0.87

The extent of the exponent, n, gives information on the favorability of adsorption. As
deduced from the results, the values of 1/n were inferior to one (<1), meaning that the
adsorption of atenolol was favorable on all samples. Furthermore, KF is a rough index of
the adsorption capacity. A high value of KF indicates a high adsorption capacity, when the
KF value increases, the adsorption capacity of the adsorbent increases.

3.2.2. Kinetic Study

Figure 4 presents the adsorption kinetics of atenolol on studied carbons. It is clearly
observed that the adsorption of AT was faster for samples R1-500 and CAC than that
of R2-500 and R3-500 samples and the maximum uptake was reached in approximately
100 min. The quantity adsorbed at equilibrium found in this study (≈65 mg/g) appeared
to be better than that reported by N.K Haro et al. (4.0 mg/g) [46].
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Table 6 compiles the fitting parameters for the kinetic studies using (Equations (5) and (6)).
The R2 larger than 0.99 as well as the calculated qmax values close to the experimental ones
indicated that atenolol uptake onto all adsorbents could be satisfactorily described by
the pseudo-second-order model. This same tendency was observed in the adsorption of
atenolol in a novel β-cyclodextrin adsorbent by Duan et al. [69] and the adsorption of
atenolol in biocarbon designed from Melia Azedarach stones by Garcia et al. [70].

Table 6. Parameters obtained from kinetics curves of atenolol (C0 = 50 mg/L; adsorbent concentration
= 50 mg/L).

Acs

First-Order Model Experiment Second-Order Model

qm (mg/g) K·102

(L/mg) R2
qexp

(mg/g) qm
(mg/g)

K·102

(L/mg) R2

R1-500 18.77 1.63 0.68 70.92 69.01 6.63 0.99
R2-500 36.51 2.12 0.94 71.27 69.75 2.16 0.99
R3-500 41.61 1.78 0.84 75.53 71.53 2.07 0.99
CAC 19.74 0.20 0.68 74.06 70.45 7.62 0.99

3.2.3. Mechanism of Atenolol Adsorption

The prepared activated carbon is negatively charged, and its surface is rich in oxygenated
function. In addition, the pHpzc was found to be about 8. These facts allow the adsorption of
atenolol being this last positively charged solution. The species of atenolol would be fixed
on the surface of the activated carbon via the interaction H–H and H–O, and the secondary
amine group of atenolol as shown in the following proposed mechanism (Figure 5).
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4. Conclusions

Activated carbons with a well-developed porosity were prepared from Stipa tenaciss-
sima leaves by chemical activation with phosphoric acid at different activation conditions.
Generally, increasing the activating agent to STLs ratio from 1 to 3 increased the surface
area and, especially, the total pore volume. The obtained results confirm that a 450 ◦C
activation temperature and an impregnation ratio of 2 are suitable for obtaining an activated
carbon with a surface area of 1503 m2/g and pore volume of 0.59 cm3/g. The synthesized
activated carbons R1-500, R2-500, and R3-500 showed a good adsorption capacity for
atenolol removal. The maximum adsorption capacities reached the value of 110 mg/g and
showed a similar adsorption capacity as the commercial activated carbon from Darco. The
equilibrium and adsorption kinetics results were satisfactorily fitted to Freundlich and
Langmuir models and also to the second-order kinetic adsorption equation. Consequently,
our findings suggest that a good quality activated carbon could be easily produced by one-
step chemical activation with phosphoric acid from cheaper and sustainable raw materials
such as Stipa tenacisssima leaves, and suitable for the elimination of pharmaceutical drugs
and further environmental applications.
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