
1 

Biological activities of peptides obtained by pepsin hydrolysis of fishery products 1 

Daniel Castañeda-Valbuenaa, Ángel Berenguer Murciab, Roberto Fernandez-Lafuentec,d, 2 

Roberto Morellon-Sterlingc,e, Veymar G. Tacias-Pascaciof, * 3 

a. Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera4 

Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, México. 5 

b. Departamento de Química Inorgánica e Instituto Universitario de Materiales,6 

Universidad de Alicante, Alicante, Spain. 7 

c. Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain8 

d. Center of Excellence in Bionanoscience Research, External Scientific Advisory9 

Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.   10 

e. Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid,11 

Darwin 2, Campus UAM-CSIC, Cantoblanco, Madrid, 28049, Spain. 12 

f. Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de13 

Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, México. 14 

Corresponding author: veymar.tacias@unicach.mx ; Tel: +52-961 269 79 60 (V.G. T-P). 15 

This is a previous version of the article published in Process Biochemistry. 2022, 120: 53-63. https://doi.org/10.1016/j.procbio.2022.05.029

mailto:veymar.tacias@unicach.mx
https://doi.org/10.1016/j.procbio.2022.05.029


2 
 

Abstract 16 

The fishing industry generates tons of waste of great intrinsic value due to its high 17 

content of biomolecules such as proteins. The processing of proteins can result in products 18 

with high nutritional, pharmacological, and technological interest due to the peptides that can 19 

be derived from them. This review work compiles the investigations that have performed on 20 

the production of peptides from proteins of fish origin using pepsin as catalyst from the 21 

corresponding hydrolytic reaction, with special emphasis on the description of each of the 22 

reported biological properties, as well as on some uses that have been explored for these 23 

peptides. This work may be useful to promote new research involving the use of pepsin in 24 

the production of bioactive peptides from fishery products, as well as for the development of 25 

mechanisms that allow their use in different industrial processes. 26 
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Introduction 29 

Fisheries production exceeded 170 million tons worldwide during 2018, which 30 

represented a significant increase in their economic activity [1]. The growth of this industry 31 

is mainly due to an increase in per capita consumption of fish in developed countries [2]. 32 

This phenomenon in turn, has led to an increase in the volume of by-products, which 33 

represent approximately 50% of the complete fish, and that are generally discarded as waste 34 

(causing a negative impact on the environment) or used to obtain products with low added 35 

value [3,4] such as fish meal and fish oil [5]. However, this situation can be reduced through 36 

the implementation of biotechnological processes that allow the use of these residues to 37 

obtain biomolecules of great commercial interest, such as enzymes, polyunsaturated fatty 38 

acids, essential amino acids or peptides with biological activities [6,7].  39 

The high content (10-25%) [8] of proteins in fish muscles and by-products (heads, 40 

viscera, cuttings, roe, frames, clippings, skins and spines) (8-35%) [9] together with their 41 

high diversity (due to the presence of different groups of proteins such as myofibrillar, 42 

stromal and sarcoplasmic [10–13]), gives fish by-products a great potential for obtaining 43 

bioactive peptides, which have aroused special interest in the food and pharmaceutical 44 

industry, due to their important and diverse biological properties [14]. As it can be seen, this 45 

activity allows adding value to raw materials with high protein content and low commercial 46 

value [9]. 47 

The process to produce peptides with bioactive properties from fish and by-products 48 

consists of different stages (Fig. 1). First, a pretreatment of the raw material is carried out, to 49 

form a homogeneous mixture (water-ground fish parts) with a low fat content [15]. The 50 

second stage of the process is known as hydrolysis, which can be carried out chemically (in 51 
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acidic or alkaline media) or using proteases of animal, vegetable or microorganism origin 52 

[16]. Chemical methods are not generally recommended because they damage the quality of 53 

the final product [8] and are not environmentally friendly [17]. The third step is the 54 

fractioning and purification of the peptides, which is carried out because most scientific 55 

reports indicate a greater biological activity of smaller peptides with variable sizes between 56 

3 and 20 amino acids [18–20], although most sequences are between 2 and 4 amino acids 57 

long [16]. This stage is usually carried out using different techniques such as ultrafiltration 58 

membranes [21], electrodialysis [22], electrodialysis with ultrafiltration membrane [23,24] 59 

or different chromatographic techniques, among which size exclusion, ion exchange and high 60 

resolution liquid stand out [25]. Since the biological properties of the peptides are expressed 61 

by the peptide when it is incorporated to the protein [26], the analysis of the biological 62 

properties is carried out in several moments of the process. An initial analysis is performed 63 

after the hydrolysis process and an additional one is done for each purification step product. 64 

Fig. 1. Should be here 65 

Bioactive peptides have the ability to manage, prevent or treat certain diseases such 66 

as diabetes [27], cancer [28] or cardiovascular disease [29], and also play an important role 67 

in the development of functional foods [30,31], due to their biological properties such as 68 

antioxidant, immunoregulatory, antimicrobial, anti-inflammatory, anti-allergenic activities, 69 

among others [32]. The bioactivity of peptides depend on their chemical structure, size and 70 

amino acid composition [33], that are defined by the protein from which they were cleaved 71 

and the method used for protein hydrolysis [34]. Particularly, when enzymatic hydrolysis is 72 

used for the release of peptides, the enzyme used during the process plays a fundamental role 73 

in the quantity and properties of the peptides released [35], since depending on the enzyme, 74 
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the protein will be cut at different bonds [14], that is to say that the selectivity and specificity 75 

that each enzyme has towards certain bonds, will propitiate that different peptide fractions 76 

are obtained from the same protein when using different enzymes. This diversity of peptides 77 

that can be obtained using different protein sources and employing different enzymes has led 78 

to the development of several investigations for the recovery of biological peptides using 79 

different proteolytic enzymes among which are Alcalase [36], papain [37], ficin [38], 80 

bromelain [39] or pepsin [40]. 81 

Pepsin features 82 

Pepsin (BRENDA:EC3.4.23.1) is one of the three main proteolytic enzymes in the 83 

digestive system, and is found in gastric juices at a concentration of 400 mg/L. Pepsin (human 84 

and porcine) is produced in the mucosal lining of the stomach in an inactive form 85 

(pepsinogen) and is converted to its active form (pepsin) through proteolytic degradation 86 

[41]. Pepsinogen is a molecule that has two lobes (N and C terminal), that are stable at 87 

alkaline pH; however, when the pH decreases below 5, the N-terminal lobule is removed, 88 

releasing active pepsin with a molecular weight between 34 and 37 kDa [42,43]. It has been 89 

reported that the behavior of this enzyme in acidic media is favored by the existence of a 90 

phosphoryl group covalently attached to Ser68. This causes porcine pepsin to have a net 91 

negative charge even at acid pH values [44], explaining why this enzyme exhibits high 92 

efficiency in acidic environments (pH 1-3). The pepsin specificity is mainly influenced by 93 

the amino acid residues at position P1 and P1′ with a preferential cleavage in hydrophobic 94 

residues, such as phenylalanine, tryptophan or tyrosine [45–47].  95 

Pepsin, mainly of porcine, bovine and microbial origin, is one of the most important 96 

industrial enzymes, accounting for approximately 60% of commercially marketed enzymes 97 
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[48].  This enzyme has application in multiple industries such as leather tanning, detergent, 98 

agrochemical, food and pharmaceutical industry [43]. In addition, pepsin is widely used in 99 

the production of peptides showing high antioxidant [49], antihypertensive [50], 100 

antimicrobial [51] and many others biological activities and functionally properties [52–57]. 101 

In this regard, it is particularly important to mention that a treatment with pepsin has been 102 

observed to reduce the allergenicity of certain proteins, and this is closely related to one of 103 

the functions indicated for this enzyme in the human digestive system [58,59], since this 104 

enzyme has an important role in reducing the risk of allergenic peptides reaching the 105 

intestinal lumen [60]. In this way, pepsin can be used in the production of hydrolysates or 106 

peptides, which in addition to having biological activities, have reduced allergenicity [61]. 107 

Furthermore, considering that this enzyme has an affinity to cleave the bonds involving 108 

hydrophobic amino acids [62] the released peptides will have hydrophobic amino acids in 109 

their structure (Leucine, isoleucine or Valine). These peptides have better antioxidant activity 110 

[63] and ACE-inhibitory activity [64] than other peptides. This makes pepsin seem like a 111 

protease of great interest for obtaining peptides with strong biological activities. 112 

Thus, the objective of this review is to compile the literature indexed in Scopus, about 113 

obtaining peptides with bioactive properties from protein of fish origin, using pepsin as a 114 

hydrolytic catalyst. 115 

Bioactive properties of peptides 116 

Antioxidant capacity 117 

The excess of free radicals is a problem of great consideration both in the medical and 118 

food industries, since these compounds affect the quality of food, shortening its useful life 119 

and promoting oxidative stress that can lead to the appearance of different chronic diseases 120 
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[65]. To counteract the negative effects of free radicals, the food industry has proposed the 121 

use of synthetic antioxidants such as t-butylhydroquinone, propyl gallate and 122 

butylhydroxyanisole, which negatively affect human health when consumed in high doses 123 

[14,66]. On the other hand, food-derived antioxidant peptides have no adverse effects 124 

compared to chemical synthesized antioxidant compounds[67,68]. Peptides with antioxidant 125 

activity are capable of reducing oxidative stress and lipid oxidation caused by free radicals 126 

[67]. For this reason within its potential applications are the development of health-promoting 127 

foods and the maintenance of the quality and safety of food products [69]. 128 

In general, it is known that the main mechanisms by which antioxidant peptides 129 

inhibit oxidation are through scavenging free radicals, inactivation of reactive oxygen 130 

species, transition metals, chelation of pro-oxidative compounds or reduction of 131 

hydroperoxides [70]. However, the antioxidant capacity of peptides is not yet known exactly, 132 

because this biological property is generally measured using in vitro methods (designed for 133 

the analysis of samples of plant origin) which do not allow accurate results to be obtained 134 

with respect to in vivo activity [71,72], which generates a halo of greater uncertainty about 135 

the true antioxidant capacity of the peptides. Due to the above, most of the research carried 136 

out in obtaining and characterizing bioactive peptides tries to include at least two techniques 137 

for the evaluation of antioxidant activity. Among the most used methods are Total Radical 138 

Trap Antioxidant Parameter (TRAP), Oxygen Radical Absorbance Capacity (ORAC), and 139 

Carotene Bleaching Assay [73], 2,20 -Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) 140 

(ABTS) method, Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, hydroxyl 141 

radical (OH) scavenging activity, superoxide anion (O2) radical scavenging activity and 142 

superoxide dismutase (SOD) [74,75] The above methods are based on the antioxidants 143 



8 
 

reaction with free radicals by hydrogen atom transfer (HAT) or single electron transfer 144 

mechanism (SET); or the combination of both HAT and SET mechanisms [69]. For example, 145 

the FRAP method is based on the reduction of ferric- tripyridyltriazine [FeIII(TPTZ)]3+ 146 

(light-yellow color) to ferrous-tripyridyltriazine [FeII(TPTZ)]2+ (intense blue color) under 147 

acidic conditions (pH 3.6) [72] (Equation 1).  148 

Equation 1: [FeIII(TPTZ)]3+ + ArOH → [FeII(TPTZ)]2+ + ArO● + H+ 149 

The DPPH method evaluates the antioxidant capacity of biomolecules against the 150 

DPPH● radical. This method has the advantage of identifying antioxidant species that use 151 

both HAT (equation 2) and SET (equation 3) as an antioxidant mechanism [76]  152 

Equation 2: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷● + 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 →  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐷𝐷 + 𝐴𝐴𝐴𝐴𝐴𝐴● 153 

Equation 3: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷● + 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 →  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐷𝐷 + [𝐴𝐴𝐴𝐴𝐴𝐴]●+ 154 

In the ABTS method, the ABTS•+ radical is reacted with ammonium or potassium 155 

persulfate for 16 hours before adding the antioxidant agents, which stabilize ABTS•+ by 156 

donating an electron (equation 4) [77]. 157 

Equation 4. ((NH4)2)S3O3 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 → 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴●+𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 → 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝐴𝐴● 158 

The ORAC method is based on the loss of fluorescein from the target molecules when 159 

they are attacked by peroxyl radicals, a loss that is delayed by the presence of antioxidants in 160 

the medium, which quench the peroxyl radicals by transferring hydrogen atoms (equation 5) 161 

or by the sum of radicals (equation 6)  [77].  162 

Equation 5. ROO● + AH → ROOH + A● 163 
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Equation 6. ROO● + A● → ROO − A 164 

As it will be seen in the studies presented below, it is common to use two or more of 165 

the methods described, in order to characterize the antioxidant activity of the peptides 166 

obtained. 167 

The work carried out by Chalamaiah et al [78], showed how, hydrolysates could be 168 

obtained from eggs of Labeo rohita roe using pepsin as a proteolytic enzyme with capacity 169 

values for scavenging ABTS● and DPPH● radicals by ≥ 80%, as well as an ability to reduce 170 

more than 55% the Fe3+ ion presence [78]. In another work, six different enzymes (Alcalase, 171 

Flavourzyme, Neutrase, pepsin, Protamex and trypsin) were used to hydrolyze salmon dorsal 172 

fins, producing a hydrolysate with great activity to stabilize the DPPH● radical [79]. Pepsin 173 

hydrolysis resulted in a hydrolysate with the highest antioxidant activity, from which a 174 

peptide (Phe-Leu-Asn-Glu-Phe-Leu-His-Val) responsible for a large percentage of the 175 

antioxidant activity of the entire product was purified and sequenced [79]. Pepsin also proved 176 

to be better than papain for producing hydrolysates from Rastrelliger kanagurta (Indian 177 

mackerel) backbone with antioxidant activity, property evaluated in terms of ability to 178 

scavenge DDPH● (46%) and superoxide (58.5%) radicals, ability to reduce Fe3+ and inhibit 179 

lipid oxidation [5].  180 

Fish by-catch can be used in the production of hydrolysates with antioxidant 181 

properties, as it was done with the muscle of Decapterus maruadsi using pepsin as a 182 

hydrolyzing agent. The obtained hydrolysate presented activity to quench the DPPH● (32%) 183 

and superoxide (7.57%) radicals, as well as to reduce the radical Fe3+ [80]. Continuing with 184 

muscle hydrolysates, Pei-Teng et al [81] studied the enzymatic hydrolysis of TGGG grouper 185 
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fillets using four different enzymes (Alcalase, proteinase K, trypsin and pepsin). The authors 186 

report that the hydrolysates obtained with pepsin exhibited the highest reducing power (30% 187 

against the Fe3+ ion [81]). 188 

Waste from the aquaculture industry has also been the object of study to obtain 189 

hydrolysates, as shown by the work of Tejpal et al [62], who evaluated the effect of keeping 190 

a mixture of tilapia waste in refrigeration on the biofunctional properties of the hydrolysates 191 

obtained after processing with pepsin. The results of this study suggested that although the 192 

refrigeration process has a negative effect on the antioxidant activity of the hydrolysates, they 193 

have the same or greater capacity to reduce Fe3+ than synthetic antioxidants such as BHA 194 

and BHT [62]. 195 

Recent investigations have shown that pepsin can work adequately in tandem with 196 

other proteases as it happens in the digestive tract. One of the most studied systems is the 197 

pepsin-trypsin system, which has been used in the production of antioxidant peptides from 198 

Katsuwonus pelamis (skipjack tuna ) by-products (scales, heads and bones) [82–84], 199 

Pseudosciaena polyactis ( redlip croaker) scales collagen [85], Lophius litulon ( monkfish) 200 

muscle [86], and Scomberomorous niphonius (Spanish mackerel) muscle [87]. From skipjack 201 

tuna bones, it was possible to identify the sequence of a peptide fraction (Gly-Ala-Glu-Gly- 202 

Gly- Ile-Gly) that, at a concentration of less than 0.5 mg/mL, presented half of the maximum 203 

effective concentration to inhibit the radicals DPPH, hydroxyl radical, superoxide anion 204 

radical and ABTS cation radical [82]. For its part, from the flake gelatin of the skipjack tuna 205 

hydrolysate, the peptide Asp-Gly-Pro-Lys-Gly-His exhibited a high radical scavenging 206 

capacity with EC50 values of 0.54, 0.41 and 0.71 mg/mL for DPPH radicals, hydroxyl and 207 

superoxide anion, respectively [84], which are higher values than those reported in extracts 208 
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of vegetable raw materials such as barley seeds (Hordeum vulgare L.) [88] . Finally, from 209 

skipjack tuna head hydrolysates, a peptide fraction whose maximum effective concentration 210 

(EC50) against DPPH radical, hydroxyl radical and superoxide anion radical was less than 211 

0.6 mg/mL, was identified as Trp-Met-Phe-Asp-Trp [83]. In the case of the Monkfish muscle 212 

hydrolysates and redlip croaker scales collagen, two peptides were identified, Tyr-Trp-Asp-213 

Ala-Trp and Glu-Gly-Pro-Phe-Gly-Pro-Glu-Gly, respectively. These have great potential to 214 

be used in the treatment of liver diseases associated with oxidative stress, since these peptides 215 

had the capacity to promote the activation of intracellular enzymes related to oxidative 216 

balance such as superoxide dismutase, catalase and glutathione peroxidase, as an additional 217 

property to the antioxidant activity presented by Monkfish muscle hydrolysate and redlip 218 

croaker scales peptide against the DPPH radical (EC50 0.51 and 0.37 mg/mL, respectively), 219 

to the hydroxyl radical (EC50 0.32 and 0.33 mg/mL, respectively) and the superoxide anion 220 

radical (EC50 0.48 and 0.47 mg/mL), respectively [85,86]. In the same way, as in the studies 221 

presented above, by means of the hydrolysis of the Spanish mackerel muscle, the 222 

identification of a highly antioxidant peptide (Gly-Tyr-Asp-Trp-Trp) was achieved whose 223 

capacity to stabilize DPPH●, superoxide (O2
-) and hydroxyl (OH-) radicals was greater than 224 

80% using concentrations below 2 mg/mL. The production of fish hydrolysates using 225 

enzymatic systems has also shown good results when mixing pepsin with pancreatin, the 226 

foregoing is evidenced in the work of Chel-Guerrero et al [89], who managed to obtain a 227 

peptide from Pterois volitans L. (lionfish) muscle with the ability to stabilize DPPH● 228 

(54.27% radical decrease) and ABTS● (107.31 TEAC mM/mg protein) [89].  229 

 Obtaining protein hydrolysates has not only been carried out on raw materials with a 230 

high protein content, studies have also been carried out on specific protein groups, such as 231 
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sarcoplasmic, myofibrillar [90], collagen [91] or gelatin [92]. Shiao et al [93] studied the 232 

production of antioxidant peptides from tilapia flake gelatin, hydrolyzed with the pepsin-233 

pancreatin system to simulate the digestive process. The authors report the presence of two 234 

peptides (Gly-Tyr-Asp-Glu-Tyr and Glu-Pro-Gly-Lys-Ser-Gly-Glu-Gln-Gly-Ala-Pro-Gly-235 

Glu-Ala-Gly-Ala-Pro), which showed great capacity to stabilize the ABTS● radical, 236 

presenting values of Trolox equivalents higher than 20 µM when concentrations of 0.5 237 

mg/mL were used [93]. 238 

As it can be seen throughout this section, the studies show the excellent antioxidant 239 

activity of the peptides obtained with pepsin. However, it is important to note that the 240 

analyses performed are in vitro studies, and the methods used for these studies are not very 241 

specific and differ from biological systems [72]. For this reason, it is necessary for the 242 

investigations carried out on the antioxidant activity of peptides (and in general of all 243 

biological properties) to be directed to real in vivo tests in pre-clinical and clinical studies, 244 

which generate scientific evidence of their true biological potential and thus allow have a 245 

more precise estimation of the antioxidant power of these molecules in the organisms that 246 

use them. This is crucial since even the safety of peptides becomes questionable, since most 247 

toxicological research is carried out in vitro and on animals. Thus, to substantiate the safety 248 

claimed for these compounds, the level of evidence supporting the safety of ingesting 249 

bioactive peptides must be increased [94]. 250 

Anti-inflammatory activity 251 

Inflammation, as part of the host defense mechanism against inflammatory inducers 252 

(microbial infections, noxious chemical and mechanical agents, and conditions such as tissue 253 

infection and injury), maintains tissue homeostasis under different noxious conditions, and 254 
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allows patient survival [95,96]. A controlled inflammatory response is beneficial; however, 255 

excessive or uncontrolled inflammation and oxidative stress are known to promote the onset 256 

of chronic human diseases such as diabetes, obesity, cardiovascular disease, cancer, 257 

respiratory disorders, atherosclerosis and neurodegenerative diseases [97,98]. For this 258 

reason, the use of synthetic anti-inflammatories has been necessary, which allows controlling 259 

the overproduction of inflammatory mediators and the overresponse of enzymes involved in 260 

the inflammatory process [99]; nevertheless, prolonged use of these medications has negative 261 

consequences for the organism [100]. That is why there is currently a growing interest in 262 

finding anti-inflammatory compounds of natural origin, which do not have secondary effects 263 

on the body. In this regard, it has been reported that proteins and peptides from plant and 264 

animal sources (soybean, milk, fish meat and eggs) [101] have a potent anti-inflammatory 265 

activity, being capable of reducing the risk of disease such as cardiovascular disease [102]. 266 

In this context, there are some reports in which peptides with significant anti-267 

inflammatory activity have been obtained from fish protein using the enzyme pepsin, which 268 

are reviewed below. 269 

An anti-inflammatory tripeptide was purified and identified from the protein 270 

hydrolysate obtained from salmon pectoral fin after pepsin hydrolysis. It was shown, in in 271 

vitro tests, that the tripeptide Pro-Ala-Tyr (with 349.15 Da) inhibited the production of 272 

prostaglandin E2 and nitric oxide by 45.33% and 63.80%, respectively. In addition, the 273 

tripeptide significantly suppressed the protein expression of inducible cyclooxygenase-2 and 274 

nitric oxide synthase, and attenuated the production of pro-inflammatory cytokines, including 275 

tumor necrosis factor-α, interleukin-6 and -1β [103]. 276 
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In another work, peptides produced by pepsin and trypsin in the stepwise digestion of 277 

salmon myofibrillar protein conjugated with alginate oligosaccharide were evaluated in vitro 278 

and in vivo (Murino´s model) systems. Salmon myofibrillar peptides significantly reduced 279 

the secretion of the proinflammatory mediators (tumor necrosis factor (TNF)-α, nitric oxide 280 

and interleukin (IL)-6) as well as mRNA expression of inducible nitric oxide synthase, 281 

cyclooxygenase-2, TNF-α and IL-6. Also, the obtained peptides inhibited acute inflammation 282 

in a carrageenan- induced model of paw edema in mice [104]. 283 

Catalyzed hydrolysis of soluble collagen was used to produce collagen peptides from 284 

Chanos chanos (milkfish ) scales, which were evaluated in vitro in terms of antioxidant, anti-285 

inflammatory, and DNA-protective activities. The obtained peptides possess both high 286 

antioxidant activities and anti-inflammatory properties by reducing nitric oxide radicals and 287 

lipoxygenase activity. Moreover, milkfish scales collagen peptides treatment can directly 288 

protect against cyclobutane di-pyrimidine production and DNA single-strand breaks [105]. 289 

Gao et al [101] carried out an in vitro study to determine the anti-inflammatory 290 

potential of peptides produced by pepsin hydrolysis of sturgeon in a lipopolysaccharide 291 

(LPS)-induced RAW264.7 inflammatory model. They reported that pepsin hydrolysates 292 

significantly reduced the inflammatory cytokines (IL-6, TNF-α and IL-1β) and inflammatory 293 

mediator (nitric oxide) expression in a dose-dependent manner. Moreover, it was found that 294 

a purified sturgeon peptide exerted anti-inflammatory influence by the inhibition of mitogen-295 

activated protein kinases (MAPKs) pathways and nuclear factor-κB (NF-κB) [101].  296 

Finally, Sugihara et al [106] reported an interesting and useful method for producing 297 

novel anti-inflammatory peptides derivatives from fish myofibrillar protein. In this study, 298 

chum salmon myofibrillar protein was digested by pepsin-trypsin and conjugated to alginate 299 
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oligosaccharide through the Maillard reaction [106]. The obtained alginate oligosaccharide- 300 

conjugated peptides, which were successfully recovered using isoelectric focusing without 301 

the use of carrier ampholytes (autofocusing), strongly suppressed, in an in vitro system, the 302 

production of inflammatory cytokines, and this anti-inflammatory effect was enhanced with 303 

increasing amounts of alginate oligosaccharide bound to digested myofibrillar protein 304 

through the Maillard reaction [106]. 305 

As observed in the previous section of antioxidant activity, the studies carried out on 306 

the anti-inflammatory activity of peptides obtained from fish residues by hydrolysis with 307 

pepsin are in vitro studies (except for the one reported by Saigusa et al. 2015 [104], which 308 

even though they show an excellent anti-inflammatory activity, do not guarantee that said 309 

activity is presented in the same way in an in vivo system, or even more, directly in the human 310 

being. In this way, and as it occurs with the other reported activities, it is clear that there is a 311 

great need to carry out the studies towards their evaluation in more complex systems (animal 312 

models) and later to be evaluated in humans, since only in this way, the doors will be opened 313 

for their intensive use as substitutes for conventional drugs against these conditions. 314 

Angiotensin I-converting activity 315 

A key risk factor for inducing cardiovascular disease is hypertension, a chronic 316 

disease that causes more than nine million deaths per year and affects an estimated one billion 317 

people [107]. In humans, blood pressure is regulated through the renin-angiotensin-318 

aldosterone system through the action of two main proteases, renin and angiotensin-319 

converting enzyme (ACE) [108]. Particularly, angiotensin-converting enzyme is a useful 320 

therapeutic target for the treatment of hypertension since this enzyme can convert angiotensin 321 

I to angiotensin II and increase blood pressure by vasoconstriction [109]. For this reason, the 322 
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drugs used to treat hypertension, such as fosinopril, enalapril, captopril, benazepril and 323 

lisinopril, are designed to inhibit the activity of the angiotensin-converting enzyme, thus 324 

reducing angiotensin II levels [110]. Although these synthetic drugs are effective in treating 325 

the disease, it is well documented that they often cause side effects such as erectile 326 

dysfunction, hypotension, taste disturbance, persistent dry cough, angioedema, skin rashes 327 

and congenital malformations [64,111–114]. This has generated the need to explore new 328 

drugs that are less harmful to the body, which has led to the discovery of an increasing 329 

number of natural compounds capable of inhibiting angiotensin-converting enzyme [115]. 330 

An example of such compounds are bioactive peptides [108], which have low or no toxicity 331 

or side effects [116], and are obtained from the hydrolysis of various proteins from products 332 

such as fishes [117], Spirulina platensis [118], corn gluten meal [119], alfalfa [120], cheese 333 

whey [121], or many others. 334 

In the particular case of fish as a source of protein to obtain peptides by hydrolysis 335 

with pepsin, some studies have reported that such peptides have angiotensin I-converting 336 

enzyme inhibitory activity. These works are described below. 337 

Khiari et al [122] produced bioactive peptides from fish skin. For this target, gelatin 338 

was extracted from Scomber scombrus (mackerel ) skin and subjected to hydrolysis with 339 

pepsin for 1, 2, 6 and 24 h. As result, the hydrolysate obtained after 24 h of hydrolysis 340 

exhibited high ACE-inhibitory activity (78.1%) and was able to significantly inhibit platelet 341 

aggregation by about 30%, which corresponds to moderate antithrombotic activity [122]. 342 

In another study, anti-hypertensive peptides were purified from a hydrolysate of 343 

flounder fish muscle. Pepsin hydrolysate showed the strongest angiotensin-I converting 344 

enzyme inhibitory activity, and from this, two new peptides, MEVFVP (721.2 Da) and 345 



17 
 

VSQLTR (703.4 Da) with IC50 values of 79 μM and 105 μM, respectively were obtained. 346 

The Lineweaver-Burk plots suggested these peptides act as a competitive and a non-347 

competitive inhibitors of ACE, respectively. In addition, the administration of MEVFVP and 348 

VSQLTR (40 mg/kg ) reduced systolic blood pressures in spontaneously hypertensive rats, 349 

with maximal decrements of 44.25 and 34.25 mmHg, respectively, similar to the obtained by 350 

captopril administration (39.75 mmHg) [123]. 351 

Later, angiotensin-converting enzyme inhibitory peptides from extracted tilapia skin 352 

and hybrid catfish skin collagen using pepsin were studied. It was found that hybrid catfish 353 

skin collagen hydrolysate prepared by pepsin showed the higher ACE inhibitory activity 354 

when compared to the activity found in tilapia skin hydrolysates. Additionally, after cation 355 

exchange and two steps of size exclusion chromatography, hybrid catfish skin peptides 356 

showed ACE inhibitory activity of 72 % [124]. 357 

In another interesting work, in which different enzymes and different hydrolysis times 358 

were evaluated in the preparation of hydrolysates from the head and bones of hybrid grouper 359 

(Epinephelus lanceolatus × Epinephelus fuscoguttatus), it was found that Alcalase was the 360 

most effective enzyme in the hydrolysis and produced hydrolysates with the higher 361 

antioxidant activities, but Proteinase K and pepsin hydrolysates at a longer hydrolysis time 362 

resulted in a higher ACE-inhibitory activity [125]. This study shows that, even on the same 363 

raw material, the use of different enzymes at different hydrolysis times can generate different 364 

peptides with varied biological activity, with a greater or lesser degree of hydrolysis, so that, 365 

through the exploration of different enzymes (with their respective operating conditions) it 366 

is possible to select those that produce the peptides with the best biological activity(ies). 367 
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Euthynnus affinis (kawakawa ) protein hydrolysate was produced by pepsin extracted 368 

from skipjack tuna. Kawakawa protein hydrolysates were separated into four different 369 

fractions, and the results indicated that the fractions showed angiotensin converting enzyme 370 

inhibition with IC50 values ranging from 0.45 to 1.86 mg/mL with higher activity in the 371 

fraction with molecular weight <1kDa [126].  372 

Finally, bioactive peptides were produced from the fish Gadidae and beef skeletal 373 

muscles by 8 h of pepsin hydrolysis. Fish peptide composed of 21 amino acid residues and 374 

beef peptide composed of 34 amino acid residues displayed angiotensin-converting enzyme 375 

inhibitory activity with a half maximal inhibitory concentration (IC50) values of 7.3 µg/mL 376 

and 5.8 µg/mL, respectively [127]. 377 

In the studies presented here, it has been possible to obtain peptides with significant 378 

angiotensin inhibitory activity, similar to and even higher than that reported for peptides 379 

obtained from other raw materials and with other enzymes  (for example, chickpea protein 380 

peptides with IC50 values ranging from 0.101 to 37.33 μg/mL prepared using papain, 381 

pancreatin or Alcalase [128], Alcalase casein hydrolysate with an angiotensin I- converting 382 

enzyme inhibitory activity of 62.5% [129], and Jatropha curcas peptide with an IC50 value 383 

of 4.78 g/mL obtained by Alcalase hydrolysis [130].  At this point, it is important to mention 384 

that the strong activity found for the peptides obtained with pepsin can be attributed to the 385 

pepsin specificity by the amino acid residues at position P1 and P1′ with a preferential 386 

cleavage in hydrophobic residues, since it has been reported that hydrophobic amino acids 387 

such Met, Val, Ala, and Tyr, increase the ACE inhibitory potential as they can bind to the 388 

catalytic site of ACE [115]. 389 
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On the other hand, we also want to mention that most of the reviewed works suggest 390 

that the peptides obtained can be used in the production of functional foods, nutraceuticals 391 

and pharmaceuticals; however, it is necessary to note that in order to achieve these objectives, 392 

it is necessary to delve deeply into the activities reported for these peptides. In this review 393 

we found that few works compare the activity of the peptides obtained with the activities 394 

presented by the drugs available in the market (enalapril, captopril, benazepril). This is 395 

important, since in order to extend the use of peptides to the pharmacological area, they must 396 

be competitive with commercial drugs, and this must be scientifically demonstrated. In 397 

addition to that, said comparison must be both in vitro and in vivo, since the legal 398 

requirements in this area request, in order to accept that the peptides enter to the market and 399 

can be consumed by people, that tests must be carried out in humans. In this sense, it is 400 

necessary to carry out more studies on the purification of specific bioactive peptides and 401 

determination of the sequence of ACE-inhibiting amino acids; studies confirming the 402 

positive bioactive properties of isolated peptides using synthetic peptide models and 403 

comparing them with existing drugs, and of course, conducting observational and 404 

intervention studies in humans. 405 

 406 

 407 

 408 

 409 

Other biological activities 410 
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In addition to the intensively explored antioxidant, angiotensin I-converting enzyme 411 

inhibitory and anti-inflammatory activities, other highly attractive activities have been 412 

reported in fish protein hydrolysates obtained using pepsin hydrolysis, which we summarize 413 

in this section.  414 

Large-scale use of antibiotics has caused the current crisis of antibiotic resistance, 415 

which is an emerging global health problem listed by the World Health Organization among 416 

the top ten global public health threats facing humanity [131]. For this reason, there is 417 

currently an urgent and growing need for the development of new antibiotics and antibiotic 418 

substitutes [132]. In this context, antimicrobial peptides, which are produced from the 419 

synthetic and natural sources, arise as an excellent candidate to overcome antibiotic 420 

resistance [133,134]. These peptides possess different mechanism of actions, high specificity, 421 

low toxicity, a broad‐spectrum antimicrobial activity [135], and they can have a synergistic 422 

effect when used with conventional antibiotics [136]. In this regard, Wald et al [137] 423 

produced antimicrobial hydrolysates from trout by-product using trout pepsin. The 424 

hydrolysates demonstrated inhibitory activity against several gram-negative and gram-425 

positive bacteria, mainly fish farming bacteria Flavobacterium psychrophilum and 426 

Renibacterium salmoninarum. It was found that the degree of hydrolysis exerts a 427 

considerable influence on antibacterial activity, and the highest antibacterial activity was 428 

obtained at a degree of hydrolysis of 30% [137]. 429 

Another type of bioactive peptides of great importance are immunomodulatory 430 

peptides, which act through stimulation or suppression to maintain a disease-free state in 431 

normal or diseased people, thus supporting the immune system, which is our first and main 432 

means of protection against disease [138,139]. In this sense, some studies carried out with 433 



21 
 

peptides or hydrolysates obtained from fish proteins by hydrolysis with pepsin have shown 434 

that such peptides are capable of improving the immune system. Chalamaiah et al [138] 435 

evaluated the immunomodulatory effects of protein hydrolysates prepared from underutilized 436 

Labeo rohita (rohu ) egg (roe), by enzymatic hydrolysis using pepsin, trypsin and Alcalase, 437 

in BALB/c mice. Results showed that pepsin hydrolysate significantly increased the splenic 438 

NK cell cytotoxicity, macrophage phagocytosis and level of serum immunoglobulin A, and 439 

pepsin and Alcalase hydrolysates significantly enhanced the mucosal immunity in the gut. 440 

The results of this study suggested that rohu egg protein hydrolysates were able to modulate 441 

immune function maybe due to the presence of immunostimulatory peptides [138]. In another 442 

work, protein hydrolysates from underutilized common Cyprinus carpio (carp ) egg were 443 

prepared by hydrolysis with pepsin, trypsin, and Alcalase. The carp egg protein hydrolysates 444 

were orally administered daily to female BALB/c mice during 45d, finding that the three 445 

hydrolysates significantly enhanced the proliferation of spleen lymphocytes. In addition, 446 

pepsin hydrolysate significantly increased the splenic natural killer cell cytotoxicity, mucosal 447 

immunity (secretory immunoglobulin A) in the gut and level of serum immunoglobulin A 448 

[140]. The results obtained in the aforementioned works suggest that the immunomodulatory 449 

peptides or hydrolysates obtained can be used in various applications in industries such as 450 

food, nutraceutical and pharmaceutical.  451 

Of particular interest are the immunomodulatory peptides with anti-allergic potential, 452 

which are among the most promising treatment of IgE-mediated food allergic diseases [141]. 453 

Concerning that point, an anti-allergic peptide from Salmo salar (Atlantic salmon ) byproduct 454 

contained in the hydrolysate produced by pepsin hydrolysis, was purified and identified as 455 

Thr-Pro-Glu-Val-His-Ile-Ala-Val-Asp-Lys-Phe which proved to exert anti-allergic activity 456 
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after synthesis by inhibiting the release of β-hexosaminidase in IgE-mediated RBL-2H3 cell 457 

degranulation at IC50 value of 1.39 mg/mL [142]. According to these results, Atlantic salmon 458 

by-product can be a potential source of novel peptides which can be used as ingredients in 459 

pharmaceuticals and food for food allergy management [142]. 460 

On the other hand, in the search for alternatives that allow the control of obesity, a 461 

disease that has reached epidemic levels and that promotes the appearance of other serious 462 

metabolic disorders (hepatic steatosis, dyslipidemia, type 2 diabetes mellitus and insulin 463 

resistance) [143,144], it has been reported that bioactive peptides have an important role 464 

[145]. In this way, Mizushige et al [146], examined the effects of Alaska pollack protein 465 

hydrolysate digested artificially with pepsin and pancreatin on white adipose tissue and 466 

skeletal muscle, finding that, the Alaska pollack protein hydrolysate group showed 467 

significantly lower weight of white adipose tissue and higher weight of soleus muscle, and 468 

reduced food intake and mRNA expressions of neuropeptide Y and agouti-related protein in 469 

the hypothalamus, compared with the control group. The authors conclude that the anti-470 

obesity activity of the hydrolysate is maybe due to the reduction of appetite and the 471 

enhancement of basal energy expenditure by skeletal muscle hypertrophy in rats [146]. 472 

Finally, Yang et al [147] demonstrated, using in vitro simulated gastrointestinal 473 

digestion with pepsin and in silico studies, that it is possible to obtain monoamine oxidase A 474 

inhibitory peptides from Trichiurus japonicus (hairtail). Among the synthesized peptides, 475 

Val-Val-Phe-Glu-Val-Phe-Trp showed the highest monoamine oxidase A inhibitory activity 476 

(IC50 = 0.405 mM) [147]. Selective monoamine oxidase A inhibition increases the level of 477 

serotonin in the central nervous system and thus reduces symptoms of clinical depression 478 

[148]; in this sense, the hairtail monoamine oxidase A inhibitory peptides obtained can be 479 



23 
 

used as functional ingredients for monoamine oxidase A inhibition or potential alternatives 480 

for antidepressant [148]. 481 

Practical utilization of fish peptides 482 

As it has been shown in this review and in multiple scientific works, peptides obtained 483 

from protein hydrolysis have a wide variety of biological properties, which has led to these 484 

biomolecules being used in different industrial processes. An example of the above is the 485 

approval by the FDA for use in preclinical studies of more than 60 antioxidant peptides. 486 

[149], the use of hydrolysates in animal feed [150], the incorporation in cosmetic products 487 

[151] and its implementation in different processes of the food industry [152]. In this sense, 488 

a series of works are presented below in which different uses of peptides obtained by 489 

proteolysis with pepsin of proteins of fish origin are highlighted. 490 

One of the most studied uses of peptides has been their incorporation in the 491 

formulation of diets for the rearing of aquatic organisms, both to improve their growth, and 492 

in the preparation of functional foods that allow the prevention of diseases [153]. In the first 493 

case, the work of Srichanun et al [154] stands out. He managed to improve the digestive 494 

capacity, larval growth and survival of Lates calcarifer Bloch larvae by including up to 25% 495 

hydrolysates of fish muscle or squid mantle obtained with the pepsin-Alcalase system [154]. 496 

In aquaculture, hydrolysates have also been shown to improve the immune system of fish 497 

when they are fed with diets enriched with peptides. This was demonstrated by Luo et al 498 

[155], who supplemented the diet of Larimichthys crocea (yellow croaker ) with muscle 499 

hydrolysates from Michthys miiuy, finding that a dose of 1.2 mg/fish of bitter peptides favors 500 

an increase in the activity of leukocytes and lysozyme compared to the control group [155]. 501 



24 
 

The inclusion of peptides derived from fish in foods is not only due to the biological 502 

characteristics highly described in this review. It also responds to the fact that these protein 503 

fractions have different physical or chemical properties of great interest to the food industry 504 

[156]. In accordance with the above, a study was published in which hydrolysates of 505 

Pangasianodon hypophthalmus viscera obtained by enzymatic hydrolysis with pepsin were 506 

applied by spray-drying [157]. This hydrolysate presented excellent technological properties 507 

such as water retention capacity (0.84 ± 0.03 mL/g), oil absorption capacity (1.57 ± 0.04 508 

mL/g), emulsion stability index (87.98 ± 2.13 min), which make it an interesting ingredient 509 

for incorporation in foods that need to improve their technological properties [157]. 510 

Following the application of peptides in the food industry, it was successfully demonstrated 511 

that these protein fractions inhibit the oxidation of cold-preserved shrimp myofibrillar 512 

proteins, providing these results with an alternative to increase the shelf life of highly 513 

perishable products [158]. 514 

Finally, it is important to mention that bioactive peptides have been explored beyond 515 

their biological properties, using them in the size regulation, stabilization, and 516 

functionalization-based surface modification during the synthesis of selenium nanoparticles 517 

which have a very important role in therapeutic applications [159]. Fish peptides obtained 518 

with pepsin have not been the exception, and it has been reported that they have been used 519 

in the development of a peptide-selenium complexes, taking advantage of the richness of the 520 

carboxyl and amino groups of the peptides obtained with pepsin, which interact with 521 

selenium, transforming the secondary protein from β sheet to α helix and β turn, obtaining a 522 

nanocrystalline structure, which can be employed as templates to stabilize selenium 523 

nanoparticles [160].  524 
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This section shows that, although interesting practical applications of bioactive 525 

peptides obtained from fish waste using pepsin have been explored, there are very few studies 526 

dedicated to investigating this topic. In addition, with respect to their application in humans, 527 

there is a great void to fill, since despite the fact that many studies describe the excellent 528 

biological properties that these peptides present, in this review we did not find any study that 529 

deals with the use of peptides in feeding or treatment of diseases in humans. This is a great 530 

limitation for the development of this field, since the ultimate goal of science is the 531 

application of the results for the benefit of humanity. As long as application studies are not 532 

carried out in human beings, it will be very difficult to extend the use of these compounds to 533 

the industry, and consequently, to society in general, since biological properties claims for 534 

bioactive peptides must be supported by substantial evidence from human studies [161]. 535 

 536 

 537 

Conclusion and futures perspectives 538 

This review provides a comprehensive summary of recent research advances in the 539 

production of bioactive peptides derived from fish proteins by pepsin hydrolysis. Based on 540 

this, it is possible to state that fish protein derived peptides with various biological properties 541 

can be successfully produced by pepsin hydrolysis. However, it is important to note that there 542 

are several issues in this topic that require attention. For example, compared to enzymes such 543 

as Alcalase and papain, the studies carried out with pepsin are very scarce, which may be due 544 

to the high susceptibility of this enzyme with respect to the pH of the reaction, which can be 545 

an important limitation for its intensive use. In this sense, more studies should be carried out 546 

on the optimization of the operating conditions during the production of bioactive peptides 547 

or in the protection of this enzyme (i.e., enzyme immobilization), so that it could generate 548 
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the best results. In addition, although the use of pepsin is a central part of this work, it is 549 

important to mention that, for an optimal use of fish residues, it is desirable and necessary to 550 

explore other enzymes, such as papain, Alcalase, pancreatin, chymotrypsin, Flavourzyme, 551 

Neutrase, etc., and their respective operating conditions (pH, temperature, time of hydrolysis, 552 

etc.), since, as shown in this work, different enzymes generate peptides with different degrees 553 

of hydrolysis and different biological properties. 554 

Another very important point to note is that, most of the studies found focus on the 555 

production, purification, identification and in vitro evaluation of bioactive peptides, and 556 

suggest that they can be used in pharmacological or food products; however, there are still 557 

very few studies on the application of these peptides, so it is necessary to scientifically 558 

demonstrate that these bioactive peptides can be successfully used in the formulation of new 559 

health-improving products; in this way, the migration from the laboratory to the industrial 560 

application of these compounds will be promoted. In the same sense, before using bioactive 561 

peptides at an industrial level, it is necessary to carry out studies in animals and humans, to 562 

determine the final effects that the consumption of these products brings, to ensure that they 563 

do not have secondary effects on the body, and that effectively, provide the properties that 564 

have been demonstrated at the laboratory and in vitro level. In fact, in terms of bioactive 565 

peptides, the lack of sufficient solid human data to support the health and safety claims of 566 

such peptides is the main obstacle to the development of the bioactive peptide industry. It is 567 

necessary to overcome this obstacle, and for that, research should be directed or focused on 568 

generating information on mechanisms of action, interactions of other drugs or food 569 

ingredients with bioactive peptides, safety, efficacy or which levels are beneficial for health, 570 

absorption, distribution, bioavailability, metabolism, excretion, dose-response relation, and 571 
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even if they can be consumed with foods. These studies are necessary not only to show that 572 

the biological properties really provide a benefit to the human being, but they are also 573 

essential to comply with the legal regulations that some countries have decreed in this regard, 574 

which, although they have particularities, regulations such as the issued by Food and Drugs 575 

Act (Canada), Federal Food, Drug, and Cosmetic Act (USA), European Food Safety 576 

Authority (EU) and Japanese Ministry of Health, Labor, and Welfare (Japan), agree on the 577 

need to demonstrate the properties of peptides, carrying out intervention and observational 578 

studies in human. Only in this way will it be possible to fulfill the ultimate goal of obtaining 579 

compounds with beneficial biological properties for humans, which is precisely to make them 580 

accessible to humans through the development of new products that are produced on an 581 

industrial scale.  582 
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