Neurogénesis en la retina de mamíferos adultos

José Martin Nieto¹, Antonia Angulo²,
Gema C. Martínez Navarrete¹, Nicolás Cuenca¹

¹Departamento de Fisiología, Genética y Microbiología
²Departamento de Optica, Farmacología y Anatomía
Facultad de Ciencias. Universidad de Alicante

En el cerebro de mamíferos adultos tiene lugar la formación de nuevas neuronas (neurogénesis) de forma limitada a partir de células madre neurales residentes en dos nichos discretos, localizados en el ventrículo lateral y el hipocampo. En la retina existe neurogénesis persistente durante toda la vida en peces y anfibios en la llamada zona marginal ciliar, localizada en la parte anterior del globo ocular. Esta capacidad se ha perdido esencialmente a lo largo de la evolución en mamíferos. No obstante, se conservan células madre y progenitoras retinianas en el cuerpo ciliar de todos los mamíferos estudiados, en las cuales puede inducirse su diferenciación en neuronas de la retina tanto in vitro como in vivo. En monos y humanos adultos hemos observado que en el margen de la retina periférica tiene lugar un proceso gradual de morfogénesis de todos los tipos celulares retinianos, incluidos los fotorreceptores (conos y bastones). Este campo de investigación está proporcionando una base de conocimiento aplicable a la terapia con células madre adultas de enfermedades neurodegenerativas de la retina.

Se ha considerado tradicionalmente que el sistema nervioso central ha perdido a lo largo de la evolución su capacidad de neurogénesis con posterioridad a la infancia (Ming y Song, 2005). Sin embargo, existe la excepción de dos áreas discretas del cerebro donde se han encontrado células madre neuronales en roedores y primates: la zona subventricular, localizada en el ventrículo lateral del prosencéfalo, y la zona subgranular, en el giro dentado del hipocampo (Doetsch, 2003). Estas áreas aportan, respectivamente, neuronas sensoriales formadas de novo al bulbo olfatorio y neuronas granulares al hipocampo, permitiendo una neurogénesis limitada durante toda la vida y una cierta regeneración neuronal tras lesión incluso en la etapa adulta (Arias-Carrion et al., 2007).

La retina neuronal es una extensión del sistema nervioso central con una estructura laminar y tipos
celulares bien caracterizados. Tradicionalmente se ha considerado que en la retina de mamíferos adultos no existe la capacidad de neurogénesis. Sin embargo, en vertebrados inferiores se ha demostrado que tiene lugar generación de nuevas neuronas en el borde anterior de la retina periférica, cuyo propósito es la renovación continua de los circuitos retinianos. En esta revisión se abordan los resultados obtenidos en los últimos años sobre la posible existencia de células precursoras y su diferenciación en neuronas retinianas en el ojo de mamíferos adultos. Estos estudios han revelado que dicha capacidad se conserva, aunque de forma restringida, en el cuerpo ciliar y el margen de la retina periférica de todos los mamíferos, incluida la especie humana.

Retinogénesis embrionaria en mamíferos

La retinogénesis durante el desarrollo embrionario comprende, por un lado, la proliferación de células madre neuronales y progenitoras retinianas hasta alcanzar un número de células adecuado y, por otro, su posterior diferenciación en neuronas y glía. Se inicia así una secuencia de diferenciación temporal en el cual los conos, células horizontales, amacrinas y ganglionares se desarrollan durante la histogénesis temprana, mientras que los bastones, células bipolares y la glia de Müller se desarrollan durante la retinogénesis tardía (Marquardt y Gruss, 2002; Hatakeyama y Kageyama, 2004; Klassen et al., 2004a). Estos procesos se llevan a cabo, en primer lugar, en respuesta a señales extrínsecas (fundamentalmente factores de crecimiento), y en segundo gracias a la actividad de genes (que codifican principalmente factores de transcripción) que controlan la división y la diferenciación celular.

Los factores externos, como el EGF, FGF2, Shh, Delta,CNTF o BDNF, se unen a sus receptores en dichas células para activar rutas complejas de transducción de señales (Levine y Green, 2004), y pueden ejercer efectos mitogénicos o actuar como factores neurotróficos para dirigir la diferenciación hacia tipos celulares específicos (Reh y Levine, 1998, Marquardt y Gruss, 2002, Klassen et al., 2004a). Con respecto a los factores de transcripción retinogénicos, son fundamentalmente de dos tipos atendiendo a su secuencia de unión a ADN: los pertenecientes a la familia de los factores "homeobox" y los de la familia bHLH, o portadores de un dominio "hélice-lazo-hélice básico". Como regla general en estos procesos los factores "homeobox", como son Pax6, Chx10, Rx1, Crx, Sixões HeS1, se coexpresan en las células progenitoras y regulan la especificidad de capa retiniana, mientras que los bHLH especifican un destino neuronal concreto dentro de las distintas capas formadas bajo el control de los factores "homeobox" (Hatakeyama y Kageyama, 2004; Djojoubroto y Arsenijevic, 2008). Dada la importancia de estos factores en la ontogenia de la retina, y en algunos casos también de otras estructuras del sistema nervioso central, es frecuente que sus genes estén implicados en enfermedades neurodegenerativas oculares hereditarias, como son Pax6 (aniridia, queratitis), Chx10 y Six6 (microftalmia), Rx1 (anofaltmia), Crx (distrofia cono-bastón, amaurosis congénita de Leber), etc. (OMIM, 2008), o que su mutación resulte letal durante el desarrollo.

El proceso de desarrollo de la retina es muy complejo y se completa en las primeras semanas tras el nacimiento en mamíferos (Rapaport et al., 2004; Zhao et al., 2005), incluidos los primates (Rapaport et al., 1996). Dado que no se ha descrito neurogénesis en la retina normal de mamíferos tras este periodo, se piensa que estos animales carecen esencialmente de capacidad regenerativa en la fase adulta (Amato et al., 2004; Moshiri et al., 2004; Reh y Fischer, 2006). En este contexto, la retina humana se diferencia entre las semanas de gestación 11ª y 30ª, un periodo tras el cual ya no se detectan células progenitoras retinianas en división, y aunque todo el ojo continua creciendo durante algún tiempo tras el nacimiento, este alargamiento es resultado, más que de la adición de nuevas neuronas retinianas, de un estiramiento de la retina asociado al crecimiento de la esclera (Perron y Harris, 2000; Boulton y Albon, 2004).

Neurogénesis de la retina en vertebrados adultos

A diferencia de los mamíferos, en vertebrados de sangre fría como son los peces y anfibios, el crecimiento continuo del ojo durante toda la vida se ve acompañado de un proceso de retinogénesis a partir de células madre neuronales, la cual tiene lugar en un área germinal circular localizada en el borde anterior de la retina periférica, denominada zona marginal ciliar (Reh y Levine, 1998; Amato et al., 2004; Hitchcock et al., 2004). Esta región constituye un reservorio de células madre y progenitoras, que persisten durante toda la vida del animal y generan de forma continua nuevas neuronas que se incorporan a los circuitos retinianos preexistentes, sustituyendo así a las células retinianas que se pierden de forma natural o tras una lesión ocular. Sin embargo, en los vertebrados homeotermos, como son las aves y mamíferos, se piensa que la histogénesis de la retina ocurre sólo durante los estados tempranos del desarrollo, cesando el crecimiento de la retina mucho antes de que el animal haya alcanzado la fase adulta (Perron y Harris, 2000; Boulton y Albon, 2004; Reh y Fischer, 2006). Así, se ha observado en aves durante las primeras semanas tras la eclisis proliferación y diferenciación de neuronas y glía en el margen anterior de la retina, en una zona
altamente reminisciente de la zona marginal ciliar de vertebrados inferiores (Fischer y Reh, 2000, Kubota et al., 2002). Esta neurogénesis parece persistir hasta la fase adulta en aves, aunque el número y la multipotencialidad de las células progenitoras retinianas se ven altamente disminuidos en comparación con peces y anfibios (Hitchcock et al., 2004; Reh y Fischer, 2006).

La presumible presencia de una región análoga a la zona marginal ciliar en mamíferos constituye actualmente un área de intensa y creciente investigación, orientada a comprender su potencial implicación como fuente de células madre que posibiliten una neurogénesis en el adulto dirigida a la sustitución de las células retinianas perdidas de forma natural durante la vida y/o como respuesta a enfermedades o daños que afectan a la retina. Dichas investigaciones han llevado a la conclusión preliminar de que no existe una región claramente comparable a la zona marginal ciliar en la retina normal de roedores, dado que dicha estructura ha ido disminuyendo progresivamente a lo largo de la evolución de los vertebrados (Amato et al., 2004, Moshiri et al., 2004), y que en fase adulta no tiene lugar adición de nuevas neuronas en la retina de mamíferos (Perron y Harris, 2000; Klassen et al., 2004a; Reh y Fischer, 2006). Así, aunque pueden visualizarse células madre y progenitoras en la retina de mamíferos en fase embrionaria o pocos días tras su nacimiento, incluida la especie humana (Walcott y Provis 2003), las cuales pueden cultivarse en el laboratorio (Klassen et al., 2004b), los intentos de identificar o aislar estas células a partir de la retina neural ya madura de mamíferos adultos han fracasado de forma repetida.

No obstante, a pesar de la ausencia de células en proliferación en la retina, en el epitelio del cuerpo ciliar de mamíferos adultos se ha detectado una población de células madre mitoticamente quiescentes que, aunque muy escasas en número, cuando se extraen de su nicho son capaces de proliferar in vitro (Ahmad et al., 2000, Tropepe et al., 2000). Así, células aisladas del cuerpo ciliar de roedores y otros mamíferos adultos, y más recientemente de humanos (Coles et al., 2004), muestran una elevada capacidad de autorrenovación cuando se cultivan en presencia de factores de crecimiento, generando de forma clonal “neuroesferas” que contienen predominantemente células que expresan nestina, un marcador molecular (filamento intermedio) de células madre neuronales, y/o los factores de transcripción “homeobox” Pax6 y Chx10, marcadores de células progenitoras retinianas. Estas células son multipotentes, pudiendo inducirse en cultivo su diferenciación en virtualmente todos los tipos de neuronas de la retina y también en células giales de Müller (Ahmad et al., 2004; Coles et al., 2004; Mayer et al., 2005). Sin embargo, se observa in situ sólo un número muy bajo de estas células alrededor de la ora serrata en mamíferos adultos (roedores y opossum), aunque su densidad aumenta tras la inyección intracocular de factores de crecimiento (Kubota et al., 2002, Ahmad et al., 2004, Moshiri y Reh, 2004, Moshiri et al., 2004, Zhao et al., 2005). Por otra parte, no se ha demostrado la existencia de neuronas en proceso de diferenciación en el ojo normal de mamíferos adultos, por lo que se ha propuesto que estas células madre se encuentran in vivo en un microambiente inhibidor de su proliferación y diferenciación (Ahmad et al., 2000, 2004; Tropepe et al., 2000; Moshiri y Reh, 2004).

Neurogénesis de la retina en monos y humanos adultos

En nuestro grupo de investigación hemos abordado la posibilidad de la existencia de neurogénesis en la retina de primates (macacos jóvenes y humanos de 45-60 años). En estos mamíferos la retina se estrecha progresivamente en su proximidad a la ora serrata, existiendo una zona de transición, o margen de la retina periférica, donde la estructura laminar de esta última aparece desorganizada y sus componentes celulares distribuidos de manera aparentemente al azar (Fischer et al., 2001; Martinez-Navarrete et al., 2008), como se muestra en la figura 1. Mediante microscopía confocal de inmunofluorescencia hemos visualizado in situ, en ojos de primates y también de vaca adultos, células que expresan nestina localizadas no sólo en la pars plana del cuerpo ciliar, sino también en el margen de la retina (fig. 2). Estas células muestran dos morfologías distintas: estrelladas con dos o tres prolongaciones sin orientación definida, o bien alargadas perpendicularly al plano de la retina y con dos prolongaciones orientadas radialmente (Cuenca et al., 2003, 2005; Martinez-Navarrete et al., 2008), asemejándose así a las morfologías neuronal y glial, respectivamente. Algunas de estas células, además de presentar nestina en su citoplasma mostraban marcaje en su núcleo para PCNA, una proteína característica de células en división. También hemos encontrado células que contienen en su núcleo los factores de transcripción “homeobox” Pax6 y Chx10 (Cuenca et al., 2006), cuya coexpresión es una característica de células progenitoras retinianas (Kubota et al., 2002; Zhao et al., 2005; Abdouh y Bernier, 2006). Todo ello constituye evidencia de la existencia en el cuerpo ciliar y margen de la retina periférica de monos y humanos adultos de células precursoras retinianas (fig. 1), algunas de las cuales exhiben capacidad proliferativa in vivo (Martinez-Navarrete et al., 2008). Estas células no se observan, sin embargo, en la retina periférica laminada ni en la retina central.

Dada la existencia de estas células, hemos explorado en segundo lugar la presencia de neuronas...
Fig. 1. Esquema de la retina periférica próxima al cuerpo ciliar y de los diferentes tipos celulares presentes en esta zona. Se representan mediante un código de color indicativo de sus correspondientes marcos moleculares los distintos tipos de células precursoras identificadas por nuestro grupo en la pars plana y la retina no laminada (margen de la retina), junto a células en proceso de diferenciación (de derecha a izquierda) en esta zona, y los distintos tipos celulares maduros presentes en la retina laminada.

Fig. 2. Células que contienen nestina, un filamento característico de células precursoras neuronales, puestas de manifiesto en el margen de la retina de mono mediante microscopía confocal de inmunofluorescencia. Escala: 40 μm.

en formación en el cuerpo ciliar y margen de la retina de monos y humanos adultos. Hemos observado en esta región numerosas células con una morfología indiferenciada que expresan marcadores específicos de los distintos tipos neuronales retinianos maduros (Cuenca et al., 2003), como son conos, bastones, células horizontales, bipolares y ganglionares (esquematizadas en la figura 1), y también hemos podido distinguir subtipos particulares de células amacrinas, como son GABAérgicas, dopaminérgicas y AII. Mediante la utilización de técnicas de microscopía confocal y electrónica de transmisión hemos puesto de manifiesto para algunos tipos celulares, especialmente fotorreceptores y neuronas bipolares, la existencia de un gradiente de maduración gradual, desde células indiferenciadas hasta neuronas completamente desarrolladas, al avanzar desde la ora serrata hacia la retina periférica laminada (Cuenca et al., 2005; Martínez-Navarrete et al., 2008) (fig. 3). Así, los conos incipientes cercanos a la ora serrata experimentan gradualmente un proceso de diferenciación morfológica a lo largo del margen de la retina, que conlleva un aumento de tamaño de sus segmentos externos (identificados por la opsina S en la figura 3A). Resultados similares se obtienen con respecto a la rodopsina en bastones incipientes próximos a la ora serrata (fig. 3B). Se concluye en base a estos y otros resultados que la morfología de los fotorreceptores residentes en el margen de la retina es muy similar a la descrita para los conos de monos y humanos en fase fetal del desarrollo (Pei y Smelser, 1968; Sears et al., 2000; Xiao y Hendrickson, 2000). Los estudios ultraestructurales han confirmado la existencia de fotorreceptores inmaduros con esbozos de segmentos externos, que al avanzar hacia la retina laminada aumentan en longitud y emergen para originar el segmento externo maduro. También observamos la formación del cilio conector de los fotorreceptores, y la maduración de las sinapsis entre éstos y sus células postsinápticas: las neuronas horizontales y bipolares (Cuenca et al., 2005, 2006; Martínez-Navarrete et al., 2008), como se ilustra en la figura 3C. Con respecto a las células bipolares, mientras cerca del cuerpo ciliar presentan cuerpos celulares redondeados y prolongaciones cortas sin una orientación definida, a lo largo del margen de la retina sus neuritas van adquiriendo una disposición polarizada, y las células su típica morfología y localización en la retina laminada (fig. 3D). Así, el desarrollo de una morfología...
neuronal madura a lo largo del margen de la retina tiene lugar en paralelo al desarrollo de una correcta orientación de los axones y dendritas, y al establecimiento de una organización sináptica adecuada en las dos capas plexiformes de la retina (Martínez-Navarrete et al., 2008).

Conclusiones

Aunque algunos autores han considerado tradicionalmente el margen de la retina de primates como un área desorganizada donde las células experimentan un proceso de degeneración (Jousen y Spitznas, 1972), no hemos observado ninguna evidencia citológica de muerte neuronal en esta región (Cuenca et al., 2006; Martínez-Navarrete et al., 2008). Al contrario, nuestros resultados apoyan fuertemente la idea de que la zona comprendida entre el cuerpo ciliar y el inicio de la retina periférica constituye una región análoga a la zona marginal ciliar de vertebrados inferiores, donde tendría lugar en monos y humanos adultos diferenciación de células madre y progenitoras en los distintos tipos celulares de la retina (fig. 1). Este proceso pensamos que recapitula en numerosos aspectos la reingeniería embrionaria. Ello representaría una diferencia importante con respecto a los roedores, donde la neurogénesis estaría limitada por factores inhibitorios endógenos y/o por la ausencia de señales de proliferación o diferenciación, permaneciendo dichas células mitoticamente quiescentes.

(Ahad et al., 2000, 2004; Tropepe et al., 2000; Mosheri y Reh, 2004; Abdouh y Bernier, 2006). La zona comprendida por el cuerpo ciliar y el margen de la retina constituiría así en primates un tercer nicho de células madre neuronales adicional a las zonas subventricular y subgranular del encéfalo. Hemos postulado asimismo que la función de este proceso sería la renovación, lenta aunque persistente, de las neuronas y circuitos retinianos que van perdiéndose durante toda la vida del individuo (Martínez-Navarrete et al., 2008). Ello abriría una vía hacia la posible terapia de enfermedades neurodegenerativas de la retina mediante la utilización de células precursoras retinianas adultas, bien tras su cultivo y posterior transplantación como tales, bien tras inducir in vitro su diferenciación en neuronas retinianas (Klassen et al., 2004a; Pinilla et al., 2007; Djojosubrotto y Arsenijevic, 2008).

Agradecimientos

Las investigaciones llevadas a cabo en el laboratorio de los autores se encuentran financiadas por los Ministerios de Educación y Ciencia (proyecto BFU2006-00957/BFI) y de Sanidad y Consumo (RETICS RD07/0062/0012), y por la Fundación Lucha contra la Ceguera (FUNDAUCIE).

Bibliografía

Reh TA, Fischer AJ. Retinal stem cells. Methods Enzymol 2006;419:52-73.

