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Ising and XY paramagnons in two-dimensional 2H-NbSe2
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Paramagnons are the collective modes that govern the spin response of nearly magnetic conductors. In
some cases they mediate electron pairing leading to superconductivity. This scenario may occur in 2H-NbSe2

monolayers, that feature spin-valley coupling on account of spin-orbit interactions and their lack of inversion
symmetry. Here we explore spin anisotropy of paramagnons both for noncentrosymmetric Kane-Mele-Hubbard
models for 2H-NbSe2 monolayers described with a DFT-derived tight-binding model. In the infinite wavelength
limit we find spatially uniform paramagnons with energies around 1 meV that feature a colossal off-plane
uniaxial magnetic anisotropy, with quenched transversal spin response. At finite wave vectors, longitudinal and
transverse channels reverse roles: XY fluctuations dominate within a significant portion of the Brillouin zone.
Our results show that 2H-NbSe2 is close to a Coulomb-driven in-plane (XY) spin density wave instability.

DOI: 10.1103/PhysRevB.105.224412

I. INTRODUCTION

A nearly magnetic conductor is a material on the brink of a
quantum phase transition to a magnetically ordered state. The
transition is controlled by the Stoner parameter, defined as the
product of the atomic Coulomb repulsion U and the density of
states at the Fermi energy, ρ0. As it happens in conventional
phase transitions, fluctuations are enhanced due to proxim-
ity to the critical point. In the case of nearly ferromagnetic
conductors, spin fluctuations are enhanced when ρ0U � 1,
leading to the emergence of paramagnons, prominent features
in the low-energy spectra, that anticipate the formation of
magnon resonances at the other side of the transition. The
formation of paramagnons occurs for all magnetic instabili-
ties, either ferromagnetic, antiferromagnetic, or spin-density
wave, and lead to diverging magnetic responses at specific
wave vectors that characterize the ordered phase at the other
side of the transition [1].

Interaction of paramagnons with quasiparticles lead to
observable effects, such as the renormalizaton of the quasi-
particle effective mass [2] and a resulting enhancement of
the electrical resistivity [3] and electronic specific heat [2,4].
Ferromagnetic spin fluctuations can also result in p-wave
triplet pairing [5,6], that could lead to the coexistence of triplet
superconductivity and ferromagnetism, or the emergence of
superconducting order in the vicinity of a ferromagnetic
phase transition. The interplay between superconductivity and
ferromagnetic spin fluctuations has been explored in ma-
terials like Pd [7], ZnZr2 [8], liquid 3He, twisted bilayer
graphene [9–11], ABC graphene trilayer [12,13], UTe2 [14],
and 2H-NbSe2 [15–17]. Whereas most of these materials are
centro-symmetric and spin-orbit coupling (SOC) has a minor
impact and is customarily neglected, the case of 2H-NbSe2

monolayers is very different.

*On leave from Departamento de Física Aplicada, Universidad de
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Spin-orbit interaction has a dramatic effect on the energy
bands of two-dimensional 2H-NbSe2 and related transition
metal dichalcogenide (TMD) monolayers [18,19]. The lack
of inversion symmetry leads to a momentum-dependent spin
splitting of the energy bands. The splitting is large, on ac-
count of the strong SOC of the transition metal. As a result,
Kramers doublets have their momenta at opposite points in
the Brillouin zone (see Fig. 1). For the states at the corner
points of the BZ, the so-called valleys, this phenomenon is the
celebrated spin-valley coupling, that leads to a peculiar band
structure, with two pockets that feature complete and opposite
spin polarizations.

In this paper, we study spin fluctuations in spin-valley
coupled systems. From inspection of their energy bands we
can expect a very anisotropic spin response. When the Fermi
energy lies in the half-metallic pockets at the top of the
valence band (see Fig. 1), spin-flip fluctuations are gapped
for q = 0, in contrast with longitudinal spin-conserving fluc-
tuations. This effect also occurs when the Fermi surface is
no longer at the valleys, but still in the spin-split region.
The first case is relevant for 2H-MoS2, for which a doping
induced ferromagnetic transition has been reported [20], and
other semiconducting TMDs. The second case is relevant
for 2H-NbSe2. To study this phenomenon, we compute spin
fluctuations using the random phase approximation (RPA) for
two types of Hamiltonians. First, we consider the Kane-Mele-
Hubbard model [21–24] with a sublattice potential term that
breaks inversion symmetry, leading to spin-valley coupled
bands. Second, we consider a multiorbital effective Hamil-
tonian (tight-binding like) obtained from DFT calculations
describing a monolayer of 2H-NbSe2.

II. METHODS

The spin susceptibility that governs the nonlocal spin re-
sponse to magnetic perturbations is given by

χ
ηη′
ab (�r, �r′, t ) = −iθ (t )

〈[
Sη

a (�r, t ), Sη′
b (�r′, 0)

]〉
, (1)
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FIG. 1. (a) NbSe2 honeycomb lattice (HCL) with broken inver-
sion symmetry. (b) Brillouin zone of the HCL displaying the relevant
high-symmetry points. (c) Band structure of the extended Kane-Mele
model with � → ∞ and finite SOC (tKM = 0.04t). The two hori-
zontal lines mark the values of EF used in the calculations of the
spin fluctuation spectra displayed in Fig. 2. Dashed line: EF = 3t ,
dot-dashed line: EF = 1.8t .

where a, b = x, y, z label the spin channel, and η, η′ label
the atomic orbitals inside the unit cell. In the frequency-
momentum domain we have

χ
ηη′
ab (�q, ω) =

∫ ∞

−∞
dteiωt

∫
d�rei �q·�rχηη′

ab (�r, 0, t ). (2)

In the following we compute the spin-response in the RPA
approximation,

χ = [1 − Uχ0]−1χ0, (3)

where χ0 is the noninteracting (U = 0) spin susceptibility
tensor, for which closed analytical expressions are readily
obtained in terms of the single-particle states and energies.
Therefore, Eq. (3) permits one to obtain the spin response
including the effect of the interactions in the RPA [25,26].
This approximation takes into account, in all orders in pertur-
bation theory, the exchange interaction between the electron
and hole that form the spin excitation. It compares favorably,
at zero temperature, to more sophisticated methods [27,28].
For systems with spin rotational invariance, such as paramag-
nets without spin-orbit coupling, the spin response matrix is
proportional to the unit matrix in the spin index. Therefore,
the spin response is the same in all directions. Here we study
the case where spin rotational invariance is broken in the
paramagnetic phase, due to SOC.

We now apply this formalism to an extended Kane-Mele
Hubbard model on a bipartite honeycomb lattice [21–24]. This
is a toy model for a TMD. We assume that the A triangular
sublattice of the honeycomb hosts the Nb atom, whereas the
B sublattice contains a noninteracting site. The Hamiltonian is
given by

H = H0 + HSOC + �

2

∑
iσ

τ z
i c†

iσ ciσ + U
∑
i∈A

ni↑ni↓. (4)

Here H0 describes first neighbors hopping t in a honeycomb
lattice. The second term, HSOC is the Kane-Mele SOC [29],

HSOC = itKM

∑
〈〈i, j〉〉,σ

σc†
i,σ ẑ · (dk j × dik )c j,σ , (5)

where 〈〈i, j〉〉 denotes a sum over all pairs of second neighbors
i, j, in the honeycomb lattice, and dk j (dik) are the unit vectors
going from site k (i) to site j (k), where k labels the common
first neighbor of sites i and j [29]. The main role of ẑ · (dk j ×
dik ) is to make the SOC term odd under spatial inversion and
with opposite sign at each sublattice, for a given direction. If
we take U = � = 0 this term opens up a topological gap at
the Dirac point [29].

The third term in the Hamiltonian describes a spin-
independent sublattice symmetry breaking. There, τz is the
sublattice operator so that, for � �= 0, sublattice symmetry,
and thereby inversion symmetry of the honeycomb sublattice,
is broken. This term also opens-up a trivial gap in the energy
bands at the Dirac points. When combined with the SOC term,
the three terms in the noninteracting (U = 0) Hamiltonian
lead to a spin splitting of the bands, as described above.
This makes our model different from the case with inversion
symmetry [23,24]. Since fluctuating moments are expected
to be hosted by the Nb atoms, we consider a model where
Hubbard U interactions are only active in one sublattice.

In the noninteracting limit (U = 0), the energy bands of the
Hamiltonian capture the main features of TMD monolayers: a
gap separates a valence and a conduction band whose extrema
are at the K , K ′ corners of the BZ zone. In the neighborhood
of the K, K ′ points the bands have large spin-splitting and
Kramers partners have opposite wave vectors. In this region
the bands are well described by a Dirac equation with a mass
[18]. The model conserves the spin projection perpendicular
to the atomic plane, so that we can still label the single-particle
states with σ = ±1/2.

Depending on the location of the Fermi energy, the
model can mimic a semiconducting TMD, such as 2H-MoS2,
2H-MoSe2, 2H-WS2, and 2H-WSe2, doped with either elec-
trons or holes and the Fermi energy close to the band extrema,
or 2H-NbSe2, with the Fermi energy deep down closer to the
conduction band’s minima. In the following sections we study
the spin fluctuations in these two limits as a function of the
Hubbard interaction U .

III. RESULTS

A. Long-wavelength fluctuations

We focus first on the q = 0 low-energy spin fluctuations,
that govern the long wavelength spin response of the mate-
rial. Because of the C3 symmetry of the honeycomb lattice
we have χxx = χyy = χ⊥. In the nonmagnetic phase we have
χxy = χyx = 0. Therefore, the spin response is diagonal in the
spin index, with two different components for the zz (χ||) and
in-plane components. When the Fermi energy is located close
to the K, K ′ points, zero momenta spin-flip fluctuations are
strictly forbidden, for energies smaller than the spin-splitting.
In that limit, the Fermi surface is formed by spin-polarized
pockets, with opposite polarization, at the K and K ′ points. In
contrast, low-energy spin-conserving fluctuations are allowed.
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(a) (b)

FIG. 2. Spin fluctuation amplitudes at zero wave vector for two
Fermi energies: (a) EF = 3t (crossing only spin-split bands), and
(b) EF = 1.8t (crossing degenerate spin bands). In both cases the
SOC strength is tKM = 0.04t . The top row shows the mean-field spin
fluctuations. The remaining rows show how the RPA spin fluctu-
ation spectra change as the interaction strength U approaches the
critical value. Purple lines correspond to longitudinal fluctuations
(−�χ ‖/ρ0) and dark blue lines correspond to transverse fluctuations
(−�χ⊥/ρ0), where ρ0 is the density of electronic states at the Fermi
level, EF .

With this in mind, the results of Fig. 2(a), showing a dramat-
ically different behavior for χ‖(q = 0, E ) and χ⊥(q = 0, E )
can be easily understood. It is apparent that, as U increases,
the paramagnon peaks only forms on the ‖ or off-plane chan-
nel, whereas the transverse spin response is quenched.

We now address the question of whether the strong
anisotropy of the spin response is something specific of the
states close to the K and K ′ points, or, on the contrary, the
anisotropy also occurs when the Fermi surface has spin-split
bands in low symmetry regions of the Brillouin zone. For that
matter, we consider now the case where the Fermi energy is
located at higher in the valence band [EF corresponding to the
dot-dashed line in Fig. 1(c)]. In this case we find a smaller
value of the critical Stoner parameter (Uρ0)c = 3.3, that we
attribute to a larger density of states. We find the same colossal
anisotropy of the low-energy spin fluctuations We refer to
these very anisotropic collective modes as Ising paramagnons.
In this case, however, the transverse fluctuations are not as
strongly quenched as when EF only crosses spin-split bands.

We have verified that the anisotropy is driven by the
combination of SOC and inversion symmetry breaking. For
that matter we have computed the spin response for � = 0
and tKM > 0. We find that the spin fluctuation spectra along
the longitudinal and transverse directions have the same line
shape and virtually identical amplitudes.

We now ask whether the same phenomenon holds true
for a more realistic Hamiltonian describing 2H-NbSe2. First
we carry out density functional theory (DFT) calculations
for the 2H-NbSe2 [30,31], using the QUANTUM ESPRESSO

suite [32]. The electronic interaction was described within the
generalized gradient approximation (GGA) via the Perdew-

Burke-Ernzerhof (PBE) functional [33]. Ionic potentials were
described by projector augmented-wave (PAW) [34] pseu-
dopotentials available in the 1.0 pslibrary database [35]. The
wave functions and charge density cutoff energies were 71.5
and 715 Ry, respectively. Full structural optimization was
performed until Hellman-Feynman forces were smaller than
0.01 eV/Å with a 13 × 13×1 reciprocal space sampling. We
found a lattice parameter of 3.47 Å, which is in agreement
with other DFT calculations [36]. The Hamiltonian was con-
structed with a larger K-sampling of 27×27 × 1. We allow for
spin polarization but the system converged to a nonmagnetic
ground state. Our results are in line with those obtained in the
literature [36].

After the structural optimization, a local effective Hamil-
tonian was constructed via the pseudoatomic orbital (PAO)
projection method [37,38] as implemented in the PAOFLOW

code [39]. The method consists in projecting the plane wave
Kohn-Sham states onto a compact subspace spanned by PAOs
already built in the PAW potentials. This procedure reduces
the basis set from several thousand plane waves to a few
atomic orbital-like basis functions with accuracy comparable
to DFT calculations. In the Appendix A we compare the
PAOFLOW and QUANTUM ESPRESSO band structures. The PAW
potential for Nb and Se were constructed with a sspd and
spd PAO basis, respectively. This choice results in 13 and 9
orbitals per Nb and Se atom. Obviously, spin-orbit-coupling
is essential for spin-splitting at K and K ′ points. Therefore,
we include it as a local term of the form

HSOC =
∑

l

∑
μν

∑
σ,σ ′=↑,↓

ξl (�L · �S)lμσ,lνσ ′a†
lμσ

alνσ ′ , (6)

where l is an atomic site index, μ, ν are orbital indices, and
σ, σ ′ are spin indices. �L is the orbital angular momentum op-
erator and S is the electronic spin operator. The orbital indices
μ, ν run over the p orbitals when atomic site l is occupied by
a Se atom, and over the d orbitals when l is occupied by a Nb
atom. The SOC intensities at Se and Nb atoms have been ad-
justed such that the multiorbital LCAO model with local SOC
reproduces as faithfully as possible the energy bands resulting
from a fully relativistic DFT calculation. We find that the best
fit is given by ξNb = 79 meV and ξSe = 211 meV, in line with
those reported in Ref. [19]. Explicit comparison between the
LCAO and the DFT bands is given in the Appendix.

We now apply the RPA method for our multiorbital
tight-binding model. The on-site atomic Coulomb repulsion
interaction is given by the Hamiltonian

H =
∑

l

Ul

∑
μν

∑
σσ ′

a†
lμσ

a†
lνσ ′aνσ ′aμσ , (7)

where Ul is taken as a free parameter in the calculations, as
we have done in the case of the KM Hubbard model. When
atomic site l is occupied by a Se atom we take Ul = 0. μ, ν

are orbital indices running over the d orbitals centered on the
Nb sites, and σ1, σ2 are spin indices. We find that Uc = 0.9 eV
marks the critical value of the instability to a ferromagnetic
phase.

The q = 0 spin susceptibility matrix, calculated within the
RPA, using the multiorbital DFT-based TB model are shown
in Fig. 3. We find again a very anisotropic response, with
paramagnon enhancement in the ⊥ channel, much larger than

224412-3



COSTA, COSTA, AND FERNÁNDEZ-ROSSIER PHYSICAL REVIEW B 105, 224412 (2022)

(a) (b)

(c) (d)

FIG. 3. (a) DFT bands for NbSe2 around the Fermi level. The
color code represents the spin projection along z. (b) Longitudinal
(purple curve) and transverse (dark blue curve) mean-field spin fluc-
tuation spectra at zero wave vector for NbSe2, extracted from the
DFT-based multiorbital TB model. In the lower panels we show
the RPA enhanced spin fluctuations for (c) U = 0.86 eV and (d)
U = 0.89 eV. The critical value for the interaction strength in this
case is Uc = 0.9 eV.

the in-plane spin fluctuations. We also find some quantita-
tive differences. For instance, spin-flip fluctuations are not
completely quenched at small energy, in contrast to the KM
model. We attribute this difference to the fact that in the
multiorbital DFT based TB model Sz is no longer a conserved
quantity and the states away from the K, K ′ points have a
nonnegligible mixing of the ↑ and ↓ channel. Yet, the main
result of this work, the large anisotropy of the spin fluctuations
remains.

Some degree of control over the effective Coulomb in-
teraction strength U is available through, for instance, the
effective dielectric constant of a conveniently chosen substrate
[40,41]. Its effects can also be controlled indirectly changing
the degree of electronic confinement, either through strain
applied to large-area samples [42] or by producing samples
of smaller sizes [43].

B. Finite wave-vector fluctuations

We now turn to the finite wave-vector spin susceptibility
in the static limit, directly related to the effective pairing
interactions in spin fluctuation mediated superconductivity
[44]. In Fig. 4 we show the real part of the transverse and
longitudinal spin susceptibilities at E = 0 for 2H-NbSe2, as
a function of wave vector, for different values of U . These
results have been obtained using the DFT-derived fermionic
hamiltonian for 2H-NbSe2. Their most prominent feature is
the divergency of the transverse susceptibility around q ∼
0.21(2π/a0) as U is ramped up, while the longitudinal sus-
ceptibility remains finite. Importantly, the divergency here
happens for U ∼ 0.8 eV, which is significantly smaller than
the corresponding value (∼0.9 eV) for the uniform (q = 0)
susceptibility. This indicates that the magnetic instability in

FIG. 4. Transverse (χ xx + χ yy) and longitudinal (χ zz) spin sus-
ceptibilities for 2H-NbSe2 as functions of wave vector along the -K
(left panels) and -M (right panels) lines, in the static limit (E = 0).
Top panels are the mean-field results (U = 0), the remaining panels
show RPA results for different values of the interaction strength U .

2H-NbSe2 is actually in-plane, of spin density wave (SDW)
nature, instead of out-of-plane ferromagnetic. At finite fre-
quencies, we find XY paramagnons: a strong enhancement of
the transverse spin fluctuations while longitudinal fluctuations
are only modestly enhanced (see Fig. 10 in Appendix C). The
strongly anisotropic response and the proximity to a SDW in-
stability may have implications for spin-fluctuation mediated
pairing [44]. Qualitatively similar behavior has been analyzed,
for instance, in Refs. [45,46]. It is also worth mentioning that
the spin fluctuation spectrum of 2H-NbSe2 depends strongly
on the direction of the wave vector, a feature that is relevant
to the symmetry of the pairing interactions.

Direct observation of paramagnons, either q = 0 Ising
paramagnons, or finite q XY paramagnons, with energy and
momentum resolution is presently possible only via neutron
scattering [47]. However, the applicability of this technique
is restricted to bulk samples, due to the very weak neutron-
electron interaction (through the dipolar fields produced by
their spin magnetic moments). An alternative would be to
prepare multilayer samples of NbSe2 separated by a nonmag-
netic insulator (such as hexagonal boron nitride, for example).
This would preserve the 2D character of the NbSe2 param-
agnons while providing the needed cross-section for neutron
scattering.
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FIG. 5. Comparison between the band structure provided by
the fully relativistic DFT calculation described in the main text
(dashed yellow lines) and the energy bands generated by the a tight-
binding-like hamiltonian, including local spin-orbit coupling (purple
symbols).

IV. CONCLUDING REMARKS

In conclusion, we have calculated the spin fluctuations
of spin-valley coupled systems that describe noncentrosym-
metric TMD, such as doped 2H-MoS2 and 2H-NbSe2

monolayers. We have used both toy model Hamiltonians, such
as the Kane-Mele-Hubbard model, and DFT-based models.
We have considered both q = 0 and finite q. In all cases
we find a very large spin anisotropy of the spin response,
driven by the interplay of SOC and lack of inversion sym-
metry. Remarkably, the magnetic anisotropy of paramagnons
is wave-vector dependent, so that we have Ising Paramagnons
for q = 0 are XY paramagnons for finite q. Our calculations
reveal that 2H-NbSe2 monolayers are closer to SDW insta-
bility with in-plane easy axis, rather than a ferromagnetic
(q = 0) off-plane instability. Our findings can have profound
implications for the nature of both the normal state and the
superconducting phase of 2H-NbSe2.
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APPENDIX A: ELECTRONIC STRUCTURE

Here we provide additional plots showing results for the
DFT calculation and the associated multiorbital tight-binding
model. We show in Fig. 5 that the multiorbital model derived
from the DFT calculation, supplemented by a local spin-orbit
coupling term, fits exceedingly well the DFT bands within a
relatively wide energy range around the Fermi level.

In Fig. 6 we show the local density of states around the
Fermi level, projected on the Nb site. We also show how

FIG. 6. Detail of the band structure (left) and local density of
states at Nb sites (right) around the Fermi level EF for a NbSe2

monolayer. We also show the LDOS projected on the d orbitals
(right panel, blue curve). These results were obtained using the PAO
Hamiltonian, and include SOC.

the energy eigenstates around the Fermi level have predom-
inantly d character. From the d-projected LDOS it can also
be inferred that the critical U for which the spin-unpolarized
ground state becomes unstable (to a spatially uniform pertur-
bation) is Uc ≈ 0.93 eV. Notice, however, that the nonuniform
transverse susceptibility diverges at a finite wave vector for
values of U that are considerably smaller than that.

APPENDIX B: PARAMAGNON SPECTRA
AT FINITE WAVE VECTORS

Paramagnons are not quasiparticles stricto sensu. However,
their defining feature is a maximum in the spectral density as
a function of energy, for fixed wave vector. The position of
this maximum can be mapped to a curve in the energy–wave

FIG. 7. Density plot of the spectral density of longitudinal spin
fluctuations in monolayer NbSe2 as a function of energy and wave
vector for U = 0.88 eV. The dashed line marks the positions of the
maxima of the spectral density. The inset shows the same spectral
density as a function of energy for three values of the wave vec-
tor (along -K): 0 (blue curve), 0.01(2π/a0 ) (orange curve) and
0.05(2π/a0) (green curve).
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FIG. 8. Transverse (χ xx + χ yy, dark blue curves) and longitu-
dinal (χ zz, purple curves) spin susceptibilities for the Kane-Melle-
Hubbard model as functions of wave vector along the -K (left
panels) and -M (right panels) lines, in the static limit (E = 0). Top
panels are the mean-field results (U = 0), the remaining panels show
RPA results for different values of the interaction strength U .

vector plane, which has the flavor of a dispersion relation.
If Fig. 7 we show the longitudinal spin spectral density as a
function of wave vector and energy. These results have been
obtained with the multiorbital model extracted from the DFT
calculation. As wave vector increases, the energy at which the
spectral density peaks also increases; by following this peak
we extract a “paramagnon dispersion relation,” which can
serve as a guide for the observation of the Ising paramagnons
of NbSe2 in experiments.

The small wave vector, finite-energy spin fluctuations are
the relevant quantity for spectroscopic detection of param-
agnons. However, the quantity directly related to the effective
pairing interactions in spin fluctuation mediated supercon-
ductivity is the real part of the spin susceptibility matrix at
finite wave vectors and zero energy. In the main text we have
presented results obtained with the DFT-derived model. Here
we would like to show that the much simpler Kane-Mele
model displays similar qualitative features. In Fig. 8 we show
the transverse and longitudinal components of the spin sus-
ceptibility for the toy model, at zero excitation energy, as
a function of wave vector. The spin-valley locking leads to
large differences between the two responses. The features of
these response functions can be associated to nesting vectors
connecting different portions of the Fermi surface (FS), as
shown in Fig. 9. The vector connecting parallel portions of

FIG. 9. Fermi surface for the Kane-Melle-Hubbard model for
EF = 3t . The width of the pockets around the K points (δk‖) cor-
respond to the region in which �χ zz(Q, 0) is almost flat (see Fig. 4).
The length of the nesting vector connecting opposite-spin pockets
around K and K ′ (δk⊥) corresponds to the position of the peak in
χ xx + χ yy along -K .

FIG. 10. Transverse (χ+−, dark blue curve) and longitudi-
nal (χ zz, purple curve) spin fluctuation spectral densities at q =
0.18(2π/a0) (a), q = 0.20(2π/a0) (b) and q = 0.21(2π/a0 ) (c),
along the -M line, for U = 0.79 eV.
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the FS with the same spin polarization, δk‖, is associated with
the region over which the longitudinal mean-field (U = 0)
susceptibility χ zz is flat. The kink seen in the transverse
component (χ xx + χ yy) at a finite wave vector along -K is
associated with the wave vector connecting portions of the FS
with opposite spins, δk⊥.

APPENDIX C: PARAMAGNONS AT FINITE WAVE
VECTORS AND ENERGIES

We have shown (Fig. 4, main text) that, for finite wave
vectors, the static transverse fluctuations become dominant as

the strength of the electron-electron interaction is ramped up.
Here we point out that this is also true of the dynamic fluctua-
tions. In Fig. 10 we show the transverse and longitudinal spin
fluctuation spectra at three different wave vectors along the
-M line, for U = 0.79 eV. Besides being strongly enhanced,
transverse fluctuations clearly dominate the spectrum in this
region of the Brillouin zone, prompting us to identify the exis-
tence of XY paramagnons. Thus, a spectroscopic probe that is
sensitive to spin direction and can resolve wave vectors should
be able to detect the crossover between the longitudinal-
dominated and transverse-dominated spin fluctuation spectra
as a function of energy.
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