Increased Sensitivity and Selectivity for As (III) Detection at Au(111) Surface: Single Crystals and Ultraflat Thin Films Comparison

Tybur Q. Casuse,1,3* Rubén Rizo,2 Angelica Benavidez,3 Adrian Brearly,3,4 José M. Cerrato,1,3 Fernando H. Garzon,3* Enrique Herrero,2 Juan M. Feliu2

*Corresponding email addresses: garzon@unm.edu; tcasuse@unm.edu

Telephone: (001) 505-934-6971
Fax: (001) 505-277-1988

1 Department of Civil, Construction & Environmental Engineering, 1 University of New Mexico, MSC01 1070, Albuquerque, NM, USA 87131
2 Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, E’0308, Alicante, Spain.
3 Center for Micro-Engineered Materials, University of New Mexico, 1001 University Blvd SE, Albuquerque, NM, USA 87106
4 Department of Earth & Planetary Sciences, MSC03 2040, 1 University of New Mexico, Albuquerque, New Mexico 87131, USA
ABSTRACT: Electrochemical stripping voltammetry electroanalysis sensitivity and selectivity is often times limited by wide variance in analyte electrode surface adsorption and desorption energies. The use of highly oriented Au (111) single crystal and thin film surfaces is shown to decrease this variance and improve detection for arsenic (As) in water. Cyclic voltammetry and linear stripping voltammetry (LSV) analysis on Au oriented and polyoriented electrode surfaces demonstrated that As deposition and oxidation is a complex surface structure dependent process. Electrochemical quartz microbalance indicated that As is deposited in multiple layers when in high concentrations and does not permanently reorganize the Au surface after stripping. LSV analysis of As (III) on the Au(111), Au(110), Au(100), and Au polyoriented single crystal, Au(Poly), model electrode surfaces showed that Au(111) had the highest peak to background ratio and narrowest peak width for As oxidative stripping. Furthermore, an ultraflat Au(111) thin film, Au(UTF), was then compared to the Au(111) and Au(Poly) single crystals and showed a bulk Au(111) single crystal-like response. The Au(UTF) was then used to perform a calibration curve to detect between 2.5 and 100 µg L⁻¹ As (III) and resulted in a theoretical limit of detection of 0.0065 µg L⁻¹ in 0.5 M H₂SO₄. The results from this study indicate that the Au(UTF) surface provides the sensitivity necessary for detection of trace concentrations of As in water at or below the maximum contaminant level (MCL) of 10 µg L⁻¹.

SYNOPSIS: This study provides new insights into the effect of crystallographic surface orientation on electrochemical As deposition and stripping. Furthermore, our findings implement the increased sensitivity and selectivity of the Au(111) surface in an economically manufacturable and low Au consumption electrode by using ultrathin Au (111) films to detect trace concentrations of As (III) in water. We expect to see similar enhanced trace metal detection for other suitable target metal ions.

Keywords: Arsenic, Electrochemical Detection, Gold Single Crystals, Gold Thin Films, Water
Introduction

The ability to detect arsenic (As) at part per billion (ppb) concentrations is essential to informing populations around the world with potential As contamination about the safety of their drinking water. The maximum contaminant level (MCL) set by the World Health Organization and the United States Environmental Protection Agency for safe daily drinking water is 10 ppb, or \(\mu \text{g} \text{L}^{-1} \). Concentrations above this can lead to cancer in numerous organs, as well as adverse cardiovascular or neurological effects. Arsenite, As (III), is expected to be in the form of \(\text{H}_3\text{AsO}_3 \) in reducing and acidic conditions. Arsenite is considered to be the most toxic aqueous form of As in comparison to arsenate, As (V), and other methylated forms. Although As (V) is considered to be electro-inactive it has been electrochemically determined by measuring the difference in concentration of As (III) before and after chemical reduction methods. The growing overabundance of As in drinking water sources due to natural and anthropogenic mobilization calls for development of broadly available, portable, and highly sensitive and selective As sensing systems.

Electrochemical detection of trace concentrations of As in water has been investigated using gold (Au) electrodes with a broad variety of morphologies and generation methods seeking to improve detection capabilities. Electrochemical sensing has several benefits over common laboratory methods, such as inductively coupled plasma (ICP) mass spectrometry, ICP atomic emission spectroscopy, and atomic absorption spectroscopy, including the ability to provide in-situ quantitative analysis, decreased cost and portability. Sensing electrodes have been generated using electrodeposition, chemical nanoparticle deposition and physical vapor deposition to form macro and nanoscale structures capable of detecting well below the MCL in water. Recent developments have sought to understand the effects of surface orientation on the electrochemical detection of heavy metals including As and lead. Identifying new electrode materials and factors affecting sensitivity and selectivity for As detection has been the focus of a growing body of research over the past two decades.
Single crystal electrochemical studies provide valuable insights into reaction mechanisms including electron transfer, \(^{37,38}\) adlayer adsorption and desorption, \(^{39-44}\) and catalytic activity which are impacted by site geometry. \(^{45,46}\) The use of Au nanoparticles and nanostructured electrodes benefit from decreased precious metal consumption per electrode and have been shown to provide high sensitivity for As (III) detection. Pioneering work by Compton and others, identified the Au(111) surface orientation to present increased analytical sensitivity and selectivity when using single crystal and octahedral-shaped particles. \(^{14,24,33-35,45,47-49}\) However, the use of nanoparticles with a three-dimensional structure inevitably includes imperfections in crystallographic orientation due to the edges of the nanoparticles and variation in size and shape during the synthesis processes. Single crystal surfaces with minimal imperfections provide clearer insight into structure-activity-selectivity relationships which directly benefits electroanalytical studies seeking to identify materials with high sensitivity and selectivity. \(^{42,50}\)

The objective of this study is to develop understanding of commercially available ultraflat Au(111) thin films, Au(UTF), capability to provide single crystal-like detection for trace As (III) in water by identifying the impact of surface structure on As (III) redox at well-oriented Au surfaces. In this study we provide insight into the redox behavior of As (III) at single crystal surfaces with cyclic voltammetry (CV) and linear stripping voltammetry (LSV). A quartz crystal microbalance (QCM) was used to perform CV studies with a Au(111) oriented film to provide further insight into As (III) adlayer formation. The Au(UTF) was characterized using microscopy, diffraction techniques and electrochemical comparison to the model electrodes, and then utilized to detect trace concentrations of As (III) in 0.5 M sulfuric acid solution. This study provides new insights into the influence of surface structure on the selectivity and sensitivity for As (III) electrochemical detection at Au surfaces and implements our findings in a reproducible and commercially available electrode which can provide single crystal-like detection capabilities with ultralow Au loading per electrode.

Experimental
Materials Description and Characterization

Physical Characterization

Single Crystals. Clavilier’s method was used to generate basal plane Au single crystal model surface electrodes for the Au(111), Au(110) and Au(100) orientations. A 0.5 mm Au wire was held vertically and melted using a controlled torch to form a bead at the end of the wire which was then slowly cooled to form a single crystal. The single crystal bead was then mounted in a four-cycle goniometer and oriented using the laser reflections form the surface facets. Then it was coated in epoxy for stabilization, cut with emery paper to a flat surface, which had the selected orientation and polished until a mirror finish with diamond paste. The polyoriented Au single crystal, hereafter referred to as Au(Poly), was an uncut single crystal bead and represents the multiple orientations present in a single crystal.

Ultraflat Au(111) Thin Film. The Au(UTF) films (Platypus Technologies) were physically characterized using S/TEM, electron backscatter diffraction (EBSD), pole figures, atomic force microscopy (AFM) and XRD (Fig. S1 A-F, Fig. S2) and showed a strong Au(111) preferred orientation. Electron backscatter diffraction images were collected using a FIB Helios600 at the Nanoscale and Characterization Laboratory (NCFL) at Virginia Tech. A JEOL NEOARM 200 kV aberration corrected scanning transmission electron microscope (S/TEM) at UNM was used for film grain structure visualization (Fig. S1A). The films were highly (111) textured, polycrystalline materials with grains rotationally disordered parallel to the substrate surface. Platypus Technologies quotes a film thickness near 100 nm and an average grain area of $3.64 \pm 0.2 \mu m^2$. During EBSD analysis charging image distortion effects can be observed in Figures S1B. Figure S1B presents the EBSD data showing that the grains are predominantly oriented in the Au(111) direction as shown by the legend in Figure S1E. The [100] pole figure shows a circle of points in S1C which indicates that the grains in the thin film are randomly oriented in their in-plane directions. The inverse pole figure S1D shows that the vast majority
of the domains are oriented in the Au(111) direction. Surface roughness was characterized by atomic force microscopy (AFM) using a WiTec Alpha300R. The AFM image of the Au(UTF) surface shows that the surface is very flat with variations in a 30 nm range across the image (Fig. S1F). The root mean square (RMS) roughness is quoted by the manufacturer as 3.6 Å, however, our analysis found it to be 2.6 nm using Gwyddion measurements (Table S1).

Quartz Crystal Microbalance Electrode. Quartz Crystal Resonator QA-CL3 dip cells and a QCM943 oscillation circuit unit were obtained from Princeton Applied Research to collect electrochemical quartz crystal microbalance (EQCM) measurements. The surface normal orientation was determined using thin film Bragg diffraction (PanAnalytical X’Pert Pro) equipped with a multilayer X-ray mirror. The Au film on the EQCM showed strong (111) normal orientation (Fig. S2).

Electrochemical Characterization

Electrochemical experiments were carried out in a two-compartment electrochemical glass cell, using a Au wire as a counter electrode and a reversible hydrogen electrode (RHE) as a reference electrode. Voltammetric experiments were carried out at room temperature using a wave signal generator (EG&G PARC 175), potentiostat (eDAQ 161), and digital recorder (eDAQ e-corder 401) workstation. All solutions were made using ultrapure water (18.2 MΩ cm, Elga PureLab Ultra), concentrated sulfuric acid (VWR, 95 wt%), and As$_2$O$_3$ salt (Merck). A stock solution of 10^{-1} M As(III) in 0.5 M H$_2$SO$_4$ was used to prepare lower concentration solutions.

Single Crystals. The basal plane single crystals were connected to the solution using the hanging meniscus method so that the polished flat part of the single crystal bead was the only surface touching the solution. The Au(Poly) electrode was submerged into the solution so that the wire was minimally interacting with the solution. The electrochemical surface area of the Au(Poly), QCM and Au(UTF) electrodes were determined using the charge of the Au reduction peak from cyclic voltammetry at 10 mV s$^{-1}$ up to 1.7 V. The reference value used was 660 µC cm$^{-2}$, which represents a three electron transfer
process per Au(111) surface atom with a specific current of 220 \mu C cm\(^{-2}\) per electron transferred. The surface area of the single crystal basal plane surfaces was determined using optical microscopy of the flat area prior to use. Prior to any electrochemical experiment, the electrode was annealed in a propane/oxygen flame and quenched using ultrapure water to remove any organics that may have been adsorbed on the surface and to restore the surface order. A protecting droplet of ultrapure water was left on the single crystal surface when the electrode was transported into the cell. After performing analysis in As-containing solutions the electrode was quenched and annealed using concentrated nitric acid to ensure all As was chemically stripped off of the electrode surface.

Ultraflat Au(111) Thin Film. The Au(UTF) electrodes were compared to single crystal model electrodes for their Au redox behavior using cyclic voltammetry (Fig. S1G). The Au(UTF) electrode was taken off from the substrate according to Platypus technologies instructions directly prior to use, and partially submerged in a solution of 0.5 M H\(_2\)SO\(_4\). Figure S1G presents a comparison of the characteristic Au redox peaks for the Au(UTF) and the basal plane surfaces which are similar to expected peaks from previous research.\(^{53}\) The Au redox profiles of Au(UTF) and Au(111) both begin with a shoulder in the positive sweep direction beginning at 1.4 V which leads to a peak at 1.6 V for Au oxidation, showing that the Au(UTF) has a Au(111) single crystal-like electrochemical response.

Quartz Crystal Microbalance Electrode. The QA-CL3 dip cell was used to perform cyclic voltammetry studies of As reduction and oxidation. The Sauerbrey equation [1] was used to convert between the frequency and mass.

\[
\Delta F = -\frac{2f_0^2}{\Delta m}\frac{A}{\sqrt{\rho_q \mu_q}} \quad [1]
\]

Where \(\Delta F\) is the change in frequency, \(f_0\) is the standard frequency of 9 MHz, \(A\) is the area of the electrode surface, 0.174 cm\(^2\), \(\rho_q\) is the density of the quartz crystal, \(\mu_q\) is the shear modulus of the quartz crystal, 2.947 \cdot 10^{11} \text{ g cm}^{-1} \text{ s}^{-2}, \) and \(\Delta m\) is the change in mass.
Statistical analysis was performed in EXCEL to determine average and standard deviation of three consecutive measurements where applicable. Linear stripping voltammetry was smoothed using a Lowess method with a span of 0.01 for clarity in the image. The raw data was used to calculate the calibration plot of concentration vs. charge density. Limits of detection were determined using the equation \[\text{LOD} = \left(k \times \text{Sb}\right)/m, \] where \(k \) was equal to 3 for a 98.3% confidence level, Sb is the standard deviation for analysis of three blank curves, and \(m \) is the slope of the calibration curve.

Results and Discussion

Arsenite Deposition/Dissolution on Au electrodes.

Figure 1 shows the voltammetric profile of a polyoriented Au electrode immersed in a \(10^{-3} \) M As(III) solution. As can be seen, in the deposition process up to -0.3 V vs. RHE (potential at which hydrogen evolution starts) several peaks can be detected in the negative scan direction which have been reported by previous studies as well.\(^{54}\) The presence of several deposition peaks suggests the presence of a complex deposition process, in which the presence of a bare Au surface or a previous As adlayer alters the dynamics of the process. It should be noted that this voltammogram is stable upon cycling between these potential limits. Also, the deposition currents are significantly smaller than those expected for a diffusion-controlled process. In fact, currents recorded in 0.1 M As(III) solutions are similar to those recorded here (Fig. S3 & Table S2), implying that the deposition is controlled by the kinetics of the process, explaining the presence of several deposition peaks. On the other hand, a main single peak is observed in the dissolution process of As. Since the deposition process is determined by the kinetics, the structure of the adlayers formed can have a significant impact on the dissolution process. To establish such an effect, voltammograms with different potential limits between 0.2 and -0.3 V were recorded (Fig. 1 & S4). As the lower potential limit is made more negative, the As stripping peak shifts progressively to higher potential values. The presence of a single peak, whose potential shifts to more positive values, clearly indicates that the dissolution of the As layer is governed by the topmost layer.
The stability of this adlayer depends on the underneath layer and leads to increasing stability as the deposition progresses.

Figure 1. Cyclic voltammograms for the different Au electrodes in 0.5 M H₂SO₄ + 1 mM As (III) with different lower limits. Scan rate: 10 mV s⁻¹. The vertical lines mark the position of different deposition peaks on the electrodes.

This type of deposition/dissolution process, which is dependent on the nature of the underneath layer, is expected to depend also on the surface structure of the electrode. For this reason, As (III) deposition/dissolution was studied on Au single crystal electrodes (Fig. 1). Although the qualitative behavior is the same as that observed for the Au polyoriented electrode, significant differences can be observed between the different surfaces. This fact clearly indicates that the deposition process is a surface-
sensitive process. At potentials higher than 0 V on the single crystal electrodes, two main peaks are observed for the deposition process, followed by a wider peak below this potential. Tentatively, the first two peaks can be assigned to the formation of the two first layers of As, and the peak at E<0 V represents the formation of a massive As film. As shown in Figure 2, which is an enlargement of the deposition scan of Figure 1, each of the peaks observed in the Au(111), Au(100), and Au(110) electrodes has its corresponding peak on the polyoriented electrode (in some cases, two of the peaks corresponding to the single crystal electrodes overlap in the polyoriented surfaces). Thus, it can be considered that the voltammogram of the polyoriented electrode is the result of the contributions of the different facets and ordered domains. In contrast, only one peak is observed in the dissolution. As happens in the polyoriented surface, the potential of the dissolution peak depends on the lower potential limit and the extension of the As deposition.
Figure 2. Cyclic voltammograms for the different Au electrodes in the deposition region in 0.5 M H₂SO₄ + 1 mM As (III) with different lower limits. Scan rate: 10 mV s⁻¹. The vertical lines mark the position of different deposition peaks on the electrodes.

It should be noted that the standard potential of H₃AsO₃ reduction to As(0) is 0.248 V vs SHE, which means that the equilibrium potential of this redox couple in this medium is ca. 0.24 V. This fact implies that any deposition process taking place at higher potentials is an underpotential deposition (UPD) process. As can be observed in Figures 1 and 2, the onset for As deposition is higher than this value for all the surfaces. However, clear peaks related to the As UPD deposition are only observed for Au(110) and Au(100) single crystal electrodes. Underpotential deposition of As (III) onto Au electrodes has been observed and utilized by other researchers in detection. Figure S4 shows an
enlargement of this region for cycles with lower limits larger than 0 V. Clearly dissolution peaks at 0.36 and 0.45 V for the Au(110) and Au(100) electrodes respectively are observed, which corresponds to the dissolution of the UPD processes and confirms previous studies findings.57 For the Au(111) electrode, although the deposition starts at a higher potential, there is no well-defined deposition peak below this potential and the main peak potential is ca. 0.25 V, which suggests that it contains contributions only from the normal deposition process. For the Au(Poly) electrode, the UPD dissolution process is observed due to the presence of (100) and (110) domains in the polyoriented surface.

Charge curves for the deposition process are shown in Figure 3. As can be seen, total charges at -0.3 V (the lower limit for the deposition process) are very similar for all the electrodes, standing for ca. 1700 \(\mu \text{C cm}^{-2} \). For the Au(111) surface, the measured charge at 0.1 V, just after the first deposition peak stands for ca. 624 \(\mu \text{C cm}^{-2} \). Taking into account that a process transferring 1 electron per Au(111) surface atom exchanges 220 \(\mu \text{C cm}^{-2} \), and 3 electrons are exchanged in the As (III) deposition process, it can be proposed that after the first deposition peak a pseudomorphic (1×1) As layer has been formed.

After the second deposition peak centered at 0.045 V, the deposition charge at 0 V is ca. 1000 \(\mu \text{C cm}^{-2} \), which would suggest that this second peak is related to the formation of the second layer. From that point, multilayer deposition would occur in the third and broad peak. For the Au(100) and Au(110) surfaces, the situation is similar to that observed for the Au(111) electrode, and thus, each peak should correspond to the deposition of the first and second layers. It should be noted that the final charge is very similar for all the electrodes, although at intermediate potentials they differ. This implies that in the deposition of the third and subsequent layers the underneath Au structure does not affect the deposition process and only the deposition of the first two layers depends on the Au structure.
Figure 3. Integrated charges measured during the deposition scan for the different Au electrodes using the voltammetric curves in figure 1.

Electrochemical QCM experiments were carried out to determine the nature of the deposited adlayer. Figure 4 presents the evolution of the QCM frequency and current density during the cyclic voltammetry of a Au film electrode in 10⁻³ M As (III). The QCM surface showed a highly Au(111) preferred surface orientation in XRD analysis (Fig. S2) and the Au redox prior to introduction of As to solution also showed a degree of preferred Au(111) orientation due to the primary Au oxidation peak being at 1.6 V (Fig. S5). As shown in Figure 4A, the frequency returns at the initial value after one complete cycle, indicating that the only process occurring is related to the As deposition/dissolution. The mass of the deposition species can therefore be determined from the ratio between the frequency change and the charge. Figure 4B presents the comparison between the deposition current, the integrated charge density, and the mass adsorbed onto the Au surface. The mass changes and the integrated charge curves overlap, which implies that the stoichiometry of the deposition process is the same in the whole potential window. Additionally, the ratio between the deposition change and mass is 15 g (mol e⁻)⁻¹. Since, in the reduction process of As, 3 electrons are exchanged, this value implies that the molar mass of the depositing species is 45 g mol⁻¹. This value is lower than the atomic mass of As (75 g mol⁻¹),
which suggests that in the deposition process adsorbed water molecules have been displaced from the interface. Considering the difference between the measured molar mass and the As molar mass ($75 - 45 = 30$ g mol$^{-1}$), approximately two water molecules have been displaced from the interface per As atom deposited.

Figure 4. Electrochemical quartz microbalance during cyclic voltammetry in 0.5 M H$_2$SO$_4$ + 1 mM As (III) with supporting electrolyte. **A** Current density and change in crystal frequency vs. potential during CV at 10 mV s$^{-1}$; **B** Current density, charge density and change in mass vs. potential during deposition of As (III) at the QCM surface.

Now that the electrochemical behavior of As on Au electrodes was established, the possible use of these electrodes for chemical analysis of As (III) in solution can be tested. For that, the different electrodes were held at different potentials for 60 s and the stripping curve was recorded for 10^{-5} M As.
(III) in 0.5 M H$_2$SO$_4$ (Fig. 5). Two potentials were chosen for the basal planes, each one after the first two deposition peaks, and three potentials were evaluated for the polyoriented Au electrode. Important differences have been observed between the profiles of the four electrodes. While the Au(111) electrode showed a single sharp peak the Au(110), Au(100) and polyoriented electrodes showed more complex oxidation processes. Table 1 summarizes the main data for the experiment. For Au(100) three peaks are observed whereas for Au(110) two peaks can be distinguished. In fact, the observed behavior for the stripping peaks is very similar to that obtained for the positive scan direction of the voltammetric experiments in 10^{-3} M As(III) solution using a similar lower limit for the scan (Fig. 1 & S4). The only notable difference is the small shift in the peak potentials due to the difference in concentration of the solution. Using this information, we can assign the peaks at 0.450 V for the Au(100) electrode and at 0.360 V for the Au(110) electrode to the dissolution of the UPD layer, since these peaks are still visible when the lower limit of the scan is above 0.3 V, that is, when bulk As deposition is still not thermodynamically favorable. Thus, the observed difference between the Au(111) electrode and the rest of the surfaces is that no UPD phenomenon is observed on the Au(111). In the case of the polyoriented Au electrode, the observed behavior is the weighted combination of the electrochemical behavior of the different sites present on the surface. Thus, as observed for 10^{-3} M As (III) solutions, the different peaks can be correlated with the peaks in the single crystal electrodes. Regarding the possibility of using the stripping signals for the chemical determination of As (III) in solution, it is clear that the best surface is the Au(111) electrode because a single sharp peak is obtained, which can provide a higher amperometric signal than the rest of the surfaces with minimal peak overlap from interference species.
Figure 5. As stripping voltammograms for the different electrodes A) Au(111); B) Au(110); C) Au(100); and D) Au(poly), in 0.5 M H$_2$SO$_4$ + 10$^{-5}$ M As (III). The electrode potential was held for 60 s at the depositing potentials shown in the legends. The scan rate is 10 mV s$^{-1}$. The red dots in the figure represent the integrated charge (right-hand axis).
Table 1. Summary of the main characteristics of the stripping peaks obtained after the deposition of As on the different gold electrodes in 0.1 M HClO$_4$+ 10$^{-5}$ M As(III).

<table>
<thead>
<tr>
<th>Electrode</th>
<th>Deposition potential</th>
<th>Stripping peak potential</th>
<th>Stripping peak charge</th>
<th>Total Stripping charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au(111)</td>
<td>0.175 V</td>
<td>0.280 V</td>
<td>248±3 µC cm$^{-2}$</td>
<td>248±3 µC cm$^{-2}$</td>
</tr>
<tr>
<td></td>
<td>0.010 V</td>
<td>0.300 V</td>
<td>487±6 µC cm$^{-2}$</td>
<td>487±6 µC cm$^{-2}$</td>
</tr>
<tr>
<td>Au(110)</td>
<td>0.160 V</td>
<td>0.270 V</td>
<td>149±2 µC cm$^{-2}$</td>
<td>443±3 µC cm$^{-2}$</td>
</tr>
<tr>
<td></td>
<td>0.060 V</td>
<td>0.360 V</td>
<td>294±3 µC cm$^{-2}$</td>
<td>572±6 µC cm$^{-2}$</td>
</tr>
<tr>
<td>Au(100)</td>
<td>0.125 V</td>
<td>0.275 V</td>
<td>***</td>
<td>443±2.6 cm$^{-2}$</td>
</tr>
<tr>
<td></td>
<td>0.010 V</td>
<td>0.350 V</td>
<td>***</td>
<td>572±6 µC cm$^{-2}$</td>
</tr>
<tr>
<td></td>
<td>0.275 V</td>
<td>0.350 V</td>
<td>***</td>
<td>572±6 µC cm$^{-2}$</td>
</tr>
<tr>
<td>Au(poly)</td>
<td>0.170 V, 0.125 V</td>
<td>0.360 V</td>
<td>***</td>
<td>382±2 µC cm$^{-2}$</td>
</tr>
<tr>
<td></td>
<td>0.280 V</td>
<td>0.460 V</td>
<td>176±1 µC cm$^{-2}$</td>
<td></td>
</tr>
<tr>
<td>Au(UTF)</td>
<td>0.125 V</td>
<td>0.360 V</td>
<td>***</td>
<td>397±2 µC cm$^{-2}$</td>
</tr>
<tr>
<td></td>
<td>0.280 V</td>
<td>0.460 V</td>
<td>176±1 µC cm$^{-2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.02 V</td>
<td>0.360 V</td>
<td>***</td>
<td>447±2 µC cm$^{-2}$</td>
</tr>
<tr>
<td></td>
<td>0.460 V</td>
<td>176±1 µC cm$^{-2}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Au(UTF) Comparison to Single Crystals

Linear stripping voltammetry was used to compare the electrochemical detection of As (III) for the Au(111), Au(Poly) and Au(UTF) electrode surfaces. Figure 6 presents the LSV of the Au(111) and
Au(Poly) single crystals compared to the Au(UTF). The Au(UTF) performed similarly to the Au(111) in 10^{-5} M As (III) solution $+ 0.5$ M H_2SO_4. Table 2 presents a comparison of the maximum peak current potential, full width half max (FWHM), and charge density. The peak potential for the Au(111) and Au(UTF) are 0.337 and 0.338 V, respectively, showing that the binding energy for the stripping process was by and large the same. The maximum peak potential for the Au(poly) electrode was a slightly lower energy at 0.324 V. This may be associated with increased underpotential deposition activity for deposition at Au geometries besides Au(111) which are included in the Au(Poly) electrode. The FWHM was determined to identify the capacity for selectivity when other redox active metals may be present in the water matrix. The Au(UTF) and Au(111) surfaces showed FWHM below 20 mV while the Au(Poly) electrode was 48 mV wide which shows that the Au(111) and Au(UTF) have a narrower potential window for detection which may lead to higher selectivity when other metals or electrochemically active species are also present in the water matrix. The peak potential intensity and width of the Au(UTF) electrode is very similar to that of the Au(111) surface, which implies that both surfaces are almost equivalent for this reaction, and that the defects present in the Au(UTF) do not significantly alter the response for this reaction, which is mainly dominated by the presence of (111) grain boundary domains in the Au(UTF).
Figure 6. As stripping voltammograms for the different electrodes in 0.5 M H$_2$SO$_4$ + 10$^{-5}$ M As (III). The electrode potential was held for 5 minutes at 0 V vs RHE. The scan rate is 50 mV s$^{-1}$.

Table 2. Summary of the main characteristics of the stripping peaks obtained after the deposition of As on the different Au electrodes in 0.5 M H$_2$SO$_4$ + 10$^{-5}$ M As(III).

<table>
<thead>
<tr>
<th>Electrode</th>
<th>Stripping peak potential</th>
<th>Full Width Half Max</th>
<th>Total Stripping Charge Density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V vs. RHE</td>
<td>V vs. RHE</td>
<td>µC cm$^{-2}$</td>
</tr>
<tr>
<td>Au(111)</td>
<td>0.337</td>
<td>0.0155</td>
<td>589</td>
</tr>
<tr>
<td>Au(poly)</td>
<td>0.324</td>
<td>0.0480</td>
<td>541</td>
</tr>
<tr>
<td>Au(UTF)</td>
<td>0.338</td>
<td>0.0206</td>
<td>570</td>
</tr>
</tbody>
</table>

Au(UTF) Thin Film Calibration Curve

The standard additions method was used to detect trace As (III) in 0.5 M H$_2$SO$_4$ and the linear range was determined to be between 2.5 and 50 µg L$^{-1}$ showing the capability to detect at and below the MCL of 10 µg L$^{-1}$. For reference, the statistical limit of detection was 0.0065 µg L$^{-1}$. The blue curve in Figure 7A is the baseline in 0.5 M sulfuric acid. There is a peak near 0.55 V in the baseline that has been observed on other Au(111) surfaces, showing that this peak disappears upon addition of As (III) even in small concentrations. At concentrations between 2.5 and 17.5 µg L$^{-1}$ the peak is quite broad beginning near 0.25 V and ends near 0.6 V (Fig. 7A). However, at 50 µg L$^{-1}$ the current increases sharply at 0.25 presenting a peak at 0.35 with a shoulder that ends near 0.6 V. The 100 µg L$^{-1}$ LSV follows a similar peak shape as the 50 µg L$^{-1}$ concentration, however with a larger increase in the peak area at 0.35 V than in the broad region that the lower concentration analysis had. This peak shape changes with concentration impacted the linearity when plotting the peak area vs. the concentration and resulted in an adjusted R2 of 0.983 between 2.5 and 50 µg L$^{-1}$ (Fig. 7B). Additionally, the R2 value is increased to 0.998 between 2.5 and 17.5 µg L$^{-1}$ As (III) (Fig. S6) showing higher linearity within ± 7.5 µg L$^{-1}$ of the 10 µg L$^{-1}$ MCL. Zhang et. al45 have shown R2 values of 0.991 and 0.990 with bulk Au and 5 nm Au nanoparticle electrodes between 0.75 and 7.5 µg L$^{-1}$. As shown in the voltammetric profiles of the single crystal electrodes, the region above
0.3 V should be related to the stripping of the As UPD. Since the Au(111) electrode does not show any characteristic peak in this region, the signal appearing for low concentrations should be related to the presence of defects on the surface, mainly composed of (110) and (100) steps. Those sites are generally more reactive and thus, they are occupied in the early stages of the deposition, giving rise to the formation of a wide wave.

Figure 7. A) Linear stripping voltammetry analysis curves of baseline 0.5 M H$_2$SO$_4$ and standard additions between 2.5 and 100 µg L$^{-1}$ of As (III) solution, B) Calibration curve of charge density calculated from the area under the curve and a linear regression curve for data between 2.5 and 50 µg L$^{-1}$.

Conclusions

The results of this study show that the Au(111) single crystal surface has the highest sensitivity and selectivity for As (III) stripping analysis and can be implemented as an optimized sensing electrode through the use of ultraflat Au(111) texture thin films for trace As (III) detection in water. The deposition and stripping process was investigated using single crystal model electrodes and QCM. Cyclic voltammetry using the Au(Poly) surface with high concentrations of As (III) in solution showed that As (III) redox has a complex deposition process, is kinetically controlled, and the oxidation process was dependent on the stability of the adlayers formed during deposition. Depositing on the basal plane surfaces showed that there were two peaks above 0 V which corresponded to the first and second adlayer and had varying peak potentials with each surface orientation. Stripping of As from the basal
plane surfaces showed that the Au(111) model electrode had the highest sensitivity and selectivity as evidenced by having the highest maximum peak current compared to the other surfaces and a single stripping peak while the other surfaces had multiple peaks which were spread out along a broader potential region. Electrochemical QCM data showed that the deposition of As (III) onto the Au surface occurs in multiple layers and for each As atom adsorbed approximately two water molecules are displaced from the surface. The QCM also showed that the stripping of the layers returns the surface to the original state without restructuring or irreversible adsorption of As onto the Au surface. Ultraflat Au(111) thin films were then compared to the Au(111) and Au(Poly) electrodes, which found that the Au(UTF)s preformed highly similar to the Au(111) model electrode for As (III) stripping during LSV analysis. Finally, the Au(UTF) was used to detect linearly between 2.5 and 50 µg L⁻¹ As (III) in ultrapure water with 0.5 M H₂SO₄ supporting electrolyte and found a theoretical limit of detection of 0.0065 µg L⁻¹. This work provides a single crystal model study of the effects of surface structure on electrochemical As (III) detection at Au surfaces and applies the findings by implementing the benefits of the Au(111) surface in ultraflat Au(111) thin films, which can provide high sensitivity and selectivity. Note that single crystal-like detection capabilities are achievable with minimal (~2µg) quantities of Au on glass substrates, thus in an economically viable electrode. The use of Au (111) texture thin film electrodes with sub-nanometer roughness, may impact many other areas of electroanalysis as Au electrodes are very commonly used for a large variety of electrochemical investigations.

Acknowledgments

This material is based upon work supported by the National Science Foundation (NSF) Graduate Research Fellowship Program (GRFP) under Grant No. (DGE-1418062), University of New Mexico Center for Water and the Environment, (NSF CREST Grant Number 1345169 and 1914490) and the Center for Micro-Engineered Materials (NSF MRI Award 1828731). We would like to thank NanoEarth's Multicultural and Underserved Nanoscience Initiative and the Nanoscale Characterization and Fabrication Laboratory at Virginia Tech (NSF ECCS 1542100 and ECCS 2025151) along with Ya
Peng Yu for their aid in providing the EBSD and pole figure data for the Au(UTF) thin films. Thanks to the Fulbright U.S. Scholar Senior Research Award to Spain for Professor Cerrato to collaborate with the Universidad de Alicante. The authors would also like to thank all our colleagues at the Universidad de Alicante for their guidance, generosity and friendship. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.
References

(1) Podgorski, J. Global threat of arsenic in groundwater. Science 2020, 368 (6493), 845-850. DOI: https://doi.org/10.1126/science.aba1510.

(20) Thanaphatthanarunguang, J.; Lomae, A.; Chailapakul, O.; Chaiyo, S.; Siangproh, W. A Low-cost Paper-based Diamond Electrode for Trace Copper Analysis at On-site Environmental Area. Electroanalysis 2020, 33 (1), 226-
32. DOI: https://doi.org/10.1002/elan.202060305.

https://doi.org/10.1016/0022-0728(84)80123-0.

https://doi.org/10.5229/JECST.2019.10.2.206.

https://doi.org/10.1007/s11242-014-0108-2.

(57) Villegas, I.; Stickney, J. L. PRELIMINARY STUDIES OF GAAS DEPOSITION ON Au(100), (110), AND (111) SURFACES BY ELECTROCHEMICAL ATOMIC LAYER EPITAXY. J. Electrochem. Soc. 1992, 139 (3), 686-694. DOI: https://doi.org/10.1149/1.2069285.