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A B S T R A C T

Existing research for the assistance of visually impaired people mainly focus on solving a single task (such
as reading a text or detecting an obstacle), hence forcing the user to switch applications to perform other
actions. This paper proposes an interactive system for mobile devices controlled by hand gestures that allow
the user to control the device and use several assistance tools by making simple static and dynamic hand
gestures (e.g., pointing a finger at an object will show a description of it). The system is based on a multi-head
neural network, which initially detects and classifies the gestures, and subsequently, depending on the gesture
detected, performs a second stage that carries out the corresponding action. This architecture optimizes the
resources required to perform different tasks, it takes advantage of the information obtained from an initial
backbone to perform different processes in a second stage. To train and evaluate the system, a dataset with
about 40k images was manually compiled and labeled including different types of hand gestures, backgrounds
(indoors and outdoors), lighting conditions, etc. This dataset contains synthetic gestures (whose objective is
to pre-train the system to improve the results) and real images captured using different mobile phones. The
comparison made with nearly 50 state-of-the-art methods shows competitive results as regards the different
actions performed by the system, such as the accuracy of classification and localization of gestures, or the
generation of descriptions for objects and scenes.
. Introduction

Gestures are an important part of our communication. They are a
orm of non-verbal exchange of information that have aroused great
nterest as regards the design of Human–Computer Interaction (HCI)
ystems, as they allow users to express themselves naturally and in-
uitively in different contexts (Mitra and Acharya, 2007). In some
cenarios, a single gesture may be more effective than words (e.g., a
inch gesture makes it easier to express the desired zoom level, than
xplaining it with words).

Hand gesture recognition methods have a significant number of
pplications, such as controlling unmanned aerial vehicles (UAVs) (Ma
t al., 2017), interacting with autonomous vehicles (Holzbock et al.,
022), recognizing sign language (Pigou et al., 2015), or manipulating
bjects in virtual reality environments (Lin et al., 2017a) or in 3D
esign tools (Wang and Bao, 2007). In the case of applications such
s object manipulation, it is necessary to track the pose of hand and
ingers, whereas other applications have to classify the gesture into
ertain categories, which is the case of sign language recognition. Both
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E-mail addresses: salashhab@ua.es (S. Alashhab), jgallego@dlsi.ua.es (A.J. Gallego), malozano@ua.es (M.Á. Lozano).

1 https://www.orcam.com.
2 http://supervisioncardboard.com.

dynamic and static gestures are used in these latter applications, de-
pending on whether or not they change over time, respectively (Prakash
and Gautam, 2019).

One of the contexts in which hand gestures play a prominent role is
the field of assistive technologies for people with visual impairments, in
which a good user interaction design is of vital importance (Manduchi
and Coughlan, 2012). Some devices and applications in this field could
greatly benefit from an agile, natural and intuitive interaction system
that employs hand gestures. Examples of these devices are OrCam
MyEye,1 which reads text and identifies objects in the scene, or the
eyewear object recognition device proposed by Pintado et al. (2019),
which assists people with visual impairments in a market setting.
There are also mobile applications such as SuperVision for Cardboard,2
which turns a smartphone and a Google Cardboard device into low-cost
electronic glasses. However, these systems are limited to a very specific
action, requiring the user to press or switch the application to perform
another task. A hand gesture-based interface could, therefore, play a
key role in improving these technologies.

Our goal is to develop a gesture recognition method on which to
build an interactive low-cost system for mobile devices controlled by
ttps://doi.org/10.1016/j.engappai.2022.105188
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Fig. 1. Google Cardboard and scheme of the proposed user interface.
hand gestures (see Fig. 1(a)), with the objective of helping people with
visual impairments. In our proposal, gesture recognition is performed
from an egocentric point of view (Tekin et al., 2019), as the method
is intended for applications based on RGB cameras located at the point
from which the user views the object (see Fig. 1(b)). In this respect,
gestures could be used to interact with the application, triggering
actions such as identifying the object the user is pointing to, describing
the scene when the user makes a static loupe gesture, or zooming in
and out when a dynamic pinch gesture is employed.

The first step towards this idea was initially developed in Alashhab
et al. (2019), focusing on the classification task and considering a lim-
ited set of gestures. In this paper, a completely different and novel ap-
proach is proposed to perform multiple tasks simultaneously (including,
in addition to classification, actions such as localization and captioning,
among others). Also, both the dataset and the experimentation carried
out are considerably extended.

In summary, the main contributions made in this work are:

• A novel multi-task architecture that results in a much more
efficient and effective model than the use of different separate
networks. The proposal is based on a multi-head neural network
that integrates the recognition of dynamic and static gestures,
object localization and image description functions in the same
architecture. Each head of this network is dedicated to a function
associated with a given gesture and is executed only if that
gesture is detected by the backbone.

• An exhaustive experimentation of all the parts and actions of
the proposed architecture. This experimentation shows that the
proposal, in addition to obtaining good results for the different
actions carried out, also runs in almost real time on mobile
devices.

• Our contributions also include the development of a dataset with
both real and synthetic images that are annotated at different
levels, including gesture category, gesture and fingertip bounding
boxes, and object and scene descriptions.

The rest of the paper is organized as follows: Section 2 shows a
review of the state of the art regarding hand gesture, object and image
recognition, while the proposed application interface is described in
Section 3, the datasets used to train and evaluate our model are detailed
in Section 4, and the proposed approach is introduced in Section 5. A
comprehensive set of experiments is then shown in Section 6. Finally,
our conclusions and future work are addressed in Section 8.

2. Related work

Hand gesture recognition approaches include both methods based
on dedicated hardware (or other props) and computer vision-based
methods (Sonkusare et al., 2015). The first group contains solutions
based on gloves equipped with sensors (Mazumdar et al., 2013) and

on gloves marked with colors (Wang and Popović, 2009; Lamberti and

2

Camastra, 2011). In this second approach, each color is used to identify
different parts of the hand, which can be detected and tracked by a
camera, and no additional hardware is required. In addition to gloves,
there are other kinds of sensors whose purpose is also to recognize
hand gestures, such as wearable devices that monitor muscle activity on
the basis of surface electromyography (Moin et al., 2021) or ultrasonic
Doppler sensors (Raj et al., 2012). These solutions based on hardware
and sensors have the main advantage of being very precise. However,
they have the main limitation of requiring additional equipment for
their use, which can be expensive, cumbersome and uncomfortable for
the user.

On the other hand, the second group of vision-based hand ges-
ture recognition approaches only needs a camera and a system to
process the image, for which very compact and cheap devices can
currently be found. This second group contains two main categories:
appearance-based and 3D model-based methods. The first contains
several techniques based on segmenting the hand by color (Pun et al.,
2011) (i.e., from RGB images). In many of these approaches, the
average radius of the hand is calculated, and the blobs outside that
radius are considered to be spread fingers (Perimal et al., 2018). The
methods in this group have the advantage that they do not need a
database of gestures for training (Rajesh et al., 2012), but this comes
with the limitation that they can recognize only gestures that consist
of folded or spread fingers. In Prakash et al. (2017), the position of
the spread fingertips is detected from the vertices of the convex hull of
the hand. Other methods rely on depth to segment the hand (Kim and
Lee, 2016) (i.e., from RGB-D images). There are also similar solutions
that rely on the curve of the hand to identify spread fingers (Ren et al.,
2011) and their fingertips (Lai et al., 2016).

The group of appearance-based approaches also includes other so-
lutions that use RGB-D images. In Dinh et al. (2014), depth is used
to first segment the hand silhouette and remove the background, after
which a trained Random Forest (RF) classifier is applied in order to
recognize the different parts of the hand in the RGB-D image. Another
method (Bamwenda and Özerdem, 2019) for static gesture recognition
obtains a depth-based histogram of oriented gradient features and
applies Artificial Neural Networks (ANN) and Support Vector Machines
(SVM) for classification. In Molina et al. (2017), motion patterns are
recognized from sequences of RGB-D images so as to identify dynamic
gestures. In order to improve both efficiency and performance when
the input is a sequence of images, in Tang et al. (2019) key frames are
extracted to reduce the number of samples that must be processed. Fea-
tures are obtained from appearance and motion between consecutive
key frames, and a Bag of Features (BoF) approach is applied to classify
hand gestures.

With regard to the general recognition of gestures from RGB and
RGB-D images, the methods that have been shown to be most effective
are those based on Deep Neural Networks (DNN). Previous solutions
were usually based on the extraction of specific descriptors – commonly

called handcrafted features – which led to non-generic models that
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failed with small changes in input conditions, such as variations in
lighting, colors, etc. Oppositely, DNN-based solutions select by them-
selves the most suitable features for the task at hand – feature learning
–, hence showing superior generalization capabilities (especially when
coupled with other regularization methods). Most of these approaches
use Convolutional Neural Networks (CNN), which have obtained ex-
cellent results for image recognition (Schmidhuber, 2015). Architec-
tures used for this purpose are those such as AlexNet (Krizhevsky
et al., 2012), GoogleNet (Szegedy et al., 2015), DenseNet (Huang
et al., 2017), ResNet (He et al., 2016), Xception (Chollet, 2016), and
lightweight architectures such as MobileNet (Howard et al., 2017),
SqueezeNet (Iandola et al., 2016) and EfficientNet (Tan and Le, 2019),
on which several works obtaining excellent results have been based
(Alashhab et al., 2019). With regard to gesture classification, there
are also CNN-based approaches such as (Lin et al., 2014a), which
embodies a previous image calibration step. CNNs have also been
applied in order to recognize sign language in a single frame (Bheda
and Radpour, 2017) or a sequence of frames (Pigou et al., 2015)
(dynamic gestures). In Molchanov et al. (2015), the CNN takes both
intensity and depth video sequences as input for the recognition of
dynamic gestures with the objective of designing touchless interfaces
in cars. In addition to CNNs, other deep learning-based approaches
are also used to segment hands by depth, as is the case of SegNet,
a deep convolutional encoder–decoder architecture proposed to detect
fingertips (Nguyen et al., 2019). Dynamic gesture recognition in video
sequences has also been addressed by means of Bidirectional Long
Short-Term Memory (BiLSTM) (Xie et al., 2017) and Temporal Seg-
ment Networks (TSN) (Benitez-Garcia et al., 2021) in order to capture
temporal information.

Most approaches based on 3D models use the skeleton of the hand.
However, there are also volumetric solutions (Ge et al., 2019). The
skeleton can be obtained using specific hardware, such as instrumented
gloves, although there are also devices based on depth cameras that
provide a built-in joint tracker, such as Microsoft Kinect (Xi et al.,
2018) or Leap Motion Controller,3 which has been applied to, for
example, hand function rehabilitation (Xiao et al., 2021b). There are
also libraries, such as OpenPose hand detection4 (Cao et al., 2019;
Simon et al., 2017) or MediaPipe Hands5 (Zhang et al., 2020a), that
make it possible to obtain the skeleton in 2D or 3D from an RGB
image. There are also some methods that recover the 3D skeleton of
a hand from RGB-D images (Ge et al., 2019) or from a sequence of raw
RGB images (Tekin et al., 2019). This 3D data information of the hand
skeleton (joint coordinates) has been used as a basis for different types
of classifiers with which to recognize gestures, such as Hidden Markov
Models (HMM) and Dynamic Time Warping (DTW) in Raheja et al.
(2015) or CNNs in Devineau et al. (2018). A comparison (De Smedt
et al., 2017) between an SVM classifier using skeleton data and a CNN
classifier using RGB-D images shows that the former approach provides
superior results as regards hand gesture recognition. However, the use
of libraries such as OpenPose or MediaPipe to obtain skeleton data from
RGB images has certain limitations, since it is not possible to recognize
accurately skeleton points for several poses (Amaliya et al., 2021).

As a summary, Table 1 shows a comparison of all the related works
reviewed detailing whether the method is based on sensors, hardware
or vision, the type of data used (2D or 3D), the approach followed
in the solution, if it proposes an interface based on gestures and the
actions it supports. It also indicates whether the method is intended to
be integrated into mobile devices and/or to help people with visual
difficulties. In this classification, the solution proposed in this work
covers gaps that other solutions do not fill, since there are no solutions
aimed at helping people with visual impairment that allow them to use
multiple assistance tools in the same application in an intuitive and
natural way.

3 https://www.ultraleap.com/product/leap-motion-controller/.
4 https://github.com/CMU-Perceptual-Computing-Lab/openpose.
5 https://mediapipe.dev.
3

Our work focuses on the development of a low-cost general ges-
ture recognition solution that could be integrated into most of the
current smartphones equipped with RGB cameras. For this, a vision-
based system is proposed, as this will avoid the use of additional
specialized equipment. We rely on DNNs that take an RGB image as
input, since, as previously indicated, this type of approximation is
the one that currently obtains the best results and, furthermore, this
type of sensor is available in the vast majority of mobile devices. A
possible disadvantage of this approach is that, unlike hardware-based
solutions, it can be affected by changes to the image, such as lighting
or perspective. To solve the latter, in the proposed interface the images
will always be taken from an egocentric point of view. To improve
the robustness and generability of the generated model, in addition
to applying regularization mechanisms, we will use a highly varied
training image dataset (described in Section 4).

Besides gesture recognition, our purpose is to integrate the functions
required to identify objects, describe the scene or zoom in and out into
the same network. In order to do this efficiently, we have followed
an approach similar to that of Köpüklü et al. (2019), in which a two-
stage network architecture is implemented to build a real-time gesture
recognizer: the first stage is dedicated to the detection of the gesture,
and the second one to the classification, which is executed only if the
presence of a gesture is detected in the image.

In our case, we propose a multi-head architecture with a backbone
dedicated to the classification of gestures, and a set of specialized heads
for each gesture, which will be triggered only if the corresponding ges-
ture is detected. Multi-head architectures have been successfully used in
different types of applications, such as human activity recognition using
the information provided by different sensors (Zhang et al., 2020c), or
for time series classification, with applications in cybersecurity, health
care, remote sensing or also for human activity recognition (Xiao et al.,
2021a). In this proposal, the multi-head architecture is used to perform
multiple actions from a common input image. This differentiates us
from the rest of the state-of-the-art proposals for assisting people with
visual impairments, which focus on solving a single task (see Table 1),
hence forcing the user to switch applications to perform other tasks.
Therefore, the development of an interface that provides different
assistance tools managed through an intuitive and natural interface is
of great relevance.

Depending on the gesture detected, a given action is, therefore, per-
formed using a specialized head: object recognition, image description
and zoom in/out. We considered various state-of-the-art DNN archi-
tectures for the object recognition head, such as You Only Look Once
(YOLO) (Redmon and Farhadi, 2018), Faster R-CNN (FRCNN) (Ren
et al., 2015), and RetinaNet (Lin et al., 2017b). These models are able
to identify multiple objects in the image and their bounding boxes. We
also compared a modified version of the Filter Selection (FS) (Alashhab
et al., 2019) approach as an alternative to these object recognition
methods, in which a set of filters from the backbone is selected in order
to calculate the location of the gesture in the image. This method has
the advantage of not adding extra modules to the original architecture.
With regard to the head employed to obtain the description of the
image, it can be addressed using image captioning methods (Hossain
et al., 2018). For this, we have also considered different models (You
et al., 2016; Tanti et al., 2018), which usually combine a CNN in order
to extract features from the image, and a Recurrent Neural Network
(RNN) to generate the description. Finally, with regard to zooming in
and out with the pinch gesture, we propose our own architecture as a
specialized head for this task.

3. Application interface

One of the areas in which improvements could be made to the
applications aimed at helping people with visual impairments, such
as Supervision for Cardboard (Supervision, 2021), is the interface. An

important enhancement to its usability would be that users could use

https://www.ultraleap.com/product/leap-motion-controller/
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://mediapipe.dev
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Table 1
Comparative summary of related works detailing whether the method is based on sensors, hardware or vision, the type of data used (2D or 3D), the approach followed in the
solution, whether it proposes an interface based on gestures and the actions it supports. It is also indicated if the method is intended to be integrated into mobile devices and/or
to help people with visual impairments.
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Proposed solution ✓ 2D CNN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Previous solution (Alashhab et al., 2019) ✓ 2D CNN ✓ ✓ ✓ ✓ ✓

Lin et al. (2014a), Bheda and Radpour (2017), Xiao et al. (2021a) and Benitez-Garcia et al. (2021) ✓ 2D CNN ✓ ✓

Xie et al. (2017) ✓ 2D CNN ✓ ✓ ✓

Nguyen et al. (2019) ✓ 2D CNN ✓ ✓

Ma et al. (2017) and Zhang et al. (2020c) ✓ ✓ 2D CNN ✓

OrCam MyEye ✓ ✓ 2D CNN ✓ ✓ ✓

Pintado et al. (2019) ✓ ✓ 2D CNN ✓ ✓

You et al. (2016) and Tanti et al. (2018) ✓ 2D CNN ✓

Mazumdar et al. (2013), Lamberti and Camastra (2011) and Raj et al. (2012) ✓ 2D Hardware ✓ ✓

SuperVision for cardboard – 2D Software ✓ ✓

Pun et al. (2011) and Prakash et al. (2017) ✓ 2D Appearance ✓ ✓ ✓

Perimal et al. (2018), Rajesh et al. (2012) and Wang and Bao (2007) ✓ 2D Appearance ✓ ✓

Cao et al. (2019) ✓ 2D 3D model ✓

Xiao et al. (2021b) and Raheja et al. (2015) ✓ 3D 3D model ✓ ✓

Devineau et al. (2018) ✓ 3D 3D model ✓ ✓

Amaliya et al. (2021) ✓ ✓ 3D 3D model ✓ ✓

Zhang et al. (2020a), Tekin et al. (2019), Simon et al. (2017) and Ge et al. (2019) ✓ 3D 3D model ✓ ✓

Xi et al. (2018) ✓ 3D 3D model ✓

Bamwenda and Özerdem (2019) ✓ ✓ 3D Appearance ✓ ✓

Molina et al. (2017) ✓ ✓ 3D Appearance ✓ ✓ ✓

Kim and Lee (2016) and Dinh et al. (2014) ✓ 3D Appearance ✓ ✓

Ren et al. (2011) and Lai et al. (2016) ✓ 3D Appearance ✓ ✓ ✓

Tang et al. (2019) ✓ 3D Appearance ✓ ✓

Pigou et al. (2015) ✓ ✓ 3D CNN ✓ ✓

Holzbock et al. (2022) ✓ 3D CNN ✓ ✓ ✓

Molchanov et al. (2015) ✓ 3D CNN ✓ ✓

Köpüklü et al. (2019) ✓ 3D CNN ✓ ✓ ✓

Moin et al. (2021) ✓ ✓ 3D Hardware ✓ ✓

Wang and Popović (2009) and Lin et al. (2017a) ✓ 3D Hardware ✓ ✓
the application while moving or performing other tasks, without having
to touch the mobile screen.

To this end, this paper proposes an interactive system for mobile
devices controlled by hand gestures. Users could install their mobile
phones on Virtual Reality Glasses (VRG) or on a low cost Google
Cardboard (see Fig. 1(a)), and view the environment directly through
the mobile screen. The proposed system would allow them to interact
with the device using different hand gestures and would use augmented
reality to display the result of the actions on the screen (see Fig. 1(b)).

A set of four simple gestures is proposed as a user interface to
interact with the system: point, drag, loupe and pinch (see Figs. 2(a)–
2(d)). There are three static gestures (point, drag and loupe) with which
to execute specific actions, and a dynamic gesture (pinch) with which
to zoom-in and zoom-out the image. A better description of the four
gestures proposed is provided below:

• Point : Static gesture formed by extending the index finger and
flexing the remaining fingers into the palm. This gesture allows
users to point to the objects of which they wish to obtain a
description.

• Drag : Static gesture formed by pointing with both the index and
the middle fingers. This gesture allows users to freeze the image
while simultaneously performing a panning movement of the
scene following their fingertips. This is useful in combination with
the zoom gesture.

• Loupe: Static gesture formed by joining the thumb and the index
finger to form the shape of a circle, and leaving the remaining
fingers extended. This gesture shows more information about the
scene and the objects that appear in it.
 a

4

• Pinch: Dynamic gesture formed by moving the thumb and the
index finger towards each other or away from each other, in order
to perform a zoom-in or a zoom-out operation, respectively. It
is equivalent to the pinch gesture used on touch screens. This
dynamic gesture allows the zoom level to be controlled with the
movement of the fingers.

This small set of gestures has been selected in order to allow an
intuitive and easy interaction with the system. However, our proposal
is designed in a generic manner (as will be shown in Section 5),
signifying that it would be easy to add new gestures so as to expand its
functionality, if necessary.

It is important to note that, in addition to the proposed gestures,
the system has to identify whether or not there is a gesture present
in the image, and it has to differentiate these gestures from any other
possible gestures, both static and dynamic (such as the thumb-up and
wave gestures shown in Fig. 2).

4. Datasets

Three datasets were created in order to train and evaluate the
proposed model6: a dataset containing real images of hand gestures, a
synthetic dataset used to pre-train the system, and a dataset containing
descriptions of scenes used by the captioning actions.

The samples of the dataset with real images were extracted from
videos obtained with mobile phones. To ensure a varied corpus, differ-
ent phone cameras were used to record indoor and outdoor scenes, with

6 These datasets are freely available for the scientific community on demand
t https://www.dlsi.ua.es/~jgallego/datasets/gestures

https://www.dlsi.ua.es/~jgallego/datasets/gestures
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Fig. 2. Graphical description of the proposed hand gestures. The gestures used to interact with the interface are Point, Drag, Loupe and Pinch. The system will consider Thumb-up
and Wave as other gestures. Point, Drag, Loupe, and Thumb-up are static gestures, while Pinch and Wave are dynamic gestures.
aried backgrounds and under different lighting conditions. The videos
ere generated by different people, thus including images of different
ands (both left and right), with different finger lengths, hand sizes,
nd skin colors. In addition to images of the four proposed gestures,
amples of backgrounds without gestures and of gestures other than
hose proposed were also extracted from these videos. The background
mages were used to train the system to discriminate between the
resence or absence of hands, and the ‘‘other-gestures’’ images were
mployed to assess whether the system was capable of differentiating
hem from the proposed gestures. Note that in the case of the dynamic
inch gesture, an average of 10 consecutive frames was extracted for
ach gesture in order to train and evaluate the methods used to detect
he movement of the fingers and their position. A total of 13,559 frames
ere extracted from the original videos, trying to balance the number
f samples selected for each class (the number of samples per class can
e found in the ‘‘real samples’’ column of Table 2). Fig. 3 shows some
xamples of the images included in this dataset.

In order to improve the results obtained and help the training
rocess, a synthetic dataset was created using a modified version7 of
he LibHand tool (Šarić, 2011), an open-source library for the render-
ng of human hand poses. We modified this library so as to enable
he definition of gestures through a set of rules with the ranges of
ovement allowed for the finger joints, thus enabling variations of

hese gestures to be generated randomly within these ranges. This tool
as used in order to automatically generate and label a dataset with a

otal of 13,200 images (2200 of each gesture), with random variations
n position, in the shape of the gestures, in the color of the skin,
ncluding random blur to emulate the motion effect, and with different
ackgrounds (using random images from Flickr8k Hodosh et al., 2013
nd Visual Object Classes (VOC) Everingham et al., 2015 datasets).
ig. 4 shows some examples of the gestures generated.

These two datasets were labeled, indicating both the category and
he position of the gesture. For the position, the coordinates were
nnotated using bounding boxes for (1) the position of the hand within
he image, (2) the position of the fingertips, and (3) the coordinates and
abels of the objects pointed to. The synthetic dataset labeling was auto-
atically generated by our modification of the LibHand tool. However,

he real image dataset had to be manually labeled. To facilitate this
rocess, short videos were recorded with the same gesture displaced on
background. In this way, it was possible to directly assign the same

ategory to all the extracted frames and, in addition, it also facilitated
he labeling of the position by only having to displace the coordinates.

As explained in the previous section, the loupe gesture triggers the
ction of displaying a description of the scene that appears in the image.

7 https://github.com/malozano/libhand.
5

In order to train and evaluate systems capable of generating these
descriptions, it was necessary to use an additional dataset of images
with the corresponding associated descriptions. For this, we used the
Flickr8k dataset (Hodosh et al., 2013), which contains 8000 images
manually selected from the Flickr website with five descriptions of each
image. Besides, we added a subset of 4000 images from our dataset of
real images, which also included 5 descriptions per image (this allowed
the proposed system to adapt to our type of data, i.e., images of gestures
taken with mobile phones). This subset includes both loupe and point
gesture images (2000 for each). The point gesture was included in
order to increase the variability, and also make it possible to use the
captioning head for these gestures (which could be appropriate for
some applications).

The original resolution used for videos and images was 1920 × 1080
pixels. However, after conducting a series of initial performance and
accuracy experiments at different resolutions, and also motivated by
the restrictions of some of the methods evaluated, we decided to scale
the images to a spacial resolution of 224 × 224 pixels. Table 2 shows
a summary of the three datasets considered in this work, including the
number of samples per class in each dataset.

5. Method

The input received by the system is a sequence of frames captured
with a mobile phone camera. The proposed approach processes each
of these frames in order to first classify the gesture that appears in
the image and then perform an action based on the gesture detected.
This is done using an architecture divided into two stages (see Fig. 5):
(1) an initial backbone processes the image in order to extract a set of
representative features, and (2) these features are then used to classify
the gesture and perform an action by means of the head specialized in
the gesture detected.

In the second step, the common features extracted by the backbone
are first processed using the ‘‘Classify’’ head shown in Fig. 5, which
yields an 𝐿-dimensional one-hot vector, where 𝐿 is the number of pos-
sible gestures. The other specialized heads are activated or deactivated
through the use of a switch-type layer that queries the value set to one
in this one-hot vector.

The main advantage of this architecture is that it can carry out
multiple processes with a reduced number of parameters and, therefore,
with fewer hardware requirements. To achieve this, the same initial
features are used for all the actions to be carried out. Moreover, in
the second stage of the method, only one of the specialized heads
is activated depending on the gesture detected, which also improves
performance.

https://github.com/malozano/libhand
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Fig. 3. Some samples of the dataset with real images. The first four rows show the different gestures proposed in order to interact with the interface. The last two rows include
some examples of the ‘‘other gestures’’ and the ‘‘no gestures’’ classes.

Fig. 4. Some examples of the images generated for the synthetic dataset.

Fig. 5. Scheme of the proposed two-step multi-head network. In this architecture, an initial backbone processes the input image to extract a set of representative features, which
are then used to classify the gesture and to perform an action by means of the head specialized in the gesture detected. In addition, a temporal consistency module is added to
improve the results and the stability of the system.

6
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Table 2
Summary of the datasets, including class name, number of samples per class, and a short description of the content of each class.

Gesture # Synthetic samples # Real samples # Captioning samples Description

Point 2200 2088 2000 Images of pointing gestures.
Drag 2200 2143 – Images including drag gestures.
Loupe 2200 2147 2000 Samples including loupe gestures.
Pinch 2200 2066 – Sequences of dynamic pinch gestures.
Other 2200 2121 – Images of gestures other than the four defined.
None 2200 2994 8000 Samples in which no hand appears.

Total 13,200 13,559 12,000 Grand total: 38,759
t
i
t

t
a
t
w
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The stability of the system has been improved by establishing a time
argin of 𝑘 frames with which to validate the detection of a gesture.

That is, the system processes the frames of the input video and returns
a response for each one. However, in order to ensure a consistent
response for consecutive frames, at least 𝑘 frames must maintain the
same response to consider the prediction valid. In the tests carried out,
it was sufficient to establish this time margin as 3 frames, as will be
shown in the experimentation section.

As Fig. 5 shows, this temporal consistency applies to all gestures,
including the ‘‘Other’’ and ‘‘None’’ categories, which are joined and
considered as a single negative class and do not perform any specialized
processing, but simply do not return a response. In this way, when the
(positive) gestures considered are no longer detected during 𝑘 frames,
no response will, therefore, be provided.

Algorithm 1 shows the formalization of the proposed system. It
receives as input the video stream, as well as the backbone and heads
of the system. It first creates a queue 𝑘 with 𝑘 elements to store the
system response buffer (used for time consistency). For each frame read
from the input video, the method processes it through the backbone
and extracts the common descriptor 𝑓 (line 5). The classification head
is then used to determine the gesture type 𝑐 (line 6) and enqueues this
response in the buffer 𝑘 (line 7). If the last 𝑘 gestures match (line
8, time consistency criterion), it processes the descriptor 𝑓 using the
corresponding head and returns the new response 𝑝 obtained. If the
last 𝑘 gestures do not match, the same response 𝑝 obtained previously
is returned.

As can be seen, the method does not perform any loop to process
a given frame, only checks and forward steps through the different
parts of the network, which only involves matrix operations. Therefore,
the proposed system has a linear computational complexity that only
depends on the constant number of parameters of the architecture.

The following subsections provide detailed descriptions of the dif-
ferent parts of this approach.

5.1. Backbone

The first step in the method processes each input frame using a
backbone to obtain a common feature vector that is then used to
carry out the remaining actions. This part of the method is the most
important, since the efficiency and efficacy of the proposed solution
depends on its result. It was for this reason that a total of 18 different
approaches were compared, including network architectures such as
MobileNet (Howard et al., 2017), EfficientNet (Tan and Le, 2019),
Xception (Chollet, 2016), and SqueezeNet (Iandola et al., 2016). The
results obtained will be analyzed in detail in Section 6.2. However,
we anticipate that the approach that obtained the best results (when
considering the balance between precision and execution time) was
Darknet-53 (Redmon and Farhadi, 2018).

Darknet-53 is the backbone used by YOLO v3. It is made up of 53
convolutional layers combined with Batch Normalization layers for reg-
ularization, Leaky ReLU activation functions, and residuals or shortcut
connections (the complete architecture can be found in Redmon and
Farhadi (2018), see Table 1). This network is more efficient and obtains
better results than its previous versions or other similar architectures.
The last convolutional layer of this backbone – which has 1024 filters
of size 3 × 3 – is connected with a Global Average Pooling (GAP)
 f
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Algorithm 1: Algorithmic formalization of the proposed
method.

Input : 𝑉 𝑖𝑑𝑒𝑜, 𝐵𝑎𝑐𝑘𝑏𝑜𝑛𝑒,𝐻{𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦,𝐹𝑆,𝑙𝑜𝑢𝑝𝑒,𝑝𝑖𝑛𝑐ℎ}

Output: 𝑝
1 𝑘 ← Queue𝑘(∅)
2 𝑝 ← ∅
3 while 𝐼 ← read_frame(𝑉 𝑖𝑑𝑒𝑜) do
4 𝑓 ← 𝐵𝑎𝑐𝑘𝑏𝑜𝑛𝑒(𝐼) ⊳ Section 5.1
5 𝑐 ← 𝐻𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑓 ) ⊳ Section 5.2
6 𝑘 ← Enqueue𝑘(𝑐)
7 if 𝑘 = ∪𝑘{𝑐} then
8 switch 𝑐 do
9 case ’point’ or ’drag’ do
10 𝑝 ← 𝐻𝐹𝑆 (𝑓 ) ⊳ Section 5.3
11 end case
12 case ’loupe’ do
13 𝑝 ← 𝐻 𝑙𝑜𝑢𝑝𝑒(𝑓 ) ⊳ Section 5.4
14 end case
15 case ’pinch’ do
16 𝑝 ← 𝐻𝑝𝑖𝑛𝑐ℎ(𝑓 ) ⊳ Section 5.5
17 end case
18 case ’other’ or ’none’ do
19 𝑝 ← ∅
20 end case
21 end switch
22 end if
23 end while

operation that eventually links to the other layers of the module or
the head in question (see Fig. 5). Therefore, this layer returns a 1024-
dimensional vector, which represents the common descriptor used by
all the specialized heads described below.

5.2. Classification head

With regard to the classification head, only a single dense layer
is added to the backbone. This layer comprises 𝐿 neurons with the
SoftMax activation function to classify the 𝐿 classes in our dataset. This
represents adding only 1024𝐿+𝐿 parameters to the architecture, 6150
for our case with 𝐿 = 6 classes.

As indicated previously, an 𝐿-dimensional one-hot vector is ob-
ained as a result of this classification, in which the gesture detected
s marked as 1 and the others as 0. This result is used to activate only
he head corresponding to the gesture detected.

Also note that the proposed methodology has the additional advan-
age of allowing new gestures to be easily added. This can be done by
dding the new category to the classification head and then fine-tuning
he backbone in order to detect the new gesture. The training process
ill be explained in detail in Section 5.6.

.3. Pointing and drag gestures

The actions corresponding to these two gestures share a common
irst part: the detection of the tip of the extended fingers. Up to 8
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possible approaches were compared for this process, including object
detection methods such as YOLO (Redmon and Farhadi, 2018), Reti-
naNet (Lin et al., 2017b), and Faster R-CNN (Ren et al., 2015) (as
will be seen in Section 6.3). It was eventually determined that the
approach that obtained the best results as regards both precision and
efficiency was an approximation based on the Filter Selection (FS)
method (Alashhab et al., 2019).

5.3.1. Filter selection
FS is a weakly-supervised object detection method that selects the

set of filters from a categorical CNN that maximizes the detection
precision of the classes considered. That is, this method does not add
extra layers, but directly takes advantage of the filters already learned
for the classification task and reuses them to obtain the location of the
objects for each class. It is, therefore, also more efficient, as it does not
require extra parameters. This solution, which was initially proposed
for other types of tasks, has been modified to support multiple classes
and to speed up the detection process.

FS analyzes all the filters learned by the categorical network (de-
noted as ) in order to then select a subset  𝑐 ⊆  , which will be used
to determine the location of the class 𝑐. This is done by calculating
the Intersection over Union (IoU) between the ground-truth and the
predictions 𝑃 (𝑖)

𝑓 for the filter 𝑓 and the image 𝑖 of the set of images 𝐼𝑐
with samples of the searched class 𝑐. Only those filters whose average
IoU is greater than a threshold 𝛼 are selected from this result. The
subset of filters  𝑐 is formally calculated as follows:

 𝑐 =

{

𝑓 ∈  ∣ 1
|𝐼𝑐 |

|𝐼𝑐 |
∑

𝑖=1
𝐼𝑜𝑈 (𝑃 (𝑖)

𝑓 , 𝐵(𝑖)
𝑐 ) > 𝛼

}

(1)

here 𝐵(𝑖)
𝑐 are the ground-truth localizations for the image 𝑖 and class

, and |𝐼𝑐 | represents the cardinality of the set 𝐼𝑐 . The prediction set
(𝑖)
𝑓 for an input image 𝑖 and a filter 𝑓 , is computed as follows:

(𝑖)
𝑓 = 𝐵𝑙𝑜𝑏𝑠((𝑟(𝐴(𝑖)

𝑓 ) > 𝛽)⊕ 𝑠) (2)

here 𝐴(𝑖)
𝑓 represents the activation map (also known as the feature

ap) obtained for the filter 𝑓 and the input image 𝑖. Unlike that
hich occurs in the original method, our approach does not perform a
ackpropagation pass, but rather uses the activation maps directly, thus
ignificantly speeding up the entire process. The activations obtained
re then rescaled to range [0, 1] using the function 𝑟 and are thresholded
sing 𝛽 to obtain a binary matrix R(𝑤×ℎ) → [0, 1](𝑤×ℎ) that is the same
ize as the input image, where 𝑤 and ℎ are the width and height,
espectively. A morphological dilation operation (denoted by ⊕) is
pplied using a structuring element 𝑠. Since the noise is removed by
he thresholding operation, the objective of this dilation is to close
mall gaps and slightly increase the size of the detections. Finally, the
unction Blobs calculates the groups of connected pixels, returning a list
f bounding boxes for the blobs detected.

In Eq. (1), in order to calculate the IoU of the predictions obtained
or an input image 𝑖, each predicted bounding box from the set 𝑃 (𝑖)

𝑓 is
apped onto the ground truth bounding box 𝐵(𝑖)

𝑐 with which it had a
aximum IoU overlap (considering that both 𝑃𝑓 and 𝐵𝑐 may contain
any bounding boxes):

𝑜𝑈 (𝑃 (𝑖)
𝑓 , 𝐵(𝑖)

𝑐 ) =
area(𝑃 (𝑖)

𝑓 ∩ 𝐵(𝑖)
𝑐 )

area(𝑃 (𝑖)
𝑓 ∪ 𝐵(𝑖)

𝑐 )
(3)

Once this stage has been completed, the subset of filters 𝑐 for
ach target class 𝑐 is stored to be used in the inference stage for
nseen images. In our case, this selection process is carried out on the
ategorical network described in the previous section (i.e., Darknet-53
classification head), initialized with the pre-trained weights obtained
ith the ILSVRC dataset (Krizhevsky et al., 2012), a generic purpose
atabase for object classification, and fine-tuned in order to classify
he classes of our dataset (this training process will be explained in
ection 5.6). The influence of the different parameters of the proposed
ethod on this and on the other network architectures considered will

e evaluated in Section 6.3.
8

5.3.2. Fingertip detection
In the inference stage, an input sample is forwarded through the

trained model (the backbone in Fig. 5), and if a pointing or drag gesture
is detected, the activation maps of the network are used to obtain its
localization. This is done in a similar way to Eq. (2), but by performing
the average of the activations obtained from the selected subset of
filters  𝑐 . The function 𝐹𝑆(𝑖, 𝑐) calculates the localization of targets
using the pre-calculated subset of filters  𝑐 , as follows:

𝐹𝑆(𝑖, 𝑐) = 𝐵𝑙𝑜𝑏𝑠
(((

1
| 𝑐

|

∑

𝑓∈𝑐
𝑟(𝐴(𝑖)

𝑓 )
)

> 𝛽
)

⊕ 𝑠
)

(4)

With regard to the drag gesture, the system needs to know only
the position of the tip of the spread fingers, since, for the action to
be carried out, this information is sufficient to calculate the movement
made by the fingers between consecutive frames. However, in the case
of the pointing gesture, it is also necessary to identify and describe the
closest object to the fingertip. Depending on the final application, this
could be done by means of the captioning generation method detailed
in the following section or by applying FS to the categories of the
objects to be identified by our system. This would, therefore, allow the
system to indicate the class of the object pointed to by consulting the
annotation of the ILSVRC dataset (Krizhevsky et al., 2012).

5.4. Loupe gesture

The objective of the loupe gesture is to obtain a textual description
of a scene. A specialized head based on the caption generation model
proposed by Tanti et al. (2018), which is known as merge-model, was
used for this action. This multimodal architecture performs a late fusion
of information. As the authors of the original model indicate, results
suggest that the visual and linguistic modalities for caption generation
need not be jointly encoded by the RNN, as this yields large memory-
intensive models with few tangible advantages in performance; the
multimodal integration should rather be delayed to a subsequent stage.
Late fusion, therefore, makes it possible to use specialized architectures
for each modality, such as, in our case, a backbone with which to
process the images and an RNN for the text.

In our implementation (see Fig. 6), the features obtained by the
backbone for the input image are processed through the use of a fully
connected (FC) layer with 256 neurons. The output of this layer is then
combined with that obtained from the recurrent part of the network
used for the linguistic information. This other part of the network
is made up of an embedding layer followed by an LSTM layer with
256 neurons. Once the combined features have been obtained, two FC
layers, each of which contains 256 neurons, are used to obtain the
final result. The ReLU activation function is used in all the layers,
with the exception of the last layer, which uses a Softmax activation
function to determine the next word predicted by the architecture.
During inference, the start token ‘‘startseq’’ is passed, generating one
word, after which the model is recursively called, using the words
generated as input, until the end token ‘‘endseq’’ is obtained or the
maximum description length is reached.

Finally, it should also be noted that a post-processing step is even-
tually carried out on the sentences generated, since the network some-
times generates texts that begin with ‘‘A hand/finger is pointing to...’’
or ‘‘A hand and...’’. A set of basic rules have, therefore, been defined
that modify the phrase in order to remove these texts and thus generate
a sentence that refers only to the scene.

5.5. Pinch gesture

The purpose of this gesture is to control the zoom level. When it
is detected, the image freezes and the user can increase and decrease
the zoom level with the movement of the fingers. The specialized head
shown in Fig. 7 is used to control this action. This head receives two
inputs, one containing the features extracted by the backbone for the
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Fig. 6. Image captioning model implemented by the head that processes the loupe gesture. In experimentation, this part of the architecture will be denoted as ‘‘Darknet-53 +
aptioning head’’.
Fig. 7. Scheme of the architecture proposed for the head that processes the pinch gesture. In experimentation, this part of the architecture will be denoted as ‘‘Darknet-53 + pinch
ead’’.
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urrent frame 𝑡, and other containing the features obtained for the
rame 𝑡 − 𝑑. In other words, the frame obtained 𝑑 previous frames is
sed rather than the immediately previous one. In our case, after a
eries of preliminary experiments, we established 𝑑 = 5 in order to
ave a notable difference between the frames compared that facilitates
he detection of movement. The history of stored frames is managed
nternally by the specialized head itself, for which it is sufficient to store
buffer with the last 𝑑 elements.

The architecture of this head is very simple (see Fig. 7), which re-
ults in an efficient and effective model. The features of the two inputs
current frame and frame 𝑡 − 𝑑) are concatenated and processed by a
onvolution layer with 64 filters of size 3 × 3. A Batch Normalization
ayer is then added, followed by a Max Pooling operation, which is used
o reduce dimensionality. The result obtained is connected with an FC
ayer (containing 32 neurons and a ReLU activation function) through
he use of a flatten operation and, finally, with another FC layer with
oftmax activation in order to determine whether zoom-in, zoom-out,
r no zoom is being performed.

.6. Training stage

Rather than training the entire architecture in one stage using a
ombined loss function, a two-phase training process is proposed. In
he first phase, the backbone is trained for the classification task, while
n the second phase, the weights obtained for the backbone and the
lassification head are frozen and the remaining heads are trained.

The backbone is initialized using the pre-trained weights obtained
ith the ILSVRC dataset (Krizhevsky et al., 2012). Weight initialization

s a common practice that makes it possible to obtain better results
n less training time (Yosinski et al., 2014). A fine-tuning process is
hen applied to the entire backbone connected with the classification
ead (Chatfield et al., 2014a), i.e., no layers were frozen for this train-
ng, but the entire network was fine-tuned starting from the ILSVRC
nitialization. For this, the categorical cross-entropy loss function be-
ween each output activation and its expected activation was used to
alculate the error. The network parameters were tuned by means of

ack-propagation using stochastic gradient descent (Bottou, 2010) and t

9

onsidering the adaptive learning rate proposed by Zeiler (2012) (with
n initial value of 0.001 and a decay rate of 0.05).

Training was performed for a maximum of 200 epochs with a mini-
atch size of 32 samples for each of the datasets described in Section 4:
he synthetic dataset is first employed, after which the obtained weights
re fine-tuned using the corpus of real images. Also note that the early
topping technique was used to avoid overfitting by stopping training
hen the loss did not decrease during 10 epochs.

The remaining heads were trained by freezing the backbone and the
lassification head weights, so only the layers of each of these modules
ere adjusted. With regard to the pointing and drag heads, the process
escribed in Section 5.3 was carried out using the filters learned by the
ackbone. In the case of the loupe head, a fine-tuning process (during
00 epochs with a batch size of 32) was performed using the dataset
omposed of images and textual descriptions (see Section 4).

With regard to the pinch head, sequences labeled as zoom-in, zoom-
ut or static gestures were used. This module was also trained during
00 epochs with a batch size of 32 but using a special type of data
ugmentation. In this case, the same transformation was applied to the
wo frames, which included variations in the speed of the opening and
losing gestures (varying the value of 𝑑 by ±1 frames) and variations
n the static gestures (using the same frame or comparing it with the
revious and subsequent frame).

The rest of the details about the training carried out for the experi-
entation are included in the following section.

. Experiments

In this section, the different parts of the proposed method are
valuated, starting with the performance of the backbone and the clas-
ification head, and continuing with an analysis of the results obtained
y each of the specialized heads. In all cases, the results are compared
ith those of other state-of-the-art methods. It is important to note that
ll the models were trained and evaluated under the same conditions.
he following section details the specific configuration followed for the

raining of the different methods.
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6.1. Experimental setup

All experiments were carried out using the Python programming
language (v. 3.7) with the TensorFlow (v. 2.1) and Keras (v. 2.3)
libraries. The machine used consists of an Intel(R) Core(TM) i7-8700
CPU @ 3.20 GHz with 16 GB RAM, a NVIDIA GeForce RTX 2070 with
6 GB GDDR6 Graphics Processing Unit (GPU) with the cuDNN library.

In all of the experiments, we used an 𝑛-fold cross validation (with
= 5), which yields a better Monte-Carlo estimation than when solely
erforming the tests with a single random partition (Kohavi, 1995).
he datasets were consequently divided into 𝑛 mutually exclusive folds,

being the different classes equally represented in each of the partitions.
For each fold, we used one of the partitions for test (20% of the
samples) and the rest for training (80%). Besides, a validation subset
with 10% of the training samples was used for the adjustment of the
hyperparameters and to stop training when there was no improvement.
The training and testing processes were repeated 𝑛 = 5 times, using the
different partitions of the dataset, and finally the average result was
calculated.

As for the proposed method, all the compared networks were
trained for 200 epochs, with a batch size of 32, and stopping the
training process if the loss did not decrease during 10 epochs. In the
same way, backbones were initialized with the ILSVRC dataset and
fine-tuned for the corpus proposed in this work.

Data augmentation was used to artificially increase the size of the
training set by randomly applying different types of transformations
to the original training samples. This technique usually improves the
performance and helps reduce overfitting (Krizhevsky et al., 2012;
Chatfield et al., 2014b). In our case, 10 augmented images were gen-
erated for each image in the training set. The transformations applied
were randomly selected from the following set of possible transforma-
tions: horizontal flips (allowing the system to work regardless of the
hand used), horizontal and vertical shifts ([−10, 10]% of the image
size), zoom ([−10, 10]% of the original image size), and rotations (in
the range [-5◦, 5◦]).

6.2. Evaluation of gesture classification

In order to assess the performance of the gesture classification
methods, three evaluation metrics widely used for this kind of tasks
were chosen, Precision, Recall, and 𝐹1. These are binary metrics to
measure the result of a single class, so for multi-class problems, the
one-vs-all strategy is used, subsequently calculating the average of the
results. Taking one class as positive and the rest as negative, these
metrics can respectively be defined as:

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(5)

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(6)

𝐹1 = 2 × Precision ⋅ Recall
Precision + Recall (7)

where 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 denote the number of true positives, false
positives, and false negatives, respectively. Since the experiments were
conducted as a multi-class problem, we report the results in terms of
macro-𝐹1 for a global evaluation, which is calculated as the average of
the 𝐹1 obtained for each class.

In this part of the method (which detects the initial gesture), we con-
sidered three different approaches: (1) categorical CNN architectures
with which to classify the gesture in the input image, (2) the use of
object detection networks to detect and classify the gesture, and (3) the
use of a hand tracking approach based on the MediaPipe library (Zhang
et al., 2020b), which detects both the hand and the position of the
fingers.

Categorical CNN architectures. With regard to the first type of ap-
proximation, 13 representative state-of-the-art CNN topologies (listed
in Table 3) were considered. The reader is referred to the cited works
10
Table 3
Comparison of the results obtained in terms of Precision, Recall and 𝐹1 with the 13
state-of-the-art CNN topologies considered for the classification of the synthetic dataset.
These figures represent the average of the individual classification results obtained for
the different classes. The best results obtained per metric are marked in bold type,
while the second-best are underlined.

Model Precision Recall 𝑭 𝟏

SqueezeNet (Iandola et al., 2016) 87.25 86.13 86.69
ResNet-50 (He et al., 2016) 95.74 94.75 95.24
VGG 16 (Simonyan and Zisserman,
2014)

85.12 67.37 75.21

VGG 19 (Simonyan and Zisserman,
2014)

84.77 65.40 73.84

Inception v3 (Szegedy et al., 2015) 96.60 96.25 96.42
MobileNet v1 (Howard et al., 2017) 97.85 97.83 97.84
MobileNet v2 (Sandler et al., 2018) 97.24 97.12 97.18
MobileNet v3 (Howard et al., 2019) 94.83 92.99 93.90
EfficientNet-B0 (Tan and Le, 2019) 97.16 97.05 97.10
EfficientNet-B1 (Tan and Le, 2019) 97.64 97.41 97.52
DenseNet121 (Huang et al., 2017) 96.51 96.03 96.27
Xception (Chollet, 2016) 98.33 98.30 98.31
Darknet-53 (Redmon and Farhadi, 2018) 99.76 99.75 99.75

for the implementation details. These topologies were used as back-
bones, whose final layers were removed and replaced with the clas-
sification header described in Section 5.2. Table 3 shows the results
obtained for the classification task using the synthetically generated
dataset (see Section 4). Please recall that all the networks were ini-
tialized with the pre-trained weights obtained with the ILSVRC dataset
and then trained and evaluated for this synthetic dataset. The training
was carried out under the same conditions in all cases (described in
Sections 5.6 and 6.1), for 200 epochs, with a batch of 32 and using data
augmentation. As will be noted, quite good values are achieved in all
cases. The best results are those of Darknet-53 followed by the Xception
model, and the worst are those obtained by the VGG architectures.
This may be due to the learning capabilities of each model, since
in general, and as will be analyzed later, the results improve as the
number of network parameters increases. The results reported in this
table are the average of the results obtained for the classification of
the different classes considered. Additionally, Appendix provides the
individual confusion matrices obtained for a detailed inspection of the
results.

The weights learned using the synthetic dataset were used to initial-
ize the networks before training with the real image dataset. Table 4
shows the results obtained for this second step of the training process.
This table also includes a comparison with the result that would be
obtained from training without this initialization, that is, initializing
with ILSVRC and then training directly with the real dataset. As will
be observed, the best results are again obtained with the Darknet-53
architecture followed by Xception. Note that this initialization helps
improve the results by an average of more than 3%, and if these
results are analyzed individually, by up to almost 10% in the case of
EfficientNet-B0 and 5.5% for Darknet-53. As before, Appendix provides
the individual confusion matrices obtained for a detailed inspection of
the results.

Object detection networks. The second approach evaluated for
the classification of the initial gesture was the use of object detection
networks, for which four alternatives were compared: Faster R-CNN
(FRCNN) (Ren et al., 2015), RetinaNet (Lin et al., 2017b), YOLO
v3 (Redmon and Farhadi, 2018), and SelAE (Gallego et al., 2018).
Table 5 shows the results obtained when employing these methods,
and compares them with the two best results obtained previously by
the classification networks (see Table 4). The object detection methods
return the position of the gestures in the image (the labeling used for
this process is described in Section 4). Since these networks can return
multiple predictions, the bounding box predicted with the highest
confidence was selected. In order to evaluate the result obtained, it

is necessary to differentiate between whether or not the ground truth
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Table 4
Results obtained in terms of Precision, Recall and 𝐹1 for the categorical classification of the real image dataset after initializing the 13 state-of-
the-art CNN topologies considered using the weights learned with the synthetic dataset. These figures represent the average of the individual
classification results obtained for the different classes. This table also includes the result obtained when not applying this initialization, that is,
starting only with the weights learned from ILSVRC. The best results obtained per metric are marked in bold type, while the second-best are
underlined.

Model No initialization Synthetic initialization

Precision Recall 𝐹1 Precision Recall 𝐹1

SqueezeNet (Iandola et al., 2016) 69.13 67.08 68.09 71.23 67.95 69.55
ResNet-50 (He et al., 2016) 80.26 78.98 79.61 81.78 80.07 80.92
VGG16 (Simonyan and Zisserman, 2014) 76.72 73.58 75.12 78.45 76.29 77.35
VGG19 (Simonyan and Zisserman, 2014) 79.19 78.33 78.76 81.20 79.90 80.54
Inception v3 (Szegedy et al., 2015) 75.68 73.33 74.49 78.62 75.50 77.03
MobileNet v1 (Howard et al., 2017) 82.72 82.75 82.73 83.96 83.04 83.50
MobileNet v2 (Sandler et al., 2018) 83.44 82.42 82.93 84.68 86.60 84.12
MobileNet v3 (Howard et al., 2019) 84.13 79.86 81.94 85.24 83.27 84.24
EfficientNet-B0 (Tan and Le, 2019) 67.29 61.09 64.04 78.50 69.86 73.93
EfficientNet-B1 (Tan and Le, 2019) 75.15 69.50 72.21 78.59 75.14 76.86
DenseNet121 (Huang et al., 2017) 82.88 79.29 81.05 85.90 81.43 83.61
Xception (Chollet, 2016) 87.01 86.25 86.63 91.42 90.21 90.81
Darknet-53 (Redmon and Farhadi, 2018) 89.80 87.64 88.71 95.31 93.14 94.21

Average 79.49 76.93 78.18 82.68 79.95 81.28
Table 5
Summary of the results obtained in terms of Precision, Recall and 𝐹1 by the different approaches considered for
the gesture classification task. These figures represent the average of the individual classification results obtained
for the different classes. The best result for each metric is marked in bold type, and the second best result is
underlined.

Approach Model Precision Recall 𝑭 𝟏

Categorical Xception (Chollet, 2016) 91.42 90.21 90.81
Darknet-53 (Redmon and Farhadi, 2018) 95.31 93.14 94.21

Object detection

FRCNN (Ren et al., 2015) 78.71 70.34 74.29
RetinaNet (Lin et al., 2017b) 86.25 83.29 84.74
SelAE (Gallego et al., 2018) 88.17 86.21 87.18
YOLO v3 (Redmon and Farhadi, 2018) 94.30 93.13 93.71

Hand tracking MediaPipe (Zhang et al., 2020b) 76.81 77.94 77.37
contains a gesture. When it does, the prediction is considered TP if its
IoU with the ground truth is greater than 0.5, FP when it is less than
0.5, or FN in the case of not returning any prediction. The opposite
applies for the gesture ‘‘None’’, which is considered to be TP when there
is no prediction and FP when there is.

Table 5 shows that, of all the object detection approaches, YOLO v3
obtains the best result, followed by SelAE and RetinaNet. However, if
we compare them with the methods specifically trained for categorical
classification, Darknet-53 (the backbone used by YOLO v3 itself) still
obtains the best score.

Hand tracking approach. This table also includes the result ob-
ained using the third approach: the detection of gestures based on
he hand tracking method provided by MediaPipe Hands (Zhang et al.,
020b). This method detects 21 3D keypoints corresponding to the
oints of the fingers of a hand from a single RGB image. We evaluated
ifferent approaches to classify gestures using this information, such as
NN (k-Nearest Neighbor) or SVM either directly on the 21 keypoints
r by accumulating the joint angles of each finger. The latter (using the
um of angles and SVM) was that which obtained the best results, and
as, therefore, the one that was finally included in the comparison.
owever, as will be observed in the table, the results of this method
re not competitive if we compare them with those of the other
pproximations (with the exception of FRCNN). These worse results are
wing to the fact that, in many cases, MediaPipe does not detect the
and correctly. These results also coincide with a recent work (Amaliya
t al., 2021) in which the performance of this method is compared with
ther approaches for the recognition of sign language.

Fig. 8 shows some samples of the detections made by this method.
he first row shows correct detections and the second row shows the
ases in which it has not been able to detect the hand. As will be noted,
hese failures occur when the hand is partially occluded (i.e., only the
ingers or part of the hand can be seen), which is quite common in the

roposed application owing to the position of the camera.

11
6.2.1. Significance tests
To further extend the previous comparison and derive strong con-

clusions out of them, we now perform a statistical analysis of the
results obtained. For that, we resort to the non-parametric Wilcoxon
signed-rank test (Demsar, 2006) and carry out a pairwise comparison
of the different classifiers in terms of the performance considering
the 𝐹1 figures for each fold, label and classifier. Fig. 9 shows the
results of this test, considering all the possible combinations of the
previously compared methods, both the uninitialized categorical CNN
architectures and those initialized with synthetic data, as well as the
object detection networks and the hand tracking approach. The yellow
and green colors in this figure respectively indicate that the method in
the row significantly improves that of the column when considering the
statistical significance levels of 90% and 95%.

In general, this figure shows that the initialization with the synthetic
dataset produces a significant improvement in the results, since the test
is passed 22 times more for this case. Regarding the individual results,
it can be easily observed that the methods with the worst results are
those that appear in the columns with more green or yellow circles,
since they represent the approaches that are exceeded more times.
Among these are SqueezeNet, EfficientNet, FRCNN and MediaPipe.
The methods that significantly stand out are Xception, Darknet-53,
RetinaNet, SelAE and YOLO v3, corresponding to the rows that pass
the test more times. Specifically, the network selected for our proposal
(Darknet-53) manages to outperform all others. It can be seen that
when this method is not initialized, it does not improve Xception or
YOLO v3, but after this initialization it does manage to overcome them
with a significance level of 95%.

6.2.2. Multi-objective optimization problem
Another important aspect to consider is the efficiency of the method

selected. Since the more parameters models have, the slower the per-

formance and the greater the storage space required, it is necessary
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Fig. 8. Some examples of the detections made by MediaPipe. The first row shows correct detections and the second row shows the cases in which the method failed to detect
the hand.
Fig. 9. Wilcoxon signed-rank test of the pairwise comparison in terms of the 𝐹1 score of the considered classification algorithms. Yellow and green colors respectively indicate
hat the method in the row significantly improves that of the column when considering the statistical significance value of 90% and 95%.
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o reach a trade-off between the efficiency of the network and its
ccuracy. However, these criteria are, quite often, contradictory, since
n improvement to one of them usually entails a worsening of the other.
rom this point of view, the selection of the best model can be seen as
Multi-objective Optimization Problem (MOP) in which two functions

re meant to be optimized simultaneously.
The most common means employed to deal with problems of this

ature is that of resorting to the concept of non-dominance: one solution
 t

12
s said to dominate another if, and only if, it is better or equal in
ach objective function, and at least strictly better in one of them. The
est solutions (there may be more than one) are, therefore, those that
re non-dominated. In the MOP framework, the strategies within this
et define the so-called Pareto frontier and can be considered the best
ithout having to define any order among them (Miettinen, 1999). This
ill allow us to detect previously evaluated approaches that reach a
rade-off between efficacy and efficiency.
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Fig. 10. Analysis of 𝐹1 and efficiency as a Multi-objective Optimization Problem (MOP). Non-dominated elements are highlighted.
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Assuming this MOP scenario, Fig. 10 shows the results obtained
y the different methods evaluated in the previous section, in which
ach point is a 2-dimensional value defined by its 𝐹1 (using the result
reviously obtained in Tables 4 and 5) and the number of parameters
f the corresponding topology. As can be seen, the best results for both
riteria (i.e., the non-dominated elements) are obtained by MobileNet
2 (with the lowest number of parameters), Darknet-53 (with the best
1), and SelAE (as an intermediate solution). In general, it is observed
hat the 𝐹1 improves as the number of parameters increases, which also
etermines a greater learning capacity. This trend is not true for less
ffective architectures, such as VGG, or for object detection methods,
uch as FRCNN, RetinaNet, or even YOLO v3, possibly because in these
ases they are trained to solve a much more complex task. In the case
f MediaPipe, in addition to this motivation, it presents the previously
entioned problem that the proposed user interface is not suitable for

his library.
As argued above, it is essential to obtain high precision in the first

tep of the proposed method, and it was for this reason that DarkNet-
3 was selected for the backbone, since it obtains an 𝐹1 that is 7.03%
igher than the next non-dominated result (SelAE). In addition, this
rchitecture performs well in current mobile devices. According to the
ests conducted on a Samsung A51 and a Huawei P30 lite, an average
esponse time of between 3 and 4 FPS was obtained.

.2.3. Temporal consistency
Another important part of the proposed architecture that had to be

valuated was the temporal consistency module (see Fig. 5) and the
ffect of the value selected for the 𝑘 parameter. This parameter makes
t possible to control the number of frames with the same response
hat must elapse for the response to be valid. Fig. 11 shows a graph
n which this value is studied in the range [1, 4] for the classification
ask and using the Darknet-53 backbone. As can be seen, the result
mproves when it is set to 2 or 3 frames, since this prevents frames
ith isolated errors from occurring. However, if this value is increased,

he result starts to worsen, since it has to wait many frames in order
o change the response, and it consequently makes mistakes in all the
ransitions between gestures. The decision was, therefore, made to set
he value of 𝑘 at 2, since at most it generates an erroneous frame
etween transitions, and in return it improves the 𝐹1 from 94.21% to
7.03%.
 a

13
Fig. 11. Evaluation of the 𝑘 parameter in the temporal consistency for the classification
task using the Darknet-53 backbone.

6.3. Evaluation of pointing and drag gestures

Once the main configuration of the architecture had been estab-
lished, the results obtained by each of the specialized heads were
analyzed. This section focuses on the heads used for the pointing and
drag gestures, starting with an analysis of the methodology proposed
for these actions (see Section 5.3), which is then compared with other
architectures. In all cases, the dataset with fingertip labeling for the
point and drag gestures was used (see Section 4).

The results were also evaluated using the 𝐹1 metric (Eq. (7)), but in
his case we considered the objects (i.e., the fingertips) whose location
as correctly detected. This was done by calculating the bounding
ox of the predicted objects (𝑃 ), which was then matched with the
ounding box of the ground truth (𝐵) with which it had a higher IoU
using Eq. (3)). A predicted bounding box 𝑃 was considered to be
orrectly detected if IoU(𝑃 ,𝐵) ≥ 𝜆. We established 𝜆 = 0.5, a threshold
alue commonly used in this type of tasks, and calculated the metric
1 considering the correct detections to be TP (i.e., when their IoU was
reater than 𝜆), the wrong detections to be FP (i.e., when a 𝑃 did not
verlap with any 𝐵 with a IoU greater than 𝜆), and those cases in which
ground truth object was not detected were considered to be FN. Note
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Fig. 12. Localization results (𝐹1 %) obtained by varying (a) the layer of the network from which the filters are selected (given in percentages with respect to 100% of the total
etwork depth), (b) the number of filters in the set | 𝑐

|, (c) the threshold 𝛽, and (d) the structuring element 𝑠 size.
that if multiple detections of the same object were predicted, only the
first was counted as positive while the others were counted as negative.

First, an evaluation of the parameters of the proposed methodology
(see Section 5.3) will be carried out, starting with the selected layer
(variable 𝑙 in Eq. (1)). This will be done by setting the remaining
parameters to an initial configuration (| 𝑐

| = 3, 𝛽 = 0.6, and a
square structuring element of size 𝑠 = 5 × 5), and by varying only the
selected layer 𝑙. Three representative network architectures from those
previously evaluated (Darknet-53, DenseNet121 and MobileNet v3) will
be considered in this analysis, although this adjustment was made for
all networks, as will be shown later.

Fig. 12(a) shows the influence of the CNN layer selected in order
to predict the localization. This was done by computing the result
obtained with all the layers from the network models considered,
while the remaining parameters were set to the aforementioned values.
Since each network has a different number of layers, in this figure we
represent the result as a function of the layer depth, where 100% of
the depth signifies the last layer of the network. As will be observed,
the results in the first part (more or less up to 50% of depth) were not
good. However, as expected, better localization results were obtained
in the last part of the networks (from 50% of depth), from which
higher-level features are generally learned. The ‘‘conv2d_49’’ layer was,
therefore, eventually selected for Darknet-53, ‘‘conv5_block6_2_conv’’
for DenseNet121, and ‘‘re_lu_35’’ for MobileNet v3 (the full network
architectures can be consulted in the corresponding papers).

Another important variable that had to be analyzed was the number
of filters selected in order to obtain the localization, that is, the size
of the set | 𝑐

| in Eq. (4), which can be adjusted by modifying the
threshold value 𝛼. In this experiment, we used the best layers previously
selected: 𝛽 = 0.6 and 𝑠 = 5×5. Fig. 12(b) shows the results obtained by
varying the size of this set. As will be noted, a maximum is obtained
when using between 3 and 6 filters, and the best results are obtained
with 4 filters for Darknet-53 and DenseNet121, and with 5 filters for
MobileNet v3.
14
Another parameter that had to be analyzed was the value of the
threshold 𝛽 (see Eqs. (2) and (4)). As before, we set the remaining
parameter values to the best ones found and varied only this parameter
in the range [0, 1]. Fig. 12(c) shows that better results are obtained
with higher values for this threshold, i.e., when selecting only those
pixels with the highest activations. The specific values selected for each
network are: 𝛽 = 0.92 for Darknet-53, 𝛽 = 0.84 for DenseNet121, and
𝛽 = 0.88 for MobileNet v3.

Finally, we also analyzed the influence of the size of the structuring
element 𝑠 (see Eqs. (2) and (4)) that is used for the dilation of the result
obtained from the activation of the filters before calculating the bound-
ing box with the position of the detected objects. The influence of this
parameter was assessed by varying the size of the structuring element
between 3 × 3 and 13 × 13, and setting the remaining parameters to
the best ones found in the previous experiments. Fig. 12(d) shows the
result of this analysis. As can be seen, the result remains fairly stable
when varying this parameter, and improves only slightly with a kernel
size of 7 × 7 for Darknet-53 and DenseNet121, and 5 × 5 for MobileNet
v3.

Having analyzed the different parameters of the proposed method
and determined the best configuration, the results obtained are now
compared with those of other state-of-the-art methods, including the
use of FS on the rest of categorical networks and the four object
detection networks evaluated previously (FRCNN Ren et al., 2015,
RetinaNet Lin et al., 2017b, YOLO v3 Redmon and Farhadi, 2018,
and SelAE Gallego et al., 2018). These last four proposals will be
denoted as ‘‘single-head’’, since they are task-specific approaches that,
unlike the multi-head ones, do not have to solve other tasks. For this
comparison, we show the average value of the IoU obtained, along
with the Average Precision (AP), given that these metrics are widely
used to evaluate object detection methods, as occurs in the PASCAL
VOC challenge. The most recent PASCAL challenge AP metric has
been used (by interpolating all the points rather than using a fixed
set of uniformly-spaced recall values) (Everingham et al., 2015). This
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Fig. 13. Wilcoxon signed-rank test of the pairwise comparison in terms of mAP of the considered object location algorithms. Yellow and green colors respectively indicate that
he method in the row significantly improves that of the column when considering the statistical significance value of 90% and 95%.
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Table 6
Comparison of the results obtained using the proposed approach (Darknet-53 + FS)
nd other state-of-the-art solutions, including object detection methods, and the result
btained after applying FS to the other categorical networks considered previously. The
able differentiates the methods that are specific to the task (single-head) from those
rained following the proposed multi-head architecture. The best results for each metric
re marked in bold type, while the second-best are underlined.
Approach Method Avg(Iou) mAP

Object detection
(Single-head)

FRCNN 77.95 85.46
RetinaNet 83.35 90.08
YOLO v3 84.71 95.63
SelAE 83.38 91.21

Filter selection
(Multi-head)

SqueezeNet + FS 65.25 70.12
ResNet-50 + FS 74.74 83.99
VGG16 + FS 71.07 79.46
VGG19 + FS 71.91 81.77
Inception v3 + FS 58.89 78.30
MobileNet v1 + FS 71.13 84.28
MobileNet v2 + FS 74.51 85.61
MobileNet v3 + FS 75.40 88.93
EfficientNetB0 + FS 77.40 85.25
EfficientNetB1 + FS 79.57 91.25
DenseNet121 + FS 80.26 91.20
Xception + FS 83.66 92.14
Darknet-53 + FS 85.77 96.32

metric calculates the mean value in the recall interval [0, 1], which is
quivalent to the area under the curve (AUC) of the Precision–Recall
urve (PRC). The mAP is calculated by averaging the AP obtained for
ach class.

Table 6 shows the results of this comparison. As can be seen,
he method proposed in order to carry out this task (Darknet-53 +
S) is that which obtains the best results, followed by YOLO v3 (the
rchitecture to which the backbone employed belongs). In general,
he object detection approaches obtain quite good results. However, in
ddition to slightly improving the result, FS is a more efficient solution
ince it does not add any processing layer to the network, it simply
akes advantage of the activations of the filters already calculated by
he backbone in order to perform this detection.
 m

15
As in the previous experiment, to rigorously validate these re-
ults, we have performed a statistical analysis using Wilcoxon’s non-
arametric signed-rank test and pairwise comparing the results of all
he methods evaluated in terms of mAP. Fig. 13 shows the results of
his test, in which the proposal improves the rest of the methods with
significance of 95%, with the exception of SelAE, whose result is also

xceeded but reducing the significance to 90%.
Fig. 14 shows an example of the filters obtained using the proposed

ethod Darknet-53+FS for an input image. This figure also shows the
rocess of adding up the result until the final prediction is attained. The
irst row of this image shows the input frame and the process carried
ut for the first filter, while the second, third and fourth rows show,
n addition to the process performed on the filter, the result of the
ncremental sum with the previous filters.

.4. Loupe gesture evaluation

The descriptions generated by the head dedicated to the loupe
esture were evaluated by employing the widely adopted Bi-Lingual
valuation Understudy (BLEU) metric (Papineni et al., 2002). It is
enerally used to assess the quality of machine-generated sentences
y comparing them with reference sentences in problems related to
anguage generation, image captioning, text summarizing, or speech
ecognition, among others. The output of this metric is in the range
0, 1], where values closer to 1 represent more similar texts. A score of
indicates that the sentences are the same. However, it is not necessary

o attain this value for the text to be correct. The use of n-grams of a
ength of between 1 and 4 were considered for the calculation of this
etric. This length refers to the number of words in a row that have

o match, signifying that the length of 4 (denoted as BLEU-4) would be
he most challenging. Also note that for this experiment, in addition to
he images with the loupe gesture, the pointing gesture and the images
ithout gesture were also evaluated. These last two cases were added

o consider further evaluation samples and also to assess them in case
hey also have to generate a captioning in the final application.

Table 7 shows the results of this evaluation, in which the proposed
ethod (Darknet-53 + captioning) is compared to the original merge-

odel approach (Tanti et al., 2018) (on which the specialized head of
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Table 7
Comparison of the results obtained (in terms of BLEU) for the image captioning task. The table differentiates the methods that are specific to
the task (single-head) from those trained following the proposed multi-head architecture with the captioning head.

Approach Method BLEU-4 BLEU-3 BLEU-2 BLEU-1

Single-head

Merge-model (Tanti et al., 2018) 0.1518 0.1864 0.3151 0.4987
MobileNet v3 + captioning 0.1803 0.2921 0.3477 0.5614
DenseNet121 + captioning 0.1997 0.3117 0.3904 0.5882
Darknet-53 + captioning 0.2163 0.3236 0.4408 0.6135

Multi-head
MobileNet v3 + captioning 0.1749 0.2803 0.3295 0.5401
DenseNet121 + captioning 0.1931 0.3027 0.3777 0.5718
Darknet-53 + captioning 0.2088 0.3181 0.4390 0.6027
Fig. 14. Example of the process performed to calculate the location of the fingertips
sing the proposed approach (Darknet-53 + FS). The first image in the first row is the

input. The intermediate results obtained for each of the four filters selected are shown,
along with their incremental sum with the previous filters. The last row shows the
final result, including an overlay of the predicted localization with the input image. A
higher activation value is indicated in dark red.

our proposal is based) and with the result that would be obtained when
exchanging Darknet-53 for DenseNet121 or MobileNet v3. Note that the
table differentiates multi-head methods from those that are specifically
designed and trained for the task, i.e., the architecture composed of
only the backbone and the layers used by the captioning head. In this
latter case, the network is initialized with the weights pre-trained for
ILSVRC and then trained (without freezing the backbone) with the
dataset created for this task.

As will be observed in the table, the best result is obtained using
the single-head approach that combines Darknet-53 with the proposed
captioning head. However, this result is only slightly better than that
obtained when considering the whole proposed multi-head architecture
(result of the last row). Also, the statistical tests included in Fig. 15(a)
16
indicate that the improvement obtained by the single-head approach
versus the multi-head approach is not significant. This small improve-
ment does not, therefore, justify the use of an independent network to
carry out this task, since this would suppose a considerable increase in
the resources required.

The poor result obtained by the merge-model method is perhaps due
to the fact that it considers a simpler backbone (VGG19). As a reference,
the results reported by Tanti et al. (2018) for the Flikr8k dataset are
0.191, 0.287, 0.424, 0.611 for BLEU-4, BLEU-3, BLEU-2, and BLEU-1,
respectively.

Fig. 16 shows ten examples of the captions generated for our
dataset. The first two columns of these examples include the cases in
which the texts generated mention the hand or the fingers and the
result obtained after post-processing them. As will be noted, the method
generates descriptions that correctly detail the scenes and the objects
that appear in them.

6.5. Evaluation of pinch gesture

Finally, the pinch gesture was evaluated. As indicated in the
methodology, this is a dynamic gesture that may change in order to
indicate whether the user wishes to zoom in, zoom out, or maintain
the current zoom level. As in the previous sections, the Precision,
Recall and 𝐹1 metrics were employed to assess the performance of the
detection of these actions.

For this evaluation, the proposed approach was compared with both
single-head and multi-head solutions. For the single-head case, the use
of MediaPipe and the pinch head combined with different backbones
was considered. These were initialized with the weights obtained for
ILSVRC and fine-tuned for the dataset prepared for this purpose. In
the case of MediaPipe, the distance between the thumb and index
fingers was calculated in order to determine which gesture was being
performed: zooming in when the distance increases, zooming out when
the distance decreases, and maintaining the zoom level when the dis-
tance remains stable (allowing a small threshold of ±3 px of variation).
For the multi-head case, in addition to Darknet-53, DenseNet121 and
MobileNet v3 were also evaluated.

Table 8 shows the results of this comparison. As will be observed,
MediaPipe obtains the lowest scores since, as previously argued, this
method is quite dependent on the visibility of the hand. The proposed
approach (multi-head Darknet-53 + pinch) achieves an 𝐹1 of 90.64%,
which is only 0.97% less than the result obtained by the same archi-
tecture but trained following a single-head approach. This experiment
shows that the proposed training process does not entail a notable
deterioration in the result, but does in return allow the achievement of
an efficient system for the simultaneous processing of different actions.

As before, we performed statistical tests to rigorously validate these
results. As can be seen in Fig. 15(b), the improvement obtained with
the single-head solution is not significant with respect to the multi-head
proposal. Therefore, this small difference would not justify the use of
a parallel network to process this gesture, since this would imply a

reduction in efficiency and an increase in the resources required.
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Fig. 15. Wilcoxon signed-rank test of the pairwise comparison of the considered algorithms for the loupe head and the pinch head. Yellow and green colors respectively indicate
that the method in the row significantly improves that of the column when considering the statistical significance value of 90% and 95%.
Fig. 16. Some evaluation examples of the captioning model using the proposed hand gesture dataset. The first two columns show those cases in which the description mentions
the hand or the finger, and the result obtained after the post-processing step.
Table 8
Comparison of the results obtained for the pinch gesture in terms of Precision, Recall
and 𝐹1. These figures represent the average of the individual classification results
btained for the different classes. The table separates the methods specifically designed
or this task (referred to as ‘‘single-head’’) from those trained following the proposed
ulti-head architecture.
Approach Method Precision Recall 𝑭 𝟏

Single-head
MediaPipe 63.50 63.57 63.53
MobileNet v3 + pinch head 83.73 82.19 82.95
DenseNet121 + pinch head 85.12 85.75 85.43
Darknet-53 + pinch head 93.27 90.01 91.61

Multi-head
MobileNet v3 + pinch head 82.83 81.92 82.37
DenseNet121 + pinch head 84.87 84.11 84.49
Darknet-53 + pinch head 92.06 89.27 90.64
17
7. Discussion and limitations

Although exhaustive experimentation has been carried out with
very good results, the current system has some limitations that should
be resolved before putting it into practice. For this purpose, two key as-
pects should be studied: the usability of the interface and the generality
and/or robustness of the model.

To evaluate the usability of the user interface, a set of user tests
could be carried out with the participation of people with visual
impairments. The objective of this study will be to analyze the proposed
interface, the set of gestures considered and the actions performed for
each gesture. The proposed architecture allows gestures and actions to
be easily added or modified, and the proposed study will, therefore,
help adjust the platform to design a more usable interface.

To improve the generalization capacity and the robustness of the
system, a key aspect would be to review the database used. Although
a very complete corpus has been considered for this work – with about
40k very varied images – to put the system into practice and guarantee
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Fig. A.17. Results in terms of a normalized confusion matrix for a selection of 6 of the state-of-the-art CNN topologies compared in Table 3 for the classification of the synthetic
dataset.
its proper functioning, it would be necessary to expand this dataset. For
this, we would start by considerably increasing the synthetic database,
since this would not have a labeling cost, and a greater amount of
backgrounds and variations in the generated hands and gestures could
be added. For the dataset with real images, the usability tests carried
out could be used to record real use cases. This would add much more
variability by including the hands of more people with different sizes
and skin colors, new backgrounds, etc. In addition, this process could
be applied more times if errors are still detected in the system. For
example, errors could be reported along with the recording and, in this
way, the system could be retrained to fix them.

Another possible avenue to develop a more robust and generic
system would be to improve the proposed methodology itself. For this,
a key aspect is the descriptor used to represent the scene, since the rest
of the processes depend on it. For this, instead of relying solely on the
output of the backbone, several descriptors of this network could be
combined or even a series of layers with a specialized loss could be
added so that other features are extracted, following an approach sim-
ilar to the one proposed by Sitaula et al. (2021b,a), where descriptors
representing background and foreground, or objects and context are
combined. Furthermore, this solution would also be efficient since, by
using the same backbone and even adding a parallel branch, it would
not affect the performance of the system.

The inclusion of regularization mechanisms or the use of other
proposals for the specialized heads could also be studied. The heads
that have the most room for improvement are those used for the loupe
and pinch gestures, since the others, as validated by statistical tests,
obtain a significant improvement compared to the rest of the state-
of-the-art methods. For the loupe gesture, it would be key to collect
a much larger database of descriptions, considering, for example, the
Microsoft Common Objects in Context (COCO) dataset (Lin et al.,
2014b), which contains 328 K images. For dynamic gestures, such
as the pinch gesture, recursive layers including attention could be
integrated to extract time-series features as proposed in Al-qaness et al.

(2022).

18
8. Conclusions

This paper proposes an interactive system for mobile devices con-
trolled by hand gestures, whose objective is to assist people with visual
impairments. This system allows users to interact with the device using
simple static and dynamic hand gestures, each of which triggers a
different action, such as describing the scene or the object pointed
to, zooming, etc. The method also optimizes the resources required to
perform different tasks, signifying that the system can be embedded
in mobile devices. This has been done by employing an efficient multi-
head neural network that uses the same features extracted by a common
backbone to perform the different actions, which are, moreover, ac-
tivated only if its corresponding gesture is detected. Therefore, the
proposed system allows performing multiple actions in the same appli-
cation. This is very helpful for visually impaired people, as they do not
have to switch applications to perform another action, but can access
multiple assistance tools through an intuitive and natural command
interface, such as hand gestures. This differentiates our proposal from
the rest of the state-of-the-art approaches that focus on a single type of
assistance task.

Three different datasets with a total of about 40k images were
created to train and evaluate the proposed methodology. The samples
were labeled at different levels: category, position of the hands and
fingertips, position and category of the objects pointed to, and de-
scription of the scenes. The experimentation carried out in each of the
steps of the proposed method both attained good results and showed
the efficiency of the architecture, resulting in the approximation that
obtained the highest precision when adjusting the trade-off between
performance and accuracy. The proposed temporal consistency module
has proven to improve results by almost 3% thanks to a simple criterion
of continuity in the predictions. When comparing the results of each of
the specialized heads with those of other state-of-the-art approaches,
including specific options for those same tasks, the best results (or
almost the best) are in all cases attained by these specialized heads,
thus demonstrating the effectiveness of the proposed architecture, even
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Fig. A.18. Results in terms of a normalized confusion matrix for a selection of 6 of the state-of-the-art CNN topologies compared in Table 4 (columns ‘‘No initialization’’) for the
classification of the real dataset when not applying the proposed initialization based on the weights obtained with the synthetic dataset.
Fig. A.19. Results in terms of a normalized confusion matrix for a selection of 6 of the state-of-the-art CNN topologies compared in Table 4 (columns ‘‘Synthetic initialization’’)
for the classification of the real dataset when applying the initialization based on the weights obtained with the synthetic dataset.
when compared to specific approaches. Moreover, the architecture has
shown a good performance in current mobile devices, with an average
19
response time of between 3 and 4 FPS obtained in tests conducted on
a Samsung A51 and a Huawei P30 lite.
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As future work, it is intended to solve the limitations of the system
and put it into practice. The first action will be to carry out a set of user
tests with the participation of visually impaired people to evaluate the
system and its usability. Once the final interface and the set of gestures
have been determined, it is intended to improve the generality and
robustness of the system, expanding the variability of the scenes and
objects considered in the datasets used for the initial classification and
for the detection of objects and the captioning actions. A last point to
address is that of studying how to improve the proposed architecture,
including the intermediate descriptor and the specialized heads.
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Appendix. Confusion matrices

This appendix includes the confusion matrices obtained for the ges-
ture classification experiments shown in Section 6.2. Specifically, the
confusion matrices have been calculated for a representative selection
of 6 of the 17 state-of-the-art methods compared. Figs. A.17–A.19 show
the confusion matrices corresponding respectively to the results of the
Tables 3, 4 (columns ‘‘No initialization’’) and 4 (columns ‘‘Synthetic
initialization’’). In each confusion matrix, the predicted label is rep-
resented on the horizontal axis and the ground truth on the vertical
axis.
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