Assessing DESS solution for the long-term preservation of nematodes from faecal samples

M. González a,b, R. Ruiz de Ybáñez a,* , R.C. Rodríguez-Caro b,c,d, A. Maíz-García b, L. Gómez a, A. Giménez b,e, E. Graciá b,e

a Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
b Area de Ecología, Departamento de Biología Aplicada, Universidad Miguel Hernández, Av. de la Universidad, 03202 Elche, Spain
c Departamento de Zoología, Oxford University, 11a Mansfield Road, OX1 3SZ, Oxford, England, UK
d Departamento de Ecología, University of Alicante, Road. San Vicente del Raspeig, 03690 Alicante, Spain
e Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, Elche, Spain

1. Introduction

In sciences like veterinary, ecology or parasitology, the collection of biological samples is a routine, but critical procedure. Some animal samples are collected by invasive handling (e.g., vein puncture, biopsy, etc.), but others avoid stressful animal management (OIE, 2022). The samples obtained by non-invasive procedures are relevant for assessing the health status of wild populations because they are highly susceptible to the stress that derives from human management (Hing et al., 2016). Hence faecal samples are one of the most representative ones in this category because they are frequently used to diagnose many gastrointestinal or general disorders (e.g., metabolic diseases or tumour processes), and are especially useful for epidemiological studies on parasitic diseases (Broussard, 2003; Verocai et al., 2020).

As the preservation of faecal samples is difficult given their high contamination risk by organisms usually found in faeces (e.g., bacteria or fungi) (Goneau et al., 2019), the selection of the best preserver is an essential step (Crawley et al., 2016; Murphy et al., 2002). Traditionally, the preservation of these samples requires preservative solutions and/or low temperatures. As a counterpart to longer sample durability, some protocols have several handicaps. Two of the most widely used preservers are ethanol and formaldehyde. Ethanol maintains DNA, but alters morphometry by causing wrinkling and fragility, while formaldehyde fixation damages DNA and imposes human health risks (e.g., toxicity, irritability and carcinogenicity) (Naem et al., 2010; Swenberg et al., 2013). Other alternatives, such as plastication based on substituting body water for artificial polymers, is an expensive method preserving samples, but is sometimes impractical under non-laboratory conditions (Rozlova et al., 2020). Other promising options are to use

* Corresponding author.
E-mail address: rocio@um.es (R. Ruiz de Ybáñez).

https://doi.org/10.1016/j.rvsc.2022.10.010
Received 14 June 2022; Received in revised form 6 October 2022; Accepted 11 October 2022
Available online 18 October 2022
0034-5288/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
saturated solutions composed of dimethyl sulphoxide, disodium EDTA and saturated NaCl (hereinafter DESS), which have been successfully tested to preserve adult nematodes and their DNA for at least 1 year (Bik et al., 2009; Chalańska et al., 2016; Yoder et al., 2006). Therefore, the development and assessment of feasible preservation protocols should be promoted. This study aimed to assess the use of DESS solution as a preserver of faecal samples containing parasite eggs and adult nematodes after 1 month and 2 years, respectively. The presence of viable DNA in nematodes stored in DESS solution for 2 years was also corroborated.

2. Material and methods

2.1. Study design and parasitological analyses

In June 2019, faecal samples from nine spur-thighed tortoises (Testudo graeca) were collected at the regional wildlife rescue centre “El Valle” (Murcia, SE Spain). Samples were stored refrigerated (4 °C) until they were handled in the Department of Animal Health (University of Murcia, Spain). All the samples were mixed to constitute a pool within 24 h after collection. A coprological analysis and egg counting were performed in a McMaster chamber to know the abundance of oxyurid eggs (6307 eggs per gram). The pool was distributed into four study groups with six replicates each: (1) faeces without preserver, but maintained at −20 °C; (2) faeces with DESS solution at room temperature; (3) faeces with DESS solution at −20 °C; (4) faeces with 70% ethanol at room temperature. The quantification and morphometrical evaluation of eggs from each study group were performed 30 days after preservation, as described for the initial faecal pool. To evaluate differences in egg counts among the study groups, Wilcoxon tests with Bonferroni correction were applied. Significance was assessed with alpha = 5% (p < 0.05). The R software v3.6.0 was employed for all the descriptive and statistical analyses (R Core Team, 2022).

Of the adult specimens, the 37 faeces sampled in wild T. graeca populations in spring 2019 in SE Spain were stored for 2 years in DESS solution at −20 °C. After this time, all the adult specimens were collected and cleaned with distilled water. Three selected representative structures (spicule, tail, oesophagus) of all the preserved nematodes were measured by a photomicroscopy system (Leica EZ Camera 2.4.1) associated with specific morphometry software (LAS EZ 2.1.0). This information was compared to the morphological and morphometrical data reported in the scientific literature, which was carried out by two experts in Parasitology to maximise the objectivity of identification based on morphological keys (Bouamer et al., 2003, 2001; Bouamer and Morand, 2005, 2003, 2002; Petter, 1966).

2.2. DNA extraction, PCR and sequencing

In order to corroborate that DNA remained viable in the samples stored for 2 years in DESS (as reported by Bik et al. (2009) for unmounted nematodes stored for 6 months), one specimen was randomly selected to be analysed. Genomic DNA was firstly extracted from faecal samples by the NZY Tissue gDNA Isolation kit (NZYTech). Subsequently, a 18S fragment of approximately 900 bp in length was amplified using primers Nem_18SR_F (5’-CGCCGAAATGRCGCTAACACAAGC3’-CGCGAATRGCTCATTACAACAGC3’) and Nem_18SR_R (5’-GGGGGCTATCTGATGCGGC3’) from Floyd et al. (2005).

PCR reactions were performed in a total volume of 20 μl that comprised 1 unit of Taq polymerase (Biotag, Ecogen, Spain) with the buffer recommended by the supplier at a final concentration of 1.6 mM MgCl₂, 0.2 mM of each dNTP (dNTPs Mix, Ecogen, Spain), 0.9 μM of each primer and 1 μl of the extracted DNA. PCR conditions consisted in: 1 step of 3 min at 95 °C; 35 iterations of 40s at 95 °C; 40s at 54 °C; 60s at 72 °C; a final extension step at 72 °C for 10 min. The PCR product was purified and sequenced in an ABI 3130xl sequencer (Applied Biosystems, Foster City, CA, USA). The obtained sequence was visually cleaned and matched the sequences in the GenBank database by BLAST.

Fig. 1. Boxplots representing the quantification results (eggs of oxyurids per gram of faeces) 30 days after preservation for each study group [DESS RT (DESS at room temperature), DESS Fr (DESS freezing), Freezing and 70% ethanol]. The horizontal line and the black dot represent the median and mean value, respectively. Gold dots depict all the numerical measures obtained per group (an outlier value of the “Freezing” group was omitted in the graphic to facilitate interpretation). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3. Results

On the 1-month egg preservation, our analyses showed that freezing was the best method to maintain the number (median; rank) of oxyurid eggs originally present in faeces (1156.0 eggs/g; 675.2–3457.9), followed by DESS solution at room temperature (491.1 eggs/g; 347.8–920.7) and DESS solution upon freezing (480.8 eggs/g; 388.8–593.4); 70% ethanol (235.3 eggs/g; 102.3–716.1) obtained the worst results. The statistical analyses showed marginal (p-value < 0.06)* and significant differences in the egg concentration between the freezing group and the other study groups (DESS at room temperature (p-value: 0.052)*, DESS upon freezing (p-value: 0.030) and 70% ethanol (p-value: 0.026) (Fig. 1). Freezing and DESS solution (regardless of temperature) preserved the morphology and structures of nematode eggs similarly to those in the fresh samples. However, ethanol brought about several morphological alterations, namely cuticle deformation and lack of content in all the eggs, which hindered morphological identification despite the characteristic oxyurid egg shape.

Regarding adult specimens, the morphometrical evaluation revealed the presence of 11 different parasitic species in the sampled tortoises (Table S1) belonging to genus Tachygonetria (n = 9 species), Mehiddina (n = 1 species), Ozolaimus (n = 1 species) and Alaeurus (n = 1 species). The morphometrical features of the nematodes collected in the present study (preserved in DESS) and the data obtained from the scientific literature revealed an evident homology among all the compared parasitic species (Fig. S1) (Table S1).

The genetic analyses successfully amplified the extracted sample. The obtained sequence (697 bp) produced a BLAST match with 98% identity to three nematode species available in GenBank: Ozoalaimus linstowii (KJ632671.1), Aspiculuris tritertera (MH215350.1, KY462828.1, KY462827.1, MT555640.1) and Thelandros tinerfensis (KJ778073.1). These oxyurid species belong to the family Pharyngodonidae and infect reptiles (O. linstowii and T. tinerfensis) and rodents (A. tritertera).
Table 1

General advantages and disadvantages of five alternative preservers according to different criteria.

<table>
<thead>
<tr>
<th>Preserver</th>
<th>Economic profitability</th>
<th>Safety for health</th>
<th>DNA preservation</th>
<th>Respects morphometry parasite eggs</th>
<th>Suitable field conditions</th>
<th>Suitable border transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ethanol (70%)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No*</td>
</tr>
<tr>
<td>Freezing (-20 °C)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No*</td>
</tr>
<tr>
<td>Plastination</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Unknown</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Based on: the authors’ previous experience and the scientific literature: 1 (Sweeney et al., 2013), 2 (Beknazarova et al., 2017; Carew et al., 2018; Guyard et al., 2017; Romanazzi et al., 2015), 3 (Jagla et al., 2013; Koudela and Bodeček, 2006), 4 (IATA, 2022).

4. Discussion

Although previous scientific studies have evaluated the potential role of DESS as a preserver of nematodes, this is the first report to jointly consider the preservation of egg and adult specimens, and it also describes the longest time (2 years) for nematode preservation using DESS solution (Beknazarova et al., 2017; Chalańska et al., 2016; Yoder et al., 2006).

According to our results, DESS solution allows all egg structures with a similar morphology to those of fresh samples to be preserved, as described using traditional methodologies like formaldehyde and low temperatures (Aldeen et al., 1993; Crawley et al., 2016). However, it has clear benefits because it avoids having to employ irritant and carcinogenic chemicals (e.g., formaldehyde), as well as technologies and infrastructures that can be difficult to apply outside labs (e.g., freezer, plastination) (Crawley et al., 2016; González et al., 2018; Swenberg et al., 2013) (Table 1). As ethanol is commonly associated with gross alterations in the morphology and count of parasite eggs, its use in parasitological surveys based on morphological identification should be avoided (Crawley et al., 2016; Jagla et al., 2013).

Concerning the long-term preservation of adults, the nematode species identified in the present study matched a parasitological survey that previously addressed the same study area (Chávarri et al., 2012). We demonstrated that DESS solution preserves microscopic key-structures of nematodes (e.g., spicules, tail, oesophagus), which is relevant for morphometrical identifications for at least 2 years. Our results showed that using DESS to preserve adult nematodes is highly recommended for long-term surveys, where samples are stored for months, or even years, under optimal morphometrical conditions, which is essential to obtain reliable results (Table 1). We were able to extract viable DNA from one sample stored for 2 years in DESS. DNA preservation can facilitate individual or massive species identification (metabarcoding); although this was not our objective because neither Tachygnoteria, Mehidiella nor Ailaearis have available 18S sequences in GenBank (only Tachygnoteria spp. has one available 28S sequence). Our purpose was to corroborate that nematode DNA would remain viable. Further studies should quantify PCR and sequencing success in more samples. The combination of morphological and genetic approaches is especially useful for wildlife epidemiological surveys. However, the sequences of many parasitic species are still not registered in genetic databases like GenBank and more efforts need to be made in this line.

To summarise, we found that faecal samples can be preserved for at least 2 years in DESS, which is a much longer period than those previously described (Bik et al., 2009; Chalańska et al., 2016; Yoder et al., 2006). This finding makes it a convenient tool for epidemiological surveys because it avoids problems associated with other traditional preservers like formaldehyde, which have well-known negative effects on handlers’ health and on the quality of DNA parasites (Guyard et al., 2017). Moreover, storage protocols using DESS enable the economic profitable preservation of parasites, preserve morphometry and DNA from parasite specimens, and allow work to be performed under field conditions and samples to be quickly shipped worldwide without restrictions.

Ethical statement

No approval of research ethics committees was required to accomplish the goals of this study because the collection of samples did not require animal manipulation.

Declaration of Competing Interest

The authors declare that there are no conflicts of interest.

Acknowledgements

MG was supported by a contract for postdoctoral researchers from the Generalitat Valenciana with reference APOSTD/2021/181. RCR was supported by the European Union-Next Generation EU in the Maria Zambrano Program (ZAMBRANO 21-26). This research had the financial support of project PID2019-105682RA-I00, funded by the Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rvsc.2022.10.010.

References


M. González et al.

Research in Veterinary Science 153 (2022) 45–48


