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Abstract Wave energy flux (WEF) is assessed in the Caribbean Sea from a 60-
year (1958–2017) wave hindcast. We use a novel approach, based on neural net-
works, to identify coherent regions of similar WEF and their association with
different climate patterns. This method allows for a better evaluation of the un-
derlying dynamics behind seasonal and inter-annual WEF variability, including
the effect induced by the latitudinal migration of the Intertropical Convergence
Zone (ITCZ), and the influence of El Niño-Southern Oscillation events. Results
show clear regional differences of the WEF variability likely due to both a clear
regionalization of the WEF due to both the intensification and migration of the
ITCZ. WEF exhibits a strong semiseasonal signal in areas of the continental shelf,
with maximums in January and June, in agreement with the sea surface temper-
ature and sea level pressure variability. At larger scales, WEF shows a significant
correlation with the Oceanic Niño Index depicting positive values in the central
and western basin and negative ones at the eastern side.
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1 Introduction

The wave energy flux (WEF) provides information on the magnitude and temporal
variations of the energy transferred from the atmosphere to the ocean over selected
periods of time (e.g. months, seasons or even years) [Dodet et al., 2010, Ardhuin
and Orfila, 2018]. It also extracts key details on sea surface waves that may not
be detected from single parameters, such as significant wave height (Hs) or wave
period (Tm-01), becoming a more suitable indicator to capture wave climate vari-
ations [Reguero et al., 2019]. Long time series of WEF can be used to determine
potential impacts on coastal zones, such as variations in the planform of beaches
allowing to assess eventual impacts of future wave variations on coastal areas
[Fiedler et al., 2015, Elshinnawy et al., 2017]. Additionally, ocean waves is one
of the renewable energy resources that has attracted more attention in the last
years due to its potential capability of providing green and sustainable electric-
ity offering several advantages with respect to other energy resources [Lin et al.,
2019, Arinaga and Cheung, 2012, Liang et al., 2017]. Therefore a precise charac-
terization of the spatial and temporal variability of WEF is crucial to evaluate the
local and regional impact of the evolving wave climate in the context of the ongo-
ing global warming [Wiggins et al., 2019, Elshinnawy et al., 2017, Hanson et al.,
2003]. However, due to the scarcity of wave measurements around the world, to get
the spatio temporal distribution of WEF we need to use validated wave hindcasts
provided by numerical models [Mentaschi et al., 2017, Mirzaei et al., 2015, Waters
et al., 2009, Iglesias et al., 2009].

Previous studies have analyzed inter-annual and long-term WEF variations
associated with climate indices (e.g. El Niño-Southern Oscillation (ENSO), Pacific
Decadal Oscillation (PDO), Tropical North Atlantic index (TNA)) and climate
change projections, respectively. On a global scale, [Reguero et al., 2019] found
from a 60-year wave reanalysis that wave power has increased at a rate of 0.4% per
year at global scale. These results indicate that the anthropogenic global warming
is strengthening synoptic winds in some regions, thus favoring the generation of
larger surface waves and affecting the global wave climate. [Reguero et al., 2015]
characterized the mean wave power globally as well as its seasonal variability
with a global wave reanalysis performed with WaveWatch3 model. Their results
showed that the effect of the inter-annual variability is more prominent over the
Northern Hemisphere, where the contribution of the seasonal variability is larger.
[Wu et al., 2017] used ERA-Interim wave reanalysis data for the period 1997–
2010 to evaluate WEF trends at global scale, as well as of time series of single
parameters such as the significant wave height (Hs), mean wave period (Tm−01),
and wave direction (θm). Among the studied parameters, they found a significant
increase in the magnitude of WEF, Hs and Tm−01 in southern mid-latitudes and
in the western part of the North Atlantic and of the North Pacific. In contrast,
they found a significant decrease of the same parameters in the eastern part of the
tropical North Pacific [Wu et al., 2017]. [Mentaschi et al., 2017] analyzed global
trends of extreme WEF along global coastlines during the 21st century under a
high emission scenario (RCP 8.5). Results for this pessimistic projection would
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imply an increase of WEF up to 30% for most of the southern mid-latitudes, while
in the Northern Hemisphere many coastal areas displayed negative trends. They
also showed that significant long-term trends in the extreme WEF are related with
the intensification of inter-annual signals such as ENSO and the North Atlantic
Oscillation (NAO). On regional and local scales, several dedicated model-based
studies have been developed to evaluate the wave energy resource, either the spatial
distribution or the temporal variability [Liberti et al., 2013, Ponce de León et al.,
2016, Liang et al., 2017, Canals Silander and Garćıa Moreno, 2019, Cuttler et al.,
2020, Guillou et al., 2020], which has helped to improve the design and deployment
of wave energy converters in the study areas.

Previous studies have already characterized the wave power in the Caribbean
sea. [Ortega et al., 2013] identified the best sites for a wave farm near the small
island of Isla Fuerte by means of numerical simulations. [Osorio et al., 2015],
assessed the wave power potential in the Colombian Caribbean showing that the
highest values of mean wave power are of 5–7 kW/m from December to April. This
potential is relatively small compared to other places around the world, where
powers of about 40 kW/m and above are considered profitable to implement wave
farms. [Appendini et al., 2015] studied the wave energy potential in the whole
Caribbean Sea from a 30-year wave reanalysis detecting that below the influence
area of the Caribbean Low Level Jet (CLLJ), in the central Caribbean, the amount
of wave power presents values between 8 – 14 kW/m. They also mentioned the
existence of large spatial wave power gradients, which need to be considered for
the installation of energy extraction devices. [Guillou, 2020, Guillou et al., 2020]
recently analyzed the wave energy and wave power resources for the whole North
Atlantic, including the Caribbean Sea, using wave buoys at the open sea and a 30-
year reanalysis, respectively. Several metrics were compared to quantify the useful
wave energy, as well as its seasonal variability. The maximum WEF was found
during late fall (December and January) and late spring (June and July) with
wave power ranges in the Caribbean Sea within the range of previous studies (5
– 14 kW/m). Recently, [Orejarena-Rondón et al., 2022] used the same simulation
we use in this work to analyze WEF trends in the Caribbean Sea, showing a
decrease between 1958–2017 with an annual rate that oscillates between 0.01%
and 0.2%, depending on the region. Here we go one step further to analyze the
spatial and temporal variability of WEF in the Caribbean Sea from 1958 to 2017
using a novel approach with which coherent regions that show similar WEF are
distinguished according to their associated wind pattern. By applying this method
we get new insights on the physical processes that drive seasonal and inter-annual
WEF changes, including the impact of ITCZ migration and ENSO events.

The article is structured as follows: the main Caribbean Sea features are de-
scribed in section 2. Data set and methods are outlined in section 3. Section 4
shows the main results including model validation, regional characterization of
WEF and surface wind, as well as their temporal variability at seasonal and inter-
annual scales. Finally, in section 5 we discuss the main results in the context of
the current literature and the main conclusions are summarized.
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2 Study area

The Caribbean Sea is located between latitudes 8.1◦N – 13.6◦N and longitudes
84.52

◦

W–59.7◦ W, being bordered by the Lesser Antilles at the east, the Greater
Antilles at the north, the eastern portion of Central America at the west and the
northern coasts of South America at the south (Figure 1). Wave dynamics is mainly
controlled by the westward surface trade winds, which show a large seasonality,
and a low-level wind core with higher speeds that gives origin to the Caribbean
Low Level Jet (CLLJ). The CLLJ has its kernel at a height of around 925 hPa,
although can reach heights over 800 hPa and is located in the center of the basin
[Amador, 1998, Poveda and Mesa, 1999, Poveda et al., 2006, Chunzai, 2007, Orfila
et al., 2021]. Wind seasonality is associated to the meridional migration of the
ITCZ, which is also responsible for the path and penetration of transient features
as cold fronts and tropical storms [Poveda et al., 2006, Poveda, 2004, Andrade and
Barton, 2013]. The meridional oscillation of the ITCZ responds to the seasonal
insolation cycle. During the austral summer the ITCZ is located between Colombia
and Ecuador, whereas it shifts northward in the boreal summer. When the ITCZ is
located between 0–5◦S, the northern trade winds dominate in these regions with an
average speed that varies between 8 and 15 m/s [Andrade, 1993]. This seasonality
is modulated by regional sea surface temperature and sea level gradients which
add a semi-seasonal component [Chunzai, 2007].

Regarding atmospheric instability conditions, there is little rainfall from De-
cember to April over the Colombian basin and in the west of the Antilles. Con-
versely, in the Caribbean coasts surrounding the Gulf of Darien (which includes
coasts of Colombia, Panamá and Costa Rica), it rains throughout almost the whole
year [Andrade et al., 2013]. By contrast, when the ITCZ is located at a latitude be-
tween 10–12◦N, from August to November, the weaker southern trade winds (with
a mean speed ∼4 m/s) reach the Colombian basin, contributing to the formation
and even strengthening of tropical convective storms that may reach hurricane
category over the western Caribbean Sea [Andrade et al., 2013]. As a result, the
precipitation caused by the displacement of the ITCZ only affects the Colombian
basin below 10◦N. Consequently, trade winds (and hence the CLLJ) permanently
remain above La Guajira peninsula. The rest of the year there is a transition pe-
riod between the aforementioned seasons, in which trade winds weaken and some
rainfall comes over the Colombia basin from April to June), while from June to
August trade winds strengthen and rainfall decreases. The latter transition time is
locally known as “Veranillo de San Juan” from its name in Spanish [Poveda et al.,
2006, Andrade et al., 2013].

Winds and rainfall are sensitive to the arrival of oscillations such as easterly
waves, with periods of 7 days, and cold fronts, coming from North America and
crossing the Caribbean towards the East in about 10 to 14 days generating pre-
cipitation and rising wind stress on its way [Andrade et al., 2013, Alvarez-León
et al., 1995]. Large-scale signals such as the Madden-Julian Oscillation have longer
periods (40 to 50 days) and have been detected in sea surface temperature and in
rainfall records in Santa Marta, Colombia, at a latitude above 11◦N [Rivera-Páez
and Molares, 2003, Andrade et al., 2013]. Moreover, there is also a strong inter-
annual variability associated with ENSO that affects both Atlantic and Caribbean
coastal areas. [Huang et al., 2002, Enfield and Mayer, 1997] determined that at the
end of the year, when El Niño events tend to become stronger, trade winds weaken
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over the eastern Caribbean Sea at a latitude between 10◦N and 20◦N, extending
until Africa. In contrast, in the western part of the Caribbean Sea trade winds
strengthen during El Niño events.

Fig. 1 SWAN domain used for the 60-year wave simulation in the Caribbean basin. Red
triangles indicate the location of buoys used for the validation: Buoy SAI DIMAR, NOAA
buoy 42058, and NOAA buoy 42059, ordered from west to east.

3 Data and Methods

3.1 Wind data

Surface wind fields used to force the The Simulating WAves Nearshore (SWAN)
model in the study area correspond to the JRA-55 simulation performed by the
Japan Meteorological Agency. This data was the first complete reanalysis in cover-
ing the last half century (1958–2020), and the first one that applied a four dimen-
sional variational analysis [Kobayashi et al., 2015]. This set of global atmospheric
data is suitable to study multidecadal variability and the relation of wave climate
with climate change [Japan Meteorological Agency, 2013]. Output fields provide
the 10 m height wind speed (uw, vw) on a mesh of 23 × 43 grid points with a
spatial resolution of 0.5625◦ × 0.5616◦. The data cover the whole study area from
84.3746◦W, 7.5819◦N (lower left corner) to 60.1871◦W, 19.9371◦N (upper right
corner) from 1958–2017 (both included) with a 3-hourly temporal resolution.

3.2 SWAN Model

The SWAN model solves the wave action balance equation for the propagation of
the wave spectrum, which allows for realistic estimations of wave parameters in
the open ocean and in coastal areas [Booij et al., 1999]. The SWAN domain covers
an area of 2600 km × 1175 km distributed into 229 × 101 grid cells (Figure 1). The
bathymetry of the Caribbean Sea was obtained from Colombian Hydrographic Ser-
vice nautical charts as well as from the general ocean bathymetric chart GEBCO.
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Waves were simulated in non-stationary mode using the JRA-55 wind fields. Wind-
induced wave growth was configured as exponential following the formulation of
[Komen et al., 1984], while nonlinear deep water interactions were parameterized
following the Webb-Resio-Tracy method. Other relevant processes, such as wave
breaking, whitecapping energy dissipation, and bottom friction were included in
the simulations. The integration time step was set as 30 minutes and Hs, Tm−01,
and θm output data were recorded every 3 hours in each domain grid cell. Hs and
Tm−01 were validated through a comparison with in situ wave data measured by
the NOAA-42058 buoy, which is located in the central Caribbean Sea (Figure2).
The wave reanalysis we use in this work is published at [Orejarena-Rondón et al.,
2021a].

3.3 Wave Energy Flux (WEF) calculation

Departing from the 3-hourly SWAN model output fields (Hs, Tm−01, θm), the
monthly mean WEF was determined for the period 1958 – 2017. The WEF was
computed as:

−−→
FE =

1

64π
ρg2Tm−01Hs

2

−→
k

|
−→
k |

(1)

where ρ is the seawater density in kg/m3, g is the gravity acceleration, Tm−01 is

the mean period, Hs is the significant wave height and
−→
k is the wavenumber vector.

Departing from these components, we carried out a spatial and temporal charac-
terization of the mean WEF in the Caribbean basin through a Self-Organizing Map
analysis. Similarly, we have analyzed the inter-annual variability of the monthly
mean WEF over time through a correlation analysis with ENSO indices.

3.4 Self-Organizing Map (SOM)

Self-Organizing Map is a statistical tool used to compress the information con-
tained in a large amount of data into a single set of maps [Kohonen, 1982, Teuvo,
1997], reducing the high dimensional feature space of input data to a lower dimen-
sional network of units called neurons. This unsupervised learning neural network
is able to extract patterns from large data set mimicking the topological distribu-
tion of the neurons response in the brain. Learning processes are carried out by
an interactive presentation of the input data to a preselected neuronal network,
which is modified during the iterative process. Each unit is represented by a weight
vector with a number of components equal to the dimension of the input data.
During each iteration, the neuron whose weight vector is closest to the presented
sample input data vector, called Best-Maching Unit (BMU), is updated together
with its topological neighbors toward the input sample (see [Hernández-Carrasco
and Orfila, 2018] for a more detailed description of the SOM process). When the
probability density function of input data is approximated by SOM, and each unit
is associated with that reference pattern that has a number of components equal
to the number of variables in the data set, the training process finishes. Thus, this
process can be interpreted as a generalization of similar observations.



Wave energy flux variability in the Caribbean sea 7

In this study, a joint SOM analysis is applied over the monthly mean fields of
both WEF and surface wind in the area covered by the 60-year wave reanalysis.
In the case of the spatial analysis, since each iteration has associated a time and
a location of the sample, we can obtain the evolution of a particular pattern
computing the BMU for each sample. In the temporal domain the analysis of the
neurons provide temporal patterns and the BMU is used to localize in space the
temporal variability, providing regions of similar co-variability patterns.

3.5 Correlation and Cross Wavelet Transform Analysis

To explore the link between monthly mean WEF and ENSO at inter-annual scales
we have proceeded as follows. First, we performed a direct correlation analysis be-
tween the Oceanic Niño Index (ONI) and the monthly mean WEF time series at
every grid cell within the study area (Figure 12). Second, the cross wavelet trans-
form (XWT) and wavelet coherence (WTC) analysis is applied between the ONI
index and the time series associated to each of the 9 regions determined by SOM.
The XWT between the temporal signals of the mean WEF and ONI reveal those
regions where energy variance is more correlated giving also information about
their phase relationship. The XWT of any two time series xn and yn is defined
as WXY (s) = WX(s)WY ∗(s), where ∗ denotes the complex conjugate. Further-
more, the cross wavelet power is defined as |WXY (s)| and the complex argument
as arg(WXY (s)). The latter represents the relative local phase between xn and yn,
which we will depict by arrows. The WTC spectrum highlights how large is the
covariance of these signals, regardless of the high power display [Grinsted et al.,
2004, Nalley et al., 2016, Restrepo et al., 2019]. The degree of coherence of XWT
is given by the following coefficient:

R2

n(s) =
|S(s−1WXY

n (s)|2

S(s−1|WX
n (s)|2) · S(s−1|WY

n (s)|2)
(2)

where S is a smoothing operator with values ranging between 0 (no correlation)
and 1 (perfect correlation). The relationship between WEF and ONI is identified
by the phase angle observed in the spectrum. An in phase relationship is indicated
by the arrows pointing to the right. On the other hand, an out of phase relationship
is indicated by arrows pointing to the left. Arrows that do not point straight to
the right or to the left indicate a lagged correlation relationship.

4 Results

4.1 Wave model validation

Validation of SWAN simulation is performed with the NOAA buoy 42058, which
is located in the central Caribbean Sea, using both Hs and Tm−01 (see Figure
1). Conversely, due to the unavailability of other parameters, only modeled Hs

can be validated with those buoys located near of San Andres Island: buoy SAI
Dimar and NOAA buoy 42059, which are located at the west and east of the
basin, respectively (see Figure 1). In the case of the buoy NOAA-42058, a good
fit between in-situ and model data was obtained. For Hs, bias, correlation and
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Willmot coefficients values of 0.064, 0.83, and 0.9 were obtained respectively, while
for Tm−01, bias, correlation, and Willmot coefficients have values of 0.089, 0.74
and 0.77, respectively (Figure 2). For the other two buoys, a good fit was found
between modeled Hs and in-situ Hs estimates. Correlation coefficients for buoy
NOAA 42059 and buoy SAI Dimar were 0.7 and 0.91, respectively (Figure 3).
Willmot coefficient values were 0.822 and 0.974 for buoy NOAA 42059 and buoy
SAI Dimar, respectively, while bias coefficients for buoy NOAA 42059 and buoy
SAI Dimar of 0.03 and 0.0034, respectively.

Fig. 2 Validation of: (A) significant wave height,Hs, and (B) wave period (Tm−01) in the
central Caribbean Sea between SWAN simulation and observations provided by buoy 42058
(Figure 1). Color scale of dispersion diagrams corresponds to associated density of data used
for validation. The linear regression is represented by a black dashed line.

4.2 Characterization of mean WEF and surface wind in the Caribbean Sea

Monthly mean and standard deviation of WEF and surface wind are shown in
Figure (4 A - B and C - D, respectively). The large mean wind speed is reflected
in the intensification of the Caribbean Low Level Jet (CLLJ) over approximately
68◦W to 80◦W and between 12◦N and 16◦N, with average speeds between 8 and
10 m/s. Wave response to this forcing is shown in Figure 4A, where WEF starts to
rise dramatically at about 70◦W and then extends toward the west of the basin.
As the WEF is related with the wave height and the period, when the WEF
reaches the highest values (1400 W/m, between 75◦W and 78◦W), wind waves are
completely developed. The standard deviation of both mean wave energy flux and
wind fields in the study area are shown in Figures 4B and D. The largest deviation
for the mean WEF is obtained between 75◦W - 80◦W and 12◦N - 16◦N, whilst for
wind speed this is obtained between 73◦W - 80◦ W and 10◦N - 13◦N.

4.3 Spatial patterns of monthly mean WEF over the Caribbean Sea from SOM
Analysis

As mentioned above, spatial patterns are obtained by applying a joint SOM analy-
sis between the monthly mean WEF and the monthly mean horizontal wind fields.
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Fig. 3 Validation of Hs in the west and east of Caribbean basin (see buoys SAI DIMAR
and NOAA 42059 in Figure 1, respectively). Color scale of dispersion diagrams corresponds
to associated data density used in the validation. The linear regression is depicted by a black
dashed line.

Fig. 4 (A)-(C) Mean wave energy flux (WEF) and wind field used in the simulations, respec-
tively. (B)-(D) Standard deviation of both mean WEF and wind fields. Colormaps represent
the magnitude of WEF (in W/m, top panels) and wind speed (in m/s, bottom panels), respec-
tively; and the arrows their direction.

The analysis is restricted to the Caribbean Sea and covers the period between 1958
and 2017. Figure 5 (top panels) and Figure 6 (top panels), show the coupled pat-
terns obtained from the 3 × 3 SOM neurons of WEF and surface winds with their
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corresponding probability of occurrence, which indicates how often these specific
patterns occur over the 60 yr. In Figure 5 (bottom panels) and Figure 6 (bottom
panels) the corresponding anomalies are shown for every neuron. Moreover, Fig-
ure 7 shows the monthly frequency occurrence of patterns determined by the best
matching unit (BMU). The BMU is obtained comparing all patterns (1–9) with
each sample of the mean WEF to calculate the frequency of occurrence and select
the pattern more similar to the sample.

All patterns shown in the top panel of Figures 5 and 6 are restricted to a com-
mon area in the western Caribbean Sea strongly influenced by the CLLJ. Patterns
with the largest probability of occurrence (P1, P6 and P7), are associated with
the meridional migration of the ITCZ throughout the year (Figure 7). P1, with
an occurrence of 22.6%, is associated with the dry season (December to April, see
Figure 7), with the highest probability occurring from January to March (> 35%).
P7, with an occurrence of 14.6%, is associated with the transition season. This
pattern is presented with a low frequency of occurrence during May and August,
and with high frequency during June and July (> 35%), when the “Veranillo de
San Juan” occurs. P6, with an occurrence of 10.4%, is associated with the wet
season (from August to November). The highest frequency of occurrence of this
pattern is presented during the months of September and October (> 35%). This
pattern also appears in May, a month that corresponds to the transition period,
but with lower frequency of occurrence (15%).

Although with less probability of occurrence, other patterns (P2, P3, P4, P5,
P8 and P9) also take place in any of the three climatic seasons. For instance, P2
and P4, with 6.7% and 4.4% probability of occurrence, have a low probability of
occurrence during the dry season (March, April, May and December). P5 and P8,
with 2.6% and 7.9% probability of occurrence each one, are associated with the
transition season. P9, with 10.4% probability of occurrence, is associated with the
wet season (low frequency of occurrence during June and October and intermediate
probability during May, August and September). P3, with 13.3% probability of
occurrence, is presented randomly throughout the year (see Figure 7): the highest
probability is presented in November (30%), the intermediate one in April and
December (20%), and low one in February and March (10%).

In order to assess the spatial and temporal changes of both WEF and surface
wind fields we have computed the standard deviation of every SOM pattern (Figure
5 for the WEF and Figure 6 for the wind). The patterns with the largest variability
are P1, P6 and P9 for WEF and P1 and P9 for wind, being in all cases restricted
to the western Caribbean basin. As observed, the increase in the magnitude of the
WEF and wind speed, are the result of both the displacement of the ITCZ and
the intensification of trade winds.

4.4 Temporal patterns of WEF over the Caribbean Sea from SOM analysis

To better explore the dominant direction of WEF, we have applied a temporal
SOM analysis over zonal (Fx) and meridional (Fy) components monthly mean
WEF. As we use 3 × 3 neurons again, this analysis also provides 9 zones of co-
variability in the Caribbean Sea (Figure 8). Figure 9 shows time series of Fx and
Fy components for every region in top and bottom panels, respectively. The sign
(+/-) in the abscissas indicates the direction of each components: a negative value
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Fig. 5 Spatial patterns of mean wave energy flux (WEF) given by a 3 × 3 SOM analysis with
their direction in the Caribbean basin (top panel). Standard deviation for the above mentioned
spatial patterns (bottom panel). The percentage in each pattern reflects its total occurrence
probability in %.

indicates a direction towards the west in the zonal component and towards the
south in the meridional component, whereas a positive value indicates a direction
towards the east in the zonal component and towards the north in the meridional
one. Most of time series conserve the same sign, which allows to clearly identify
the dominant direction.

As seen, the zonal component is generally two times larger than the meridional
one. According to the magnitude of WEF we can distinguish three groups of
zones: the largest values (in absolute magnitude) are observed in zones 7, 4, 1 (in
decreasing order), located in the center and western areas of the Caribbean Basin,
from 70◦W, extending toward the south and to the west of the basin (Figure8).
Time series of WEF associated with zone 7 (Tp7 in top and bottom panels) reach
values between -1300 and -400 (W/m) for Fx, and between -220 and 0 (W/m) for
Fy (Figure9), which indicates that WEF is predominantly oriented WSW-W over
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Fig. 6 Spatial patterns of wind fields obtained from the SOM analysis given by a 3 × 3
with their respective direction, in the Caribbean basin (top panel). Standard deviation for the
computed above mentioned spatial patterns (bottom panel). The number at the bottom-right
in each pattern corresponds with total occurrence probability in %.

the 60 years. Similar results are found in zone 4, but with a stronger meridional
component. In contrast, zone 1 shows weaker components and slightly turned to
the south (oriented SW-WSW).

Moderate values of WEF are observed in zones 8, 5 and 2. These regions cover
the center Caribbean basin between 64◦W and 70◦W, and extend toward the zone
7 (Figure 8). In zone 8, time series of u and v components take values between
-1000 and -350 (W/m), and between -60 and 100 (W/m), respectively (Figure9).
It indicates that WEF is predominantly oriented toward the W. Similarly, compo-
nents in zone 5 are also mainly oriented toward the W, with values between -850
and -300 (W/m) and between -100 and 40 (W/m) (Figure9). Components of zone
2 show weaker zonal values, between -700 and -250 (W/m), and a stronger merid-
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Fig. 7 Seasonal occurrence probability of each spatial pattern of mean WEF and wind hori-
zontal fields shown in Figure 5 and Figure 6.

ional component, between -240 and -40 (W/m), which is reflected in a slightly
turned to the South dominant orientation (WSW).

Finally, the lowest values of WEF are observed in zones 9, 6 and 3, which
are located at latitudes above the zone 8, in the East of the basin, and off the
coastal zones of Colombia, Venezuela and Nicaragua (Figure 8). Time series of
Fx and Fy in zone 9 show values between -650 and -250 (W/m) and between 20
and 140 (W/m), respectively (Figure 9). The latter depicts a predominant WNW-
W orientation. Similarly, time series of zone 6, with values between -500 and -200
(W/m) and between -40 and 60 (W/m) for u and v, respectively (Figure9), show a
dominant W-WNW orientation. As occurred in zones 5 and 4, components are also
slightly turned southward in zone 3, with values between -400 and -150 (W/m) and
between -80 and 0 (W/m) for u and v, respectively (Figure9), with a predominant
W-WSW orientation.

4.5 Analysis of WEF direction at seasonal scale

Departing from time series of Figure 9 we study the direction of mean WEF at a
seasonal scale for the 9 zones depicted in Figure 8. To obtain the annual cycle we
compute the 60-year monthly mean for each zone and component (Figure 10).

Results illustrate a semi-seasonal signal in the zonal component of all regions
characterized by two peaks. These peaks take place in January and June (see the
most negative values), while the minimum values (in magnitude) are reached in
April and September. These relative extremes are associated to the latitudinal
migration of the ITCZ, which affects the magnitude of trade winds. Regarding the
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Fig. 8 Regions given by the temporal SOM analysis. SOM was applied with 3 × 3 neurons
over the monthly mean WEF. We refer to these patterns in Figure and Figure 10.

Fig. 9 Temporal patterns provided by a 3 × 3 SOM time domain analysis computed over the
monthly mean WEF for zonal (Fx) and meridional (Fy) components (top and bottom panels,
respectively). Names on the top-left side of every panel: Tp1, Tp2, ..., Tp9 refer to patterns
shown in Figure 8. µ and σ are the mean and the standard deviation of every time series,
respectively. Unit in W/m.
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meridional component we find a mixed behavior: Zones 1, 2 and 4 also show two
peaks (see Figure 10, bottom panel), while in northern regions such as 6, 8 and 9
there is only one peak, which takes place in May.

Figure 11 summarizes previous results showing the resultant 60-year monthly
mean direction of WEF for every pattern shown in Fig. 8. As seen, the largest WEF
(¿1000 W/m) comes from east and east-northeast and correspond to patterns P7
and P4. Other modes such as P2, P3 and P9 represent weaker configurations (100-
500 W/m), although waves keep coming from east-northeast or east-southeast,
thus depicting small fluctuations in the direction throughout the year. This small
variation in the direction is expected from dominant trade winds.

Fig. 10 60-year monthly mean WEF zonal (top panel) and meridional (bottom panel) com-
ponents. Units in (W/m).

Figure 11 summarizes previous results showing the WEF roses at each region.
The direction of the WEF ranges between the SW (P1, P2, P4 and P7) and NW
(P8 and P9). The largest WEF is found in the areas corresponding to P1, P4 and
P7.

4.6 Relationship between ENSO and the inter-annual variability of WEF

To evaluate the influence of ENSO on the inter-annual variability of WEF we
have performed a correlation analysis between both variables. To this end, we
use monthly time series of ONI and monthly mean WEF spanning from 1958 to
2017 (both included). Results show relatively large simultaneous correlations (of
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Fig. 11 Monthly mean WEF roses for the amplitudes shown in Figure 9, which correspond
to the 9 zones displayed in Figure 8. Units in W/m.

about r = 0.4) between the mean WEF and the ONI off the Caribbean coasts of
Colombia and in the central Caribbean Sea, at latitudes between 11◦N and 17◦N
and longitudes between 70◦W and 77◦W (Figure 12). Lower positive correlations
(r∈[0.1, 0.2]) are found at latitudes between 10◦N and 17◦N, and at longitudes
between 77◦W and 85◦W. Conversely, negative correlations (r∈[-0.3, -0.1]) are
observed off Venezuela coasts, in the southeastern Caribbean basin (Figure 12).

Next, we have computed the wavelet coherence (WTC) for all zones provided
by the temporal SOM decomposition. Results shown that ENSO is correlated
and coherent with the mean WEF over a long range of time scales and frequencies
(Figure 13). The spectrum reveals a strong co-variability between ENSO and WEF
in all regions for periods ranging from 24 to 32 months, and from 32 to 64 months.
The longest period with significant correlations is 74 months (≥ 6 years). The
relative phase indicates that ENSO leads WEF by 45◦ at periods between 32 and
64 months, and by 90◦ for periods between 64 and 72 months in all regions (see
arrows in Figure 13 pointing downward). For example, for periods between 32
and 64 months WTC revealed a lag (ENSO leads) during 1993 and 1999 in all
zones (see the large coherence during El Niño 1998). Moreover, there is a longer
lag (ENSO leads) during 2001 and 2011 for regions 4–9. The WTC also reveals
significant coherences between ENSO and mean WEF at a period between 24
and 40 months, as well as an increase in the coherence at a period between 24
and 92 months at the end of the two series, mainly in regions 1, 4 and 7 (Figure
13A-C, respectively). The coherence between 24 and 40 months is initially in-
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phase for years 1964 and 1967, lagged (ENSO leads) between 1972 and 1974, and
almost in-phase between years 1978 and 1983. Regarding the periods between 24
and 92 months, the coherence is lagged (ENSO leads) from 1993 to 2017. The
larger positive correlation between WEF and ONI during El Niño events (either
during Canonical or Modoki events, although is larger during Modoki) is likely
caused by the strengthening of the CLLJ, especially in the Colombian basin [Wang,
2007, Garćıa-Mart́ınez and Bollasina, 2020].

Fig. 12 Map of spatial correlation between monthly mean WEF and ONI for the study area.
White color indicates a non statistically significant correlation. Red (blue) color indicate a
positive (negative) correlation.

5 Discussion

Departing from a 60-year wave simulation we have analyzed the spatial and tem-
poral variability of the mean wave energy flux (WEF). First, we have validated
the simulated significant wave height (Hs) and mean wave period (Tm−01), against
in-situ data from buoy 42058 of NOAA (Figure 2). Correlation, Weibull and Bias
coefficients shown a good agreement between modeled and observed data. The
database here used contributes to reduce the lack of available information on
wave parameters in the Caribbean Sea [Orejarena-Rondón et al., 2021a]. Indeed
this simulation is the longest in comparison to other wave reanalysis available
in the Caribbean Sea [Arias et al., 2009, Dagua et al., 2013, Appendini et al.,
2015, Osorio et al., 2016], and has been employed for marine energy analysis
[Orejarena-Rondón et al., 2022], but can also we used for studies of coastal vul-
nerability, to analyze climate variability, or to study open sea extreme wave con-
ditions for coastal and offshore engineering, among other. Data is freely accessi-
ble in the repository https://nimbus.imedea.uib-csic.es/s/JEaPEeeQNLPFJ3S

[Orejarena-Rondón et al., 2021b].
By applying a spatial SOM analysis over monthly mean WEF data we have

regionalized WEF variability in the Caribbean Sea. Thus, wave information was
classified into 9 patterns that collect the complex behavior of WEF (magnitude

https://nimbus.imedea.uib-csic.es/s/JEaPEeeQNLPFJ3S
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Fig. 13 Wavelet coherence (WTC) between monthly ONI and monthly mean WEF for all
patterns provided by the temporal SOM analysis (Figure 8): (A) zone 1, (B) zone 2, (c) zone 3,
(D) zone 4, (E) zone 5, (F) zone 6, (G) zone 7, (H) zone 8, and (I) zone 9. Arrows determine the
phase between both series. Arrows pointing to the right represent positive correlation (in-phase
signals). Arrows pointing to the left represent anti-correlation (anti-phase signals). Contours
depict the wavelet squared coherence significant at 95%.

and direction). A similar analysis was also performed for surface horizontal wind.
Results indicate that the behavior of mean WEF is strongly modulated by the
seasonal variations of wind, which in turn changes with the latitudinal migration
of the Inter Tropical Convergence Zone (ITCZ) over the Caribbean basin [Andrade,
1993, Andrade and Barton, 2013, Poveda et al., 2006]. The patterns (Pi) with more
probability of occurrence are: P1 with 22.64% (dry season), the P6 with 17.36%
(wet season) and the P7 with 14.58% (transition season), all of them associated
with the growth in wave height and the change in wave period of waves as they
move westward, reaching its maximum for P1 off the Colombian coasts. Other
patterns are less frequent and distribute throughout the seasons: P4 and P2 occur
during the dry season; P3 during the wet season (November); P5 and P8 occur in
the transition season and at the beginning of the wet season. Finally, P9 occurs
during both transition and wet seasons.

SOM analysis was also applied to surface winds used to force the model. Results
are consistent with the 9 patterns obtained in the analysis of WEF (Figures 5 and
6 top panel). In this case, we observed the influence of the Caribbean Low Level
Jet more toward the east between longitudes 68◦W - 78◦W and latitudes 11◦N
- 18◦N, which differ from the influence zone of WEF (72◦W - 83◦W, and 10◦N
- 16◦N). A plausible explanation is the large fetch in the Caribbean Sea, which
allows wind waves some space to growth until they reach their most energetic state
(Figures 5 and 6, top panels).
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After that, we performed a temporal SOM analysis over the zonal and merid-
ional component of WEF in the Caribbean Sea. As a result, we identified 9 zones
of co-variability where WEF has different magnitudes and directions (Figures 7
and 8). Overall the zonal component is more energetic, due to the dominant trade
winds. In particular, the most energetic zones are 7, 4, 1 and 8 (Figure 9 in the
top panel). Regarding the meridional component, the most energetic zones are the
1, 4, 7 and 2. These results illustrate why the resultant direction is sometimes to
the west (P1).

On the other hand, departing from above time series of WEF we have com-
puted the seasonal cycle by calculating the 60-year monthly mean of zonal and
meridional components, respectively. As a result, we get the seasonal cycle for each
component and every region. Figure 10 illustrates the influence of ITCZ latitudi-
nal displacements. Interestingly, the zonal component depicts a seasonal cycle with
two peaks in all regions. However, the meridional component has one peak in the
three regions located more to the north in the Caribbean Sea. The more energetic
is the region the more clearly defined are the two peaks since the Caribbean Low-
Level Jet, whose semi-annual cycle has been reported in previous works [Chunzai,
2007, Orfila et al., 2021], has a stronger influence. Unsurprisingly, the two peaks
are more visible in the meridional component in those zones below 12◦N (zones
1, 4 and 2). This is consistent with the description by [Andrade, 1993, Andrade
and Barton, 2013, Poveda et al., 2006], who described that northernmost position
of ITCZ is located between 10◦N - 12◦N. Above of this latitude the direction of
WEF differs, as shown in Figure 11 for zones 6, 8 and 9.

Next, we have explored the relationship between ENSO and WEF at inter-
annual scales. A correlation analysis show a strong positive correlation in the
central part of the basin (0.4), lower but still positive in the Gulf of Darien (0.1–
0.2), and negative off Venezuela (-0.3 to -0.1, Figure 12). This behavior is consistent
with the findings of [Enfield and Mayer, 1997, Huang et al., 2002], who determined
that when the Pacific warm anomalies during an ENSO event reach their maximum
at the end of the year, trade winds weaken over the eastern Caribbean Sea at a
latitude between 10◦N and 20◦N, and extend until Africa, while in the western
Caribbean Sea trade winds strengthen.

Finally, to determine the periods and lag times of common variability between
ENSO and WEF we compute the Wavelet Coherence (WTC). Results suggest
the existence of a statistical between changes in ONI and WEF in different time
periods, thus indicating that the monthly mean WEF is sensitive to changes in
ENSO. All regions were correlated with the ONI for periods between 24 and 40
months during years 1964–1967, 1972–1974 and 1978–1983, characterized by the
occurrence of large warm events in the eastern Pacific. This correlation occurs
with the same phase in all periods, being larger between zones 4–9 (see Figure 13).
Similarly, a strong correlation during years 1993–2017 is observed in all regions for
a period that spans from 24 to 92 months, especially in zones 1, 4 and 7.
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