
Computer Standards & Interfaces 83 (2023) 103657

Available online 14 May 2022
0920-5489/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Improving open data web API documentation through interactivity and 
natural language generation 

César González-Mora *, Cristina Barros , Irene Garrigós , Jose Zubcoff , Elena Lloret , Jose- 
Norberto Mazón 
Department of Software and Computing Systems, University of Alicante Apdo. de Correos 99 Alicante, E-03080, Spain   

A R T I C L E  I N F O   

Keywords: 
Web API 
OpenAPI documentation 
Natural language processing 
Natural language generation 

A B S T R A C T   

Widely adoption of Information Technologies has resulted in the continuous growing of open data available on 
the Web. However, the lack of suitable mechanisms to understand open data sources hampers its reusability. One 
way to overcome this limitation is by means of Web Application Programming Interfaces (APIs) with proper 
documentation, nowadays being the existing very rudimentary, hard to follow, and sometimes incomplete or 
even inaccurate in most cases. In order to improve the documentation of Web APIs that access open data, this 
paper proposes a novel approach to automatically generate interactive Web API documentation, both machine 
and user readable. This process starts by analysing the documentation of an API to obtain important information, 
automatically constructing Natural Language descriptions of the main Web API concepts by applying Natural 
Language Processing (NLP), and specifically, language generation techniques. Then, the documentation is made 
interactive by making it available as a Web interface, offering easy access to open data provided by Web APIs. 
Therefore, the use and comprehension of the Web APIs is facilitated, thus promoting the reusability of open data. 
The feasibility of our approach is presented through a case study and an experiment with users, both showing the 
benefits of our approach.   

1. Introduction 

Nowadays, the Web has become an important information platform, 
thus worldwide governments and organisations have been generating 
and publishing open data for years [1,2], producing economic and social 
benefits, such as innovation and transparency. Indeed, there is a broader 
audience out there that is really interested in data, which are called data 
enthusiasts [3] (i.e. data consumers and knowledge-seekers), who are 
non-technical users (but domain experts) and they do not have extensive 
programming abilities either [4]. Therefore, data enthusiasts need easy 
access to open data in order to answer domain specific questions [3]. 

While the existence of large amounts of open data may be regarded 
as an advantage for these data enthusiasts, it is actually a pitfall because 
data can become difficult to consume [5]. Open data portals should offer 
users the necessary mechanisms to facilitate the discovery, extraction 
and usage of open data [6]. Therefore, removing barriers for data con-
sumption processes remains a primary concern [5]. In order to do so, the 
most adopted approach to facilitate the access to open data to users are 
Web Application Programming Interfaces (APIs) [7]. Actually, they are a 

key feature of open data platforms, allowing data consumers (such as 
data enthusiasts) to access data in a convenient manner [8–10]. How-
ever, data enthusiasts may feel overwhelmed when trying to understand 
Web APIs and use them to access open data. One of the reasons is that 
using Web APIs require users to be familiar with query languages and a 
certain level of knowledge about programming. 

The context of our research is aligned with the previous work of Abell 
et al. [11] and Robillard et al. [12] in the sense that a comprehensive 
and useful documentation is key to facilitate the wide use of APIs. This 
documentation will promote the reuse of open data because the value of 
this data is limited by our ability to interpret and comprehend it [13]. 
Moreover, the importance of this documentation is even more relevant 
regarding Web APIs that provide direct data access (query-level Web 
APIs) in order to facilitate the creation of third-party solutions that reuse 
this data [14]. Therefore, an important factor to attract users and in-
crease the value of APIs consists of facilitating its use by an accurate, 
complete and interactive documentation [14,15]. Unfortunately, the 
available APIs to access open data are generally incomplete and difficult 
to use because they lack adequate documentation [11,15], so users must 

* Corresponding author. 
E-mail address: cgmora@ua.es (C. González-Mora).  

Contents lists available at ScienceDirect 

Computer Standards & Interfaces 

journal homepage: www.elsevier.com/locate/csi 

https://doi.org/10.1016/j.csi.2022.103657 
Received 14 June 2021; Received in revised form 5 April 2022; Accepted 11 May 2022   

mailto:cgmora@ua.es
www.sciencedirect.com/science/journal/09205489
https://www.elsevier.com/locate/csi
https://doi.org/10.1016/j.csi.2022.103657
https://doi.org/10.1016/j.csi.2022.103657
https://doi.org/10.1016/j.csi.2022.103657
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2022.103657&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computer Standards & Interfaces 83 (2023) 103657

2

dedicate more time and effort to learn how to correctly use these APIs. 
In order to overcome the lack of understandable Web API docu-

mentation, Natural Language Processing (NLP) research area could help 
[16] to generate at the same time readable text by users and processable 
by machines. This NLP area is a computational subfield of Artificial 
Intelligence whose main purpose relies on the analysis, processing, 
generation and representation of natural language [17]. Within the 
areas enclosed in NLP, when considering the automatic generation of 
documentation descriptions, the area of Natural Language Generation 
(NLG) is essential. The main aim of this area is to develop techniques 
capable of generating human utterances, whether the input to these 
techniques is text or non-linguistic data [18]. Due to the great func-
tionality and adaptability of NLG, our hypothesis is that the use of its 
techniques can be beneficial in the present research work about gener-
ation of API documentation, providing both interactive documentation 
and natural language descriptions at the same time. 

As the main goal of this research is to provide data enthusiasts with 
comprehensive APIs to better access open data, we propose an approach 
that integrates NLP and NLG techniques. These techniques help us to 
generate machine and user readable documentation of open data Web 
APIs by including natural language descriptions, which are then easy to 
read and understand by data enthusiasts’ users. As far as the authors are 
concerned, our proposal is novel for the state of the art, since the main 
efforts of existing related work [14,19–25] are on the generation of 
documentation for many different purposes in particular scenarios, but 
they do not generally focus on making the documentation interactive 
and do not take into account the positive impact of generating auto-
matically natural language descriptions. As new approaches about the 
generation of API documentation are needed [11] to improve the 
comprehension of APIs and the reusability of data, we first proposed a 
preliminary version [26], and now, we propose a next step in the 
improvement of open data Web APIs documentation. 

In order to verify that our approach provides easier to use Web APIs 
documentation, we perform a complete evaluation with a case study and 
an experiment with data enthusiasts. Indeed, in this experiment the 
interactive and natural language documentation generated by our 
approach is compared to a basic machine-readable documentation of the 
same APIs, so that data enthusiasts give their opinions about each 
documentation. With this experiment we aim to confirm that the prob-
lem associated to the difficulty of using current Web APIs by data en-
thusiasts because of their documentation, can be alleviated by the 
documentation improvement we propose. 

Our contributions to this improvement of Web APIs documentation 
are:  

• A novel freestanding approach for tackling the challenge of data 
enthusiasts to understand data available through Web APIs.  

• A complete documentation which in addition to including easy to 
process specifications for machines, also adds easy to read de-
scriptions for users, facilitating the reuse of data. 

• The natural language descriptions included are generated automat-
ically using a NLG template-based approach in conjunction with 
semantic knowledge, rather than documenting manually each API. It 
reduces the cost and effort of documenting APIs, thus enhancing the 
data reuse process.  

• Interactive documentation which facilitates the use of Web APIs to 
easily obtain the desired data, reducing the human-error factor.  

• An evaluation with 20 data enthusiasts, each of them accessing a 
Web API with a basic machine-readable documentation or an inter-
active natural language documentation generated by our approach, 
so that we can compare the results. 

The novelty of our approach lies in the use of NLP techniques to 
address the automatic generation of machine- and human-readable 
documentation for Web APIs accessing open data. Consequently, our 
approach is relevant for open data reusers who are hampered by poorly 

documented APIs, which is very often the case, according to Smith and 
Sandberg [27]. To overcome this barrier, our approach supports open 
data consumers to understand Web APIs and how to use them. 

This article is structured as follows: in Section 2 the related work is 
described; Section 3 presents the overview of the documentation gen-
eration approach, including a detailed explanation; in Section 4 the 
approach is evaluated with a case study and an experiment with data 
enthusiasts; and finally, the paper concludes in Section 5. 

2. Related work 

In this section, existing related work is investigated. First of all, we 
review existing types of Web API documentation in order to know the 
current situation of Web APIs to access open data. Then, we explore 
current solutions to support Web APIs undersandability, such as those 
regarding automation and NLP. 

2.1. Human vs machine readable API documentation 

The documentation of Web APIs is generally very rudimentary, hard 
to follow, and sometimes incomplete or even inaccurate [11]. Moreover, 
this documentation is mostly manually written and provided as plain 
text, preventing users to take advantage of having a machine-readable 
specification automatically generated [23]. Data enthusiasts that deal 
with Web APIs have to face these documentation obstacles. Therefore, 
they need to deeply evaluate APIs in order to understand and use them 
correctly [12], requiring human effort to create them and excessive time 
to understand that documentation. 

In addition Web APIs usually offer documentation that is machine- 
readable, in other words, easy to process by computers. This docu-
mentation is usually written in a programming language following 
documentation standards, which may be difficult to read by data en-
thusiasts. To the best of the authors’ knowledge, APIs that are manually 
documented lack machine-processable descriptions because they focus 
on descriptions understandable by humans [28]. On the other hand, 
APIs documented automatically are mostly focused on the machine 
specification and definition of the API rather than in user-readable de-
scriptions, such as in [16]. Efforts have been made to facilitate the use of 
APIs by the citizenship by offering chatbots [29] that facilitate the user 
interaction. However, the generation of NL descriptions for the API 
functions is not currently addressed, which is necessary for fully un-
derstanding and using those APIs. 

Regarding documentation types, with the information gathered from 
existing research, such as [11,14,30,31], some conclusions were drawn 
in Table 1. The existing documentation of Web APIs can be: (i) presented 
as plain text without following any kind of documentation standard, 
which promotes the readability for users but is difficult to process by 
machines; (ii) created manually following the OpenAPI standard, which 
is machine-readable but because of the human factor it is error prone 
and has a high cost; (iii) generated automatically in OpenAPI, which is 
generalisable (can be applied for any API) and machine-readable, but it 
is difficult to read by users; and finally, (iv) interactive OpenAPI docu-
mentation, which can be automatically generated or not, which is easy 
to process by computers and may be easier to use by users. Although this 

Table 1 
Advantages and disadvantages of different API documentation types.  

Documentation type Advantages Disadvantages 

Plain text (not following a 
standard) 

User readable Difficult to process by 
machines 

OpenAPI manually created Machine processable Error prone and higher 
cost 

OpenAPI automatically 
generated 

Processable and 
generalisable 

Difficult to read by users 

Interactive OpenAPI Processable and easy to 
use 

Still difficult to read  

C. González-Mora et al.                                                                                                                                                                                                                       



Computer Standards & Interfaces 83 (2023) 103657

3

interactive documentation helps users to query Web APIs, the infor-
mation about what the API offers may still be difficult to read by users, 
hindering the use of this API despite its interactivity. This kind of 
documentation is better compared to those in OpenAPI without inter-
activity, but is not generally available on current Web APIs. Therefore, 
there could be a further step in the way of providing documentation of 
an API: interactive OpenAPI documentation with NL descriptions 
generated automatically. This interactivity means that users would be 
able to query the data from the API just by clicking the documentation, 
which works as a Web interface. In this case, in addition to being easy to 
process by computers, it would also be easy for users to use the API by 
this kind of interactive documentation. 

As seen in Table 1, the different types of Web API documentation not 
only offer advantages such as being easy to use or to process, but also 
disadvantages such as difficulty in their use. There may seem that there 
is no adequate documentation that offers all the benefits but without the 
drawbacks. However, we propose to offer a documentation easy to read 
for users because it includes natural language descriptions, easy to 
process by machines as long as it follows the OpenAPI standard, easy to 
obtain since it is generated automatically and not by hand, and easy to 
use without errors due to its interactivity. 

2.2. Supporting web APIs understandability 

In this section, related work regarding the comprehension of Web 
APIs is reviewed: efforts regarding API documentation are first dis-
cussed, and then, the generation of text from the NLP perspective is 
analysed. 

From the point of view of the API documentation generation, the 
main efforts have been focused on the creation of basic documentation 
(i.e., a machine-readable specification), leaving the interactivity in a 
secondary plane. In general, the documentation is presented as plain text 
or following an open standard, but they are not presented as interactive 
(i.e., a Web interface to interact with the documentation itself). One 
example that considers the interactivity of API documentation addresses 
the generation and design of Web frontends based on OpenAPI docu-
mentation [32]. However, the tool presented in [32] needs to be handled 
manually by developers in order to improve the documentation for end 
users, but the enhancement of the documentation for non-technical 
users is not addressed and thus they may still have difficulties in un-
derstanding and using APIs. 

On the other hand, as the documentation can be in natural language, 
or at least the descriptions of each method or parameter of the API, the 
use of natural language generation techniques is needed. Indeed, NLG 
has been used in many applications, such as text summarisation [33], 
dialog systems [34] or the generation of simplified texts [35]. Moreover, 
it has been also widely employed and integrated in different research 
areas, such as in computer vision, for the generation of textual de-
scriptions for human activities in videos [36]; or in business intelligence, 
for the generation of reports and real time notifications about the state of 
a company’s information technology services [37]. However, the auto-
matic generation of natural language descriptions is left in a secondary 
plane by related work. In general, related research approaches provide 
the documentation of Web APIs with manually written descriptions, 
including methods and parameters. In other cases, these descriptions do 
not include natural language as they are generated as a rough draft 
containing a few keywords related to the overall behaviour of the 
method, or they are not generated at all. Some examples of this type of 
approaches can be found in [19], where a set of techniques for gener-
ating structured documentation of Web APIs from usage examples are 
detailed. The authors propose a first step towards automatically learning 
complete service descriptions. However, the generation of methods’ 
descriptions is not tackled. Also, the authors of this paper proposed an 
automatic API generation process [38,39] which also generates API 
documentation, but it includes very simple descriptions with keywords 
extracted from API methods, without exploiting the potentials that the 

integration of NLP techniques could provide. In [20], a new framework 
for generating titles for Web tables is presented. This is accomplished by 
extracting keywords that are relevant to the table. The proposed tech-
nique is the first to consider text generation methods for table titles. 
However, NLG is not applied to generate documentation and it is based 
on existing table descriptions in plain text. Another paper [21] presents 
a technique to automatically generate human readable summaries for 
Java classes. The proposed tool determines the class and method ste-
reotypes and uses them to select the information to be included in the 
documentation. However, this text generation approach is only valid for 
programming code documentation and it does not address the descrip-
tion of APIs in natural language. Moreover, the documentation gener-
ated is only about a general vision of the Java class, but the explanation 
of their methods is missing in contrast to our proposal. There are also 
some research works [14,22–24] that deal with automatically inferring 
API specifications from manually written documentation. In [22], NLP 
techniques are used to infer an API specification from existing natural 
language documentation of the API, and in [14], HTTP requests are 
employed to generate machine-readable documentation and combine it 
with existing human-readable information in order to provide complete 
API documentation. In [23], the authors present an approach for auto-
matically transform HTML documentations into OpenAPI specifications. 
Moreover, in [24] API documents using semantics based on word em-
beddings for code migration purposes is analysed. However, in these 
investigations the problem is handled differently to ours because they 
assume handwritten API descriptions and then they generate 
machine-readable documentation based on specific keywords. But the 
important problem of generating complex descriptions of the API in 
natural language is not addressed. 

The importance and usefulness of API documentation, especially in 
OpenAPI format is emphasised in [40] and [41]. They deal with 
generating models from API documentations, but the problem of API 
documentation descriptions’ quality is not addressed and they do not 
address the generation of these descriptions in natural language. 
Moreover, the research presented in [11] is focused on improving 
existing data-intensive APIs and their maintenance through the analysis 
of their usage by users. From this analysis, the documentation of the API 
can then be improved. Related to the readability of Web Services, in [25] 
the authors propose a practical metric to quantify readability in WSDL 
documents and best practices to improve their readability. 

From the NLP point of view, the NLG task is essential since it allows 
the automatic generation of text regardless of the type of input (e.g., text 
or non-linguistic data). This task has been commonly addressed through 
the use of knowledge-based approaches. This type of approaches 
commonly rely on the use of templates and rules for generating text 
[42]. For example, PASS [43] is a system that describes non-linguistic 
data, which generates soccer reports. This system creates a summary 
of a specific match employing a template-based approach. The input to 
this system are the match statistics, as well as heterogeneous data such 
as the league, the date, the match events, the players, the total number of 
shots or the accuracy of the passes. The templates used by the system 
PASS were manually derived from sentences in the MeMo FC corpus 
[44]. Another example is the work presented in [45], where a compu-
tational system for generating linguistic descriptions from video camera 
images, in the context of traffic in a roundabout, is described. In this 
sense, the authors first analyse the image to obtain information about 
the vehicles in the roundabout entering lanes and then generate a 
description of the overall roundabout status using fuzzy logic and tem-
plates. Furthermore, within the NLG field the interest in the generation 
of reasoning explanations has increased. This type of systems generates 
the explanation about the decisions made in order to achieve a goal, 
such as in the steps that a system followed in the execution of an algo-
rithm, or the decisions made in the resolution of a mathematical prob-
lem. Although this research line could not be exactly the same as our 
goal of generating descriptive documentation in natural language, it is 
closely related since this type of explanations often include the 

C. González-Mora et al.                                                                                                                                                                                                                       



Computer Standards & Interfaces 83 (2023) 103657

4

description of variables and terms, and the techniques used could be also 
appropriate for the purpose of our research. Some examples of reasoning 
explanation systems can be found in [46], where a system that generated 
explanations for a machine learning algorithm decision is presented; or 
in [47], where a semi-automatic process to analyse business models and 
generate a requirement documents that describes the models is 
proposed. 

As seen in the existing related work, dealing with the automatic 
generation of both machine and human documentation for Web APIs is 
barely addressed. There are some research that deals with similar 
problems, but in some cases the problem arises in other scenarios, such 
as Web services rather than APIs. Therefore, to the best of our knowl-
edge, the solution proposed in this paper is novel and goes beyond the 
state of the art in providing the suitable and interactive documentation 
for Web APIs, in a fully automatic manner, by integrating NLP tech-
niques into the API documentation generation process. 

3. NLP For improving API documentation 

In this section, our approach1 for the documentation generation 
process is described. This constitutes a further step on the documenta-
tion of data Web APIs, by improving and enriching current documen-
tation with suitable descriptions in natural language (NL). These 
descriptions are automatically generated and included in an interactive 
adaptation of the OpenAPI documentation. Specifically, the process of 
improving the documentation is able to add NL descriptions to any 
existing OpenAPI documentation of a Web API. With this incorporation 
of descriptions, the documentation of Web APIs will be not only 
machine-readable but also understandable by users. Moreover, this 
documentation of the API is made interactive, which means that it is 
presented through a Web interface so that users can directly query the 
underlying API to easily get the data. Therefore, the enhancement of the 
comprehension and use of Web APIs will promote as a result the reuse of 
data. 

The process of improving open data Web API documentation starts 
with an existing OpenAPI documentation of an open API. After that, the 
generation of natural language descriptions are automatically generated 
and integrated in the existing initial documentation. In this manner, a 
more detailed and comprehensive documentation is obtained. Finally, 
this documentation is made interactive by creating a Web interface 
version with the help of Swagger2 open source specification and tools. 
This whole process is now explained step by step in the following 
subsections. 

3.1. Starting point: An existing openAPI documentation 

The process starts with a basic machine-readable API documentation 
(Fig. 1) following the OpenAPI standard in JSON format. Then, using the 
proposed NL descriptions generator approach, a set of descriptions in 
natural language is created and later appended to the documentation of 
the API, facilitating the understanding of the Web API. 

Therefore, the first step of the process (Step 1 in Fig. 1) begins with a 
Web API including an OpenAPI documentation which is only machine- 
readable. This documentation is not easy to read by human users, so 
generating NL descriptions of the API is essential to better understand 
and access it to get the underlying data. 

In order to generate these NL descriptions, the automatic generator 
process first gathers the following information about the API from this 
starting OpenAPI documentation: the title given to the API; the name of 
each method; all the parameters from each method, with name, type and 
example value; and all the properties given as a result of the API, also 
with name, type and example data. This information is extracted from 

the input documentation by analysing the JSON object that contains all 
the components of the API documentation. In order to do so, the process 
iterates through the JSON objects and arrays that the OpenAPI standard 
specifies, such as API “title”, “paths”, “components”, “parameters” and 
“properties”. 

Once the aforementioned information is gathered, the process con-
tinues with the next step in order to automatically generate the general 
description of the API as well as a description for each of the API 
methods, parameters and properties. This generation process will be 
further explained in the next subsection. 

3.2. Natural language descriptions generator 

Taking as input the information extracted in the first step of our 
approach’s architecture, the second step (Step 2 in Fig. 1) is the gener-
ation of descriptions using NLP techniques. From this information, the 
generation of NL descriptions is performed using and integrating 
different NLP techniques. Specifically, tokenisation, word sense disam-
biguation and a NLG template-based approach are employed to generate 
the descriptions that will be added to the OpenAPI specification. An 
overview of these steps is shown in Fig. 2. 

Template-based approaches have proven to generate relatively high 
quality texts and faster than other NLG approaches [43], being suitable 
in the case of the generation of descriptive API documentation since its 
integration with other systems or approaches would not affect their 
performance. The type of templates used in this approach is usually a 
text with gaps that must be filled with specific information in order to 
complete its semantic meaning. The information for generating the 
method’s descriptions within the API documentation is provided by the 
input API specification. In this regard, the name of the methods or the 
parameters/properties of these methods will be used for producing 
semantically enriched descriptions. 

The templates to be used in this proposed approach are designed 
considering as reference the generic CKAN API3, which is used by many 
open data platforms such as Data.gov (the U.S. Government’s open data 
platform) and Data.gov.uk (the U.K. Government’s open data platform). 
Since the text needed to describe the different parts of the API must be 
different, a variety of 3 different generic templates were hand-crafted (as 
shown in Fig. 3): (i) general API description; (ii) API method description; 
and (iii) parameter/property description. Within these templates, the 
most important information is shown in bold in order to highlight it to 
the readers. In addition, there are different variables used along the 
templates to include the information coming from the API: ${fileName} 
(name of the dataset to access through the API), ${params} (list of 
available parameters to filter data), ${methodName} and ${method-
Name2} (names of two methods of the API as example), ${methodEx} 
and ${methodEx2} (example values for two methods of the API), 
${recordExample} (API response example in JSON format), ${ptype} 
(indicates if it corresponds to a parameter or a property of the API), 
${pname} (name of the parameter or property), ${datatype} (parameter 
or property data type such as string), ${pexample} (example of 
parameter or property value), ${pdefinition} (definition of the param-
eter or property name), ${prequired} (if the parameter is required in the 
method call) and ${pin} (if the parameter must be in query or in the path 
of the API request). 

As illustrated in Fig. 3, the variables ${fileName}, ${params}, 
${methodName}, ${methodName2},${methodEx},${methodEx2} and 
${recordExample} are employed in the first and second templates (i.e., 
the general API and method descriptions) to fill the available gaps and 
create an understandable and well-structured text. In this case, the in-
formation contained in these variables is solely provided by the API 
specification. However, concerning the third template (i.e., the gener-
ation of parameter/property descriptions), more information is required 

1 https://github.com/cgmora12/NL4OpenAPI  
2 https://swagger.io/ 3 https://docs.ckan.org/en/latest/api/index.html 

C. González-Mora et al.                                                                                                                                                                                                                       

https://github.com/cgmora12/NL4OpenAPI
https://swagger.io/
https://docs.ckan.org/en/latest/api/index.html


Computer Standards & Interfaces 83 (2023) 103657

5

in order to generate a description that helps the data enthusiasts users to 
better understand the parameters to be used in the API. Therefore, in the 
proposed approach, the information coming from the API specification 
is enriched with the application of NLP techniques, such as word sense 
disambiguation, in conjunction to the use of knowledge-bases and se-
mantic resources. The use of this type of techniques and resources may 
be helpful in situations where is difficult to discern the meaning of a 
parameter/property that correctly fits the context of the API documen-
tation. For example, in the context of an API for obtaining employment 
data, the word “mean” would adopt the meaning of average instead of 
other meanings such as a “stingy person”. Concerning the type of re-
sources mentioned above, Babelfy [48] and BabelNet [49] are specif-
ically used for the generation of the parameter/property descriptions. 
These resources provide semantic knowledge to the generated descrip-
tion, thus enriching the API documentation and providing the user with 
definitions and examples of the data queried by the API. The former 
performs word sense disambiguation, using a semantic network. The 
latter is a multilingual encyclopedic dictionary and a semantic network 
that integrates information from several sources such as WordNet [50] 
or Wikipedia. Babelfy allows the disambiguation of a specific term 
(either by using only this specific term or employing it together with an 
example), obtaining the sense of the term in the form of an ID repre-
senting a set of synonyms. Then, searching this ID in BabelNet, the 

semantic description of the term is obtained. In this preliminary version 
of the approach, in case that a term has more than one sense, we choose 
the one with the highest disambiguation score4 provided by Babelfy. 
Since in many cases, the parameter/property are not a single token, an 
intermediate processing step is needed before using BabelNet/Babelfy 
resources. This is due to the fact that these resources need as input a 
sentence or a term with the words to disambiguate correctly spelled. 
Therefore, in the case that a parameter/property contains more than one 
word in a single token (e.g., when several words are separated by a 
underscore: Country_Code), tokenisation5, via regular expressions, is 
employed in order to separate these words. In this sense, the following 
cases are considered: (i) when the words are separated by non-alpha 
numeric characters, such as “&”,“_” or “$”; and, (ii) when the words 
are in camel case format, such as “FlagsCode” or “CountryCode”. Ulti-
mately, if Babelfy is not able to disambiguate the parameter/property as 
a whole, or any of its components, its description will not appear in the 
final API documentation. Once the enriched description is generated, as 

Fig. 1. Overview of the automatic generation of API documentation.  

Fig. 2. Overview of our NLP approach for generating API documentation.  

4 A value between 0 and 1 to indicate the confidence degree of the algorithm 
for the disambiguation of the term [51].  

5 The process of splitting a stream of text into more basic units such as words, 
phrases or tokens (elements with an identified meaning). 

C. González-Mora et al.                                                                                                                                                                                                                       



Computer Standards & Interfaces 83 (2023) 103657

6

a result of the outlined procedure, the information in the third template 
is completed with the variables ${ptype}, ${pname}, ${datatype}, 
${pexample}, ${prequired} and ${pin}; thus producing a 
well-structured text. 

3.3. Generating an interactive openapi documentation 

Finally, the last step consists of creating an interactive documenta-
tion which is easy to process by machines and easy to read by data en-
thusiasts at the same time (Step 3 in Fig. 1). First, the generated 
descriptions in natural language of the API are integrated in the existing 
(machine-readable) documentation of the API. Then, this documenta-
tion is going to be made interactive by automatically creating a Web 
interface. In order to do so, the necessary Web programming code (in 
HTML, CSS and Javascript languages) is appended to the documenta-
tion, which is incorporated in a Web server in the NodeJS environment 
to allow interactivity. Therefore, this documentation of the API will be 
now both machine and user readable, all in a single and interactive 
OpenAPI documentation (shown in Fig. 4). 

In order to perform this integration of descriptions, the input 
OpenAPI is analysed to locate where these generated NL descriptions 
have to be placed within the OpenAPI specification: the general 
description of the API is placed in the “info” component of the OpenAPI 
documentation; the description of each method of the API is placed in 
the corresponding OpenAPI “path”; the description of each parameter is 
placed in the corresponding “parameter” of each “path”; and finally, the 
description of each property is placed in the corresponding “property” of 
the “components” object. 

When this process ends, the OpenAPI documentation including de-
scriptions in natural language is included in an automatically generated 

server to offer the documentation as a Web interface. It consists in a 
NodeJS6 server that is created with the help of the Swagger Codegen 
tool7, which creates the structure of the server and manages the calls to 
the underlying API. An example of this generated interactive docu-
mentation is shown and explained in detail in Section 4.1.1. One of the 
main benefits of having an interactive documentation is the consistency 
of the results, which means that the possibility of introducing errors such 
as writing mistakes is severely reduced, and therefore there is less 
chance of obtaining erroneous data. For example, if users want to filter 
the data by a parameter called “Area_Type”, they have to write the 
parameter exactly taking into account symbols and uppercase. However, 
with our interactive approach users do not need to write down the 
parameter and they can just click on the specific method for filtering. 

4. Evaluation 

In this section the proposed approach is first evaluated with different 
examples. Then, a specific case study is introduced, and finally, an 
experiment with real users is presented. To ensure the correct perfor-
mance of the proposed approach, a set of 5 different OpenAPI docu-
mentations have been used. Each documentation is related to one Web 
API that provides direct access to specific data about different topics. 

Table 2 shows a brief summary of the time spent by the proposed 
approach for generating the OpenAPI documentation with natural lan-
guage descriptions. As can be seen, the time required to generate the API 
documentation by our proposed approach is affected by the number of 
API methods’. In this sense, the disambiguation process would introduce 
a delay in generation time for each method. Taking into account that the 
Web APIs contain between 7 and 46 methods, the time to generate the 

Fig. 3. Templates to generate API documentation NL descriptions.  

6 https://nodejs.org  
7 https://swagger.io/tools/swagger-codegen/ 

C. González-Mora et al.                                                                                                                                                                                                                       

https://nodejs.org
https://swagger.io/tools/swagger-codegen/


Computer Standards & Interfaces 83 (2023) 103657

7

related API documentation including natural language descriptions is 
between 24 and 215 seconds. 

4.1. Case study 

A case study is now introduced to illustrate the whole process and 
show the feasibility and usefulness of our proposal. It consists of 
applying the proposed approach described in Section 3 to an existing 
data Web API. With this example we attempt to demonstrate that data 
enthusiasts need to make a great effort to interpret and understand the 
available third-party Web APIs because of the lack of suitable human- 
readable API documentation, which also hampers the reusability of 
data. 

Our scenario includes open data from a Web API providing 
employment statistics, from which we are going to create an interactive 
OpenAPI documentation with natural language descriptions. 

4.1.1. Generating documentation for employment data 
An API providing employment statistics has been chosen to illustrate 

this process. The information provided by the API is about employment 
in a wide variety of professions in New York. Table 3 shows an extract of 
employment data from the dataset, which contains information such as 
occupation, area name or wage. This data originally comes from the U.S. 
Government’s open data website (data.gov). 

This “Employment Statistics” dataset is used as example with its Web 
API8 and its OpenAPI documentation9. This documentation includes 
information about a set of methods: a general method to retrieve all the 
data from the source; and one method to filter by the values contained in 
each column of the data source. However, this OpenAPI documentation 
does not include NL descriptions, which makes the application of our 
approach to generate NL descriptions very valuable in this context. 

In order to improve the existing documentation, the generation of NL 
descriptions is performed to create an API general description, an 
explanation of each API method and also a definition of each parameter 
of the API. After that, the documentation is made interactive by 
providing the documentation as a Web interface. Finally, this complete 
documentation is exposed online10 so that we can just test it. 

4.1.2. API Documentation comparison 
The objective of this comparison is to visually contrast how our de-

scriptions have benefited and increased the quality of the basic docu-
mentation we initially had. 

As shown in Fig. 5, the API general description in the original 

Fig. 4. Extract of the obtained interactive documentation.  

Table 2 
Generation of NL descriptions for different datasets.  

Web API # of methods Generation time 

Voter History Data 20 43.02 s 
Biodiversity by County 13 36.54 s 
Employment Statistics 10 25.88 s 
Leading Causes of Death 7 24.18 s 
Demographic Statistics 46 214.89 s  

Table 3 
Extract of the dataset used as example in the case study.  

Area Name Occupational Title Employment Mean Wage Median Wage 

NY All Occupations 9,385,620 63,270 46,010 
NY Budget Analysts 3150 80,060 76,720 
NY Credit Analysts 7440 121,490 104,600 
NY Financial Analysts 53,250 139,930 109,230 
NY Sales Managers 23,120 202,230 183,850  

8 https://wake.dlsi.ua.es/EmploymentAPI/  
9 https://wake.dlsi.ua.es/EmploymentAPI/docs/openapi.json  

10 https://wake.dlsi.ua.es/EmploymentAPI/docs/ 

C. González-Mora et al.                                                                                                                                                                                                                       

https://wake.dlsi.ua.es/EmploymentAPI/
https://wake.dlsi.ua.es/EmploymentAPI/docs/openapi.json
https://wake.dlsi.ua.es/EmploymentAPI/docs/


Computer Standards & Interfaces 83 (2023) 103657

8

documentation9 is almost empty (Fig. 5 above), whereas the documen-
tation10 generated using NLP (Fig. 5 below) includes a complete 
description about the data offered in the API, the filters that can be 
applied, the result format and an example about how to query the Web 
API. 

Moreover, the comparison of the API main method description is 
shown in Fig. 6. The original API main method documentation (Fig. 6 
above) only includes a short summary which is equal to the description 
of other methods of the API. However, the documentation of the API 
main method generated by our approach (Fig. 6 below) is interactive as 
it allows you to easily query the API just clicking in the button provided 
by the Web interface. It also includes an example about how to query 
this API method and a complete description about the data offered by 
this concrete method, which can be filtered by different parameters. 

Finally, the documentation about the parameters of an API method 
are compared in Fig. 7. The description of these parameters is almost 
empty in the original documentation, meanwhile the documentation of 
each parameter generated by the proposed approach includes a com-
plete description in natural language about the type of data, an example 
of use, if it is required or not, how to pass this parameter to the API, and 
finally, a semantic definition about the meaning of the parameter itself. 

Therefore, from the comparison of a basic open data Web API 
documentation without integrating NLP approach previously pre-
sented11, we have seen that the documentation generated by our 
approach contains more information for users to understand and query 
the API to get the desired data. With this help, data enthusiasts can easily 
promote the use of open data available through Web APIs. 

4.2. Experiment with users 

To evaluate our approach with real users, an experiment comparing 
the use of OpenAPI documentation with the use of interactive OpenAPI 

documentation with NL descriptions created by our approach was con-
ducted. This experiment was carried out with data enthusiasts using the 
original basic documentation and the generated by our approach for 3 
Web APIs selected from Table 2, which makes a total of 6 API docu-
mentations. For each documentation, we supplied a different survey. In 
this experiment with users, 20 participants from Alicante (Spain) 
accessed specific data using the related Web API and its documentation. 
These participants were data enthusiasts without programming skills 
which attended a big data seminar oriented to take advantage of data in 
different scenarios, which was conducted by the Employment Centre of 
the University of Alicante12. 

4.2.1. Experiment setup 
First of all, we provide an explanation of the experiment for the 

participants in a website13 we created specifically for the experiment. 
This website includes a link to one of the 6 available surveys, randomly 
for each participant to take a different survey (only one). These 6 sur-
veys are different because there is 3 available Web APIs (their structure 
is the same but they are about different data), and each one has the 
option to use the original documentation or the documentation gener-
ated using our NL documentation approach. However, the difficulty of 
the surveys remains the same and also the questions for participants are 
equal despite the documentation they are using, the only changes affect 
the data asked depending on the API they have to query (because the 
data offered by the APIs is different). 

A preliminary training phase was conducted in order to help data 
enthusiasts to know about APIs and OpenAPI documentation. Therefore, 
we provided in the experiment website13 an explanatory video about 
what is a Web API, how to access data and how to read an OpenAPI 
documentation. 

Then, users were asked to fill in an online survey where they have to 

Fig. 5. Description of the API in the basic OpenAPI documentation (above) and the interactive one generated by our approach that uses NLP (below).  

11 https://github.com/cgmora12/AG 

12 https://web.ua.es/centro-empleo/  
13 https://wake.dlsi.ua.es/ExperimentDocumentation 

C. González-Mora et al.                                                                                                                                                                                                                       

https://github.com/cgmora12/AG
https://web.ua.es/centro-empleo/
https://wake.dlsi.ua.es/ExperimentDocumentation


Computer Standards & Interfaces 83 (2023) 103657

9

perform the following tasks: (i) read the provided documentation; (ii) 
query the specified API to get specific data; (iii) answer some questions 
about the retrieved data; and finally, (iv) answer general questions 
about the documentation used and their satisfaction about the process of 
accessing data using the API and its documentation. 

In this evaluation we recorded the time spent to answer the questions 
and the correctness of answers in order to know the effort they needed to 
query the API using the provided documentation and their efficiency. 
Therefore, the data analysis used for this experiment consisted of ana-
lysing the time in seconds for the correct answers with ANOVA, using 
the type of documentation and the specific API as fixed factors. It is also 
important to consider that the time has been transformed with square 
root in order to avoid heteroscedasticity (circumstance in which the 
standard deviations of a predicted variable are non-constant). 

4.2.2. Online surveys 
There is a different survey for each type of documentation and each 

different Web API, so that we can compare the use of the documentation 
in different scenarios. All the surveys are available online: 1) Employ-
ment API with original basic documentation survey14, 2) Employment 
API with complete NL documentation survey15, 3) Biodiversity API with 
original basic documentation survey16, 4) Biodiversity API with 

complete NL documentation survey17, 5) Death Causes API with original 
basic documentation survey18, 6) Death Causes API with complete NL 
documentation survey19. 

Next, an example of survey for the Employment API with interactive 
NL documentation is going to be explained in detail. This example is 
shown in the Appendix Appendix B. 

First of all, in the introduction of the survey we offer information 
about the API and we encourage users to carefully read the provided 
documentation before answering the survey. Then, users are asked to 
perform 6 different queries to the API using the documentation. One of 
the queries consists of obtaining the mean wage of financial managers 
employees from “Long Island Region”. We also asked the user about the 
query used to obtain this required data. 

Finally, the general questions were related to gather information 
about previous experience in the use of Web APIs, difficulty in the 
queries performed, usefulness of the documentation, satisfaction with 
the documentation and possible improvements or changes for the 
documentation used. 

4.2.3. Experiment results 
An extract of the results of the evaluation are shown in the 

Appendix A (Tables A.4–A.9), presenting also the average of the results 
in the last row of each table. As can be seen, although users in the 

Fig. 6. Comparison of the API main method description in the original OpenAPI documentation without applying our NLP approach (above) and integrating 
NLP (below). 

14 https://wake.limequery.com/982922?lang=es  
15 https://cgm119.limequery.com/837582?lang=es  
16 https://wake.limequery.com/574386?lang=es 

17 https://cgm119.limequery.com/123695?lang=es  
18 https://wake.limequery.com/591598?lang=es  
19 https://cgm119.limequery.com/923551?lang=es 

C. González-Mora et al.                                                                                                                                                                                                                       

https://wake.limequery.com/982922?lang=es
https://cgm119.limequery.com/837582?lang=es
https://wake.limequery.com/574386?lang=es
https://cgm119.limequery.com/123695?lang=es
https://wake.limequery.com/591598?lang=es
https://cgm119.limequery.com/923551?lang=es


Computer Standards & Interfaces 83 (2023) 103657

10

Fig. 7. Description of the API main method parameters in the basic original OpenAPI documentation (above) and integrating NLP (below).  

Table A1 
Results of survey about employment API with original OpenAPI documentation. Average results in the last row.  

Correct answers Correct queries Previous experience with APIs Usefulness of documentation Clear documentation Time (s) General satisfaction 

2/6 0/6 No 5 of 5 stars No 2183.64 3 of 5 stars 
5/6 6/6 No 5 of 5 stars Yes 620.15 4 of 5 stars 
5/6 5/6 Yes 3 of 5 stars Yes 2383.56 2 of 5 stars 
5/6 1/6 No 4 of 5 stars Yes 2580 4 of 5 stars 
6/6 6/6 No 1 of 5 stars No 4790 3 of 5 stars 
0/6 0/6 No 1 of 5 stars No - 1 of 5 stars 
4/6 0/6 No 2 of 5 stars No 1655 2 of 5 stars 
3.86/6 2.57/6 No 3 of 5 stars No 2368,73 2.71 of 5 stars  

Table A2 
Results of survey about employment API with NL OpenAPI documentation. Average results in the last row.  

Correct answers Correct queries Previous experience with APIs Usefulness of documentation Clear documentation Time (s) General satisfaction 

3/6 1/6 No 4 of 5 stars Yes 1601.12 4 of 5 stars 
3/6 3/6 No 3 of 5 stars No 8137.8 3 of 5 stars 
5/6 6/6 Yes 5 of 5 stars Yes 6739.7 5 of 5 stars 
4/6 4/6 No 3 of 5 stars No 9947.26 4 of 5 stars 
5/6 6/6 No 4 of 5 stars Yes 1339.14 4 of 5 stars 
4/6 4/6 No 3.8 of 5 stars Yes 5553 4 of 5 stars  

Table A3 
Results of survey about biodiversity API with original OpenAPI documentation. Average results in the last row.  

Correct answers Correct queries Previous experience with APIs Usefulness of documentation Clear documentation Time (s) General satisfaction 

2/6 0/6 No 1 of 5 stars No 2120.57 1 of 5 stars 
5/6 5/6 No 2 of 5 stars Yes 2616.04 3 of 5 stars 
5/6 6/6 No 4 of 5 stars No 2179.35 4 of 5 stars 
0/6 0/6 No 3 of 5 stars No 5132.28 3 of 5 stars 
1/6 0/6 No 3 of 5 stars No 873.38 3 of 5 stars 
2.6/6 2.2/6 No 2.6 of 5 stars No 2584.32 2.8 of 5 stars  

C. González-Mora et al.                                                                                                                                                                                                                       



Computer Standards & Interfaces 83 (2023) 103657

11

surveys with documentation in NL can take more time in some cases to 
answer the questions, they generally take less time to achieve correct 
answers than the users with the original machine-readable OpenAPI 
documentation. In general, the usefulness of the documentation for 
obtaining the required data was higher using our proposed approach, 
meanwhile the general satisfaction was also greater using documenta-
tion with natural language descriptions. It is also important to note that, 
in general, users consider the documentation in NL more clear than the 
original basic documentation, and also around the 90% of participants 
recognise that a documentation in NL is important to know how to use 
APIs and then access relevant data, as shown in Fig. 8. 

For participants with original documentation, the number of correct 
answers and correct queries to get the data are significantly lower than 
for participants with NL documentation generated by our approach 
(Fig. 9). Moreover, as shown in Fig. 10, users considered this NL docu-
mentation as highly useful rather than the original documentation, and 
in some cases, users of machine-readable documentation preferred not 
using the documentation because of its format. 

As shown in Fig. 11, the time needed to answer each question of the 
survey was generally lower than 10 minutes and in average around 4 
minutes. Moreover, the number of questions that surpassed 20 seconds 
to answer them is low, but they introduce a variability in the data 
observed. Since the time measured can induce to errors because users 
can stay in the same question for a long time without even looking at the 
survey, we considered important for the correctness of the results not to 
take into account those question’s responses that took more than 20 
minutes. With this consideration, the time spent on (correctly) resolving 
a question by performing a query to the API is higher with original 

documentation than with NL documentation. Moreover, the density of 
the response time with the complete documentation (in NL) is concen-
trated around the average (3 minutes, line in red). However, with 
original documentation more dispersion of the response times is 
observed, as there are more responses with longer times (line in blue). 
Also, Fig. 12 shows that in all types of surveys (biodiversity, death-
Causes, employment) it always takes longer to respond with original 
documentation than with NL documentation (F1,128=6.192; p-val-
ue=0.0141). There is no interaction between the two factors 
(F2,128=0.443; p-value=0.1538) and the pattern is the same for all 
surveys, with more time spent on original documentation. 

In addition, in all surveys the time was less when the documentation 
was in NL rather than the original machine-readable OpenAPI docu-
mentation. Then, the effect of the type of documentation is significant 
(p-value=0.0141). 

Regarding the general satisfaction of participants (Fig. 13, using the 
NL documentation they reported a higher rating (general average of 7.2 
out of 10) compared to the satisfaction when using the original docu-
mentation (general average of 6 out of 10). 

Therefore, this experiment shows that our approach successfully 
achieves the objective of helping users to access data through APIs by 
improving existing documentation. Comparing the documentation 
created by our approach with the existing machine-readable, we can 
conclude that users easily find the information they are requested to 
query, with fewer effort, higher user satisfaction and less errors. 

Table A4 
Results of survey about biodiversity API with NL OpenAPI documentation. Average results in the last row.  

Correct answers Correct queries Previous experience with APIs Usefulness of documentation Clear documentation Time (s) General satisfaction 

6/6 5/6 No 5 of 5 stars Yes 909.59 4 of 5 stars 
5/6 4/6 No 2 of 5 stars No 1652.84 4 of 5 stars 
1/6 0/6 No 3 of 5 stars Yes 1583.71 3 of 5 stars 
0/6 0/6 No 4 of 5 stars Yes 6213.67 4 of 5 stars 
4/6 3/6 No 4 of 5 stars No 1724.81 4 of 5 stars 
5/6 5/6 No 5 of 5 stars Yes 1430.28 4 of 5 stars 
3.5/6 2.83/6 No 3.83 of 5 stars Yes 2252.48 3.83 of 5 stars  

Table A5 
Results of survey about death causes API with original OpenAPI documentation. Average results in the last row.  

Correct answers Correct queries Previous experience with APIs Usefulness of documentation Clear documentation Time (s) General satisfaction 

1/6 0/6 No 4 of 5 stars Yes 1274.77 3 of 5 stars 
5/6 5/6 Yes 4 of 5 stars Yes 2352.65 4 of 5 stars 
3/6 0/6 No 3 of 5 stars No 1895.64 3 of 5 stars 
4/6 2/6 No 2 of 5 stars Yes 8242.53 3 of 5 stars 
2/6 0/6 No 3 of 5 stars Yes 1290.4 3 of 5 stars 
0/6 3/6 Yes 3 of 5 stars No 1231.86 5 of 5 stars 
6/6 1/6 No 3 of 5 stars Yes 1292.26 4 of 5 stars 
4/6 0/6 No 2 of 5 stars No 931.98 3 of 5 stars 
3.13/6 1.38/6 No 3 of 5 stars Yes 2314.01 3.5 of 5 stars  

Table A6 
Results of survey about death causes API with NL OpenAPI documentation. Average results in the last row.  

Correct answers Correct queries Previous experience with APIs Usefulness of documentation Clear documentation Time (s) General satisfaction 

4/6 1/6 No 4 of 5 stars No 1341.82 4 of 5 stars 
6/6 1/6 Yes 4 of 5 stars Yes 741.67 4 of 5 stars 
6/6 6/6 Yes 4 of 5 stars Yes 1546.19 4 of 5 stars 
6/6 2/6 Yes 1 of 5 stars No 1931.3 1 of 5 stars 
6/6 6/6 Yes 4 of 5 stars Yes 1234.56 4 of 5 stars 
0/6 1/6 No 2 of 5 stars No 1355.11 2 of 5 stars 
6/6 5/6 No 5 of 5 stars Yes 737.5 5 of 5 stars 
0/6 1/6 No 2 of 5 stars No 875.5 2 of 5 stars 
4.25/6 2.875/6 Yes/No 3.25 of 5 stars Yes/No 1220.45 3.25 of 5 stars  

C. González-Mora et al.                                                                                                                                                                                                                       



Computer Standards & Interfaces 83 (2023) 103657

12

4.3. Discussion 

From this evaluation we can state that the inclusion of interactivity 
and NLP techniques improve the documentation of Web APIs, which can 
now be easily understood by users and processed by machines at the 
same time. Compared to not having any documentation, or having only 
a machine-readable documentation that only includes the names of the 
API methods, our approach contributes to the existing related work by 
providing both human and machine-readable documentation, which 
simplifies the comprehension and reusability of the data. Furthermore, 
the generated documentation allows users to query the underlying API 
through different methods by the documentation Web interface, thus 
facilitating the access to the data. 

These results can be justified as it is normal that with the original 
basic documentation, users take less time to answer the surveys than 
with the generated NL documentation because they do not understand 

machine-readable documentation and thus they have less to read. 
However, the main problem is that with the basic documentation there 
are many more errors because data enthusiasts can be confused with 
invalid results that they believe to be true. Instead, when using our 
generated documentation it is advantageous against the misunder-
standing as well as the misleading use of the Web API. 

In comparison with existing related work on the generation of API 
documentation [14,16,22–24,29], our approach provides NL de-
scriptions automatically generated, which is not addressed by those 
related works. As demonstrated in the evaluation with users, these NL 
descriptions improve the understanding and thus the correct use of the 
existing APIs comparing with APIs whose documentation does not 
include NL descriptions for their functions. Also, in other works such 
[32], the interactivity of the documentation has been addressed. How-
ever, since manual interaction is needed and NLG is not addressed in 
their approach, our approaches cannot be compared in terms of 

Fig. 8. Participants consideration about if a documentation in NL is important for Web APIs, being basic the documentation without NLP and complete the 
documentation generated with NLP by our approach. 

Fig. 9. Correctness of answers (left) and queries (right) differentiated by participants using NL documentation vs using basic original documentation.  

C. González-Mora et al.                                                                                                                                                                                                                       



Computer Standards & Interfaces 83 (2023) 103657

13

performance. Finally, other related works that use NLG [20,21,33–37] 
do not address the improvement of Web APIs and their documentation 
with descriptions understandable by humans. 

Therefore, we have evaluated with examples and users that the 
proposal successfully achieves the objective of generating the suitable 
Web API descriptive documentation in different situations. The impor-
tance of including natural language descriptions in OpenAPI documen-
tation is that it actually helps users to reuse existing data and citizens to 
be able to access the data offered on the Web. 

5. Conclusions and future work 

In this paper we have presented an approach that integrates NLP 
techniques to generate interactive documentation of open data Web 
APIs, easy to read and understand by data enthusiasts users. Our 
approach starts with a basic machine-readable API documentation in the 
OpenAPI standard, which is easy to process by machines but difficult to 
understand by common users, hindering the reuse of data. From this 
documentation, we propose a natural language description generator to 
create a set of descriptions in natural language and append them to the 
existing machine-readable documentation of the API. This process is 
based in NLP and specifically in NLG techniques that allow us to create 
NL descriptions from important concepts of the initial documentation. 
Moreover, this documentation is made interactive by presenting it as a 
Web interface to facilitate even more the task of querying the API. For 
evaluating the proposed approach, we tested the automatic generation 

Fig. 10. Usefulness of documentation for participants (in the left), and number of users using the documentation for the experiment (in the right).  

Fig. 11. Time needed to answer the surveys using basic (without NLP) and complete documentation (generated with NLP by our approach).  

Fig. 12. Density plot of time to answer different surveys with basic and com-
plete documentation (generated with NLP by our approach). 

C. González-Mora et al.                                                                                                                                                                                                                       



Computer Standards & Interfaces 83 (2023) 103657

14

of documentation process with several machine-readable documenta-
tions of datasets from the Data.gov open data portal. After that, we have 
presented a case study in which our approach is applied within a specific 
scenario and then evaluated with data enthusiasts in an experiment. In 
this sense, we illustrated and described a real-based situation where 
users are interested in obtaining specific data from an API. The proposed 
approach (publicly available at GitHub1) is a key element for improving 
data management and analysis. This is because enhanced API docu-
mentation would lead to a better understanding of the API by users, 
facilitating the access and handling of open data available online. 
Regarding this implementation of the approach, the generation of 
enriched descriptions is independent of the API generation, being this 
step easily applied to existing APIs from different contexts, as well as the 
API generation process can be applied from different data sources 
available online. Moreover, the interactivity of the proposed approach 
allows users to easily access the documentation’s webpage and directly 
query the underlying API by performing a few clicks. Therefore, the 
implementation allows to easily use and extrapolate the solution for 
existing problems regarding documentation of APIs. 

Limitations of our approach mainly come from the challenges that 
NLG embraces. As stated in [52], it is necessary not only to describe how 
the NLG is used for a specific task, but also to discuss its limitations to 
show the complexity of the task and the challenges that need to be 
addressed. The first limitation of our approach is related to the un-
availability of metadata found in open data sources [53]. This may 
prevent NLG from generating satisfactory sentences for useful Web API 
documentation. The use of external knowledge resources could improve 
this limitation. Another important limitation of NLG is related to 
hallucination from the data [54], i.e., the generation of texts that are 
apparently well written but they are unsubstantiated and not faithful to 
the provided data. In our approach, templates are used to try to over-
come this limitation when documentation of Web APIs is generated from 
open data sources. 

As future work, the generation process will be extended by using 
semantic Web technologies to apply data integration mechanisms. With 
regard to the generation of descriptions within the API documentation, 
the NLP area also provides with techniques that allow the adaptation or 

customisation of the generated descriptions depending on the user 
needs. In this sense, the descriptions could be simplified according to a 
specific linguistic level or could also include more technical terms if 
required. In addition to this, this approach could be easily extended to 
other languages (i.e., multilingual) since the semantic resources 
employed (i.e., BabelNet and Babelfy) are linked to many languages, 
which would facilitate the reuse of code. Finally, studying how our 
proposal could impact the software industry is an interesting avenue for 
future work, as according to [27] the poor documentation of APIs for 
accessing open data causes two main problems for entrepreneurs and 
companies: on the one hand, the lack of documentation hinders the 
effort to design and develop open data-based services and software 
products; and on the other hand, even if the documentation exists, 
software developers have difficulties in understanding and seeing what 
open data the APIs can access. 

CRediT authorship contribution statement 

César González-Mora: Conceptualization, Methodology, Software, 
Validation, Investigation, Writing – original draft, Writing – review & 
editing, Visualization. Cristina Barros: Conceptualization, Methodol-
ogy, Software, Validation, Investigation, Writing – original draft, 
Writing – review & editing, Visualization. Irene Garrigós: Supervision, 
Project administration, Funding acquisition, Conceptualization, Inves-
tigation, Writing – original draft, Writing – review & editing. Jose 
Zubcoff: Supervision, Formal analysis, Conceptualization, Investiga-
tion, Visualization, Data curation, Writing – original draft, Writing – 
review & editing. Elena Lloret: Supervision, Funding acquisition, 
Conceptualization, Investigation, Writing – original draft, Writing – re-
view & editing. Jose-Norberto Mazón: Supervision, Funding acquisi-
tion, Conceptualization, Investigation, Writing – original draft, Writing 
– review & editing. 

Declaration of Competing Interest 

None. 

Fig. 13. General satisfaction of participants using basic original and complete NL documentation.  

C. González-Mora et al.                                                                                                                                                                                                                       



Computer Standards & Interfaces 83 (2023) 103657

15

Acknowledgment 

This work has been partially funded by the following projects: GVA- 
COVID19/2021/103, TIN2016-78103-C2-2-R, PROMETEU/2018/089, 
RTI2018-094653-B-C22, RTI2018-094649-B-I00, TIN2017-90773- 
REDT and COST Action CA18231. 

Appendix A. Result tables 

This appendix shows an extract of the evaluation results. 

Appendix B. Survey example used in the experiment (API 
employment survey) 

This appendix corresponds to an example of survey for the 
Employment API with interactive NL documentation. 

This survey will evaluate the use of an API to obtain employment 
data for New York City. Before starting the survey, it is recommended 
that you go to the following address to read and use the API documen-
tation: https://wake.dlsi.ua.es/EmploymentAPI/docs/. 

Please read this documentation carefully before starting the survey 
in order to be able to answer the questions asked in the survey. 

Thank you very much in advance for your cooperation. 
Specific questions:  

1. Using the documentation provided (https://wake.dlsi.ua.es/Emp 
loymentAPI/docs/): Get the name associated with area 2. 

Please enter the query used to obtain the answer to the above 
question.  

2. Using the documentation provided (https://wake.dlsi.ua.es/Emp 
loymentAPI/docs/): Get the median salary for workers whose pro-
fessional title is ”Financial Managers” and the name of their area is 
”Long Island Region”. 

Please enter the query used to obtain the answer to the above 
question.  

3. Using the documentation provided (https://wake.dlsi.ua.es/Emp 
loymentAPI/docs/): Obtain the professional title of workers from 
”Western New York Region”, whose occupational code is 29–2071 
and earn on average 45080. 

Please enter the query used to obtain the answer to the above 
question.  

4. Using the documentation provided (https://wake.dlsi.ua.es/Emp 
loymentAPI/docs/): Get the number of ”Computer Programmers” 
from ”Long Island Region”. 

Please enter the query used to obtain the answer to the above 
question.  

5. Using the documentation provided (https://wake.dlsi.ua.es/Emp 
loymentAPI/docs/): Get the type of area where the average salary 
for ”Natural Sciences Managers” is 144370. 

Please enter the query used to obtain the answer to the above 
question.  

6. Using the documentation provided (https://wake.dlsi.ua.es/Emp 
loymentAPI/docs/): Get the name of the job whose area is 1 and 
has 890 employees. 

Please enter the query used to obtain the answer to the above 
question. 

General questions  

1. Did you have previous experience in using REST APIs? (Yes or 
No)  

2. Difficulty of the consultations carried out in this experiment 
(from 1 to 5, being 1easy and 5 difficult).  

3. Do you think you have answered the questions correctly? Please 
tick the options that apply (Yes, No, Some, Don’t know)  

4. Has the documentation provided helped you to better understand 
the API and the data it provides? (from 1 to 5, being 1 not at all 
helpful and 5 very helpful).  

5. Have you used the documentation provided to perform the API 
queries? (Yes or No)  

6. Does the documentation provided include sufficient and clear 
information? (Yes or No)  

7. Is the format of the documentation provided clear? (Yes or No)  
8. Do you consider it necessary to have interactive and natural 

language documentation, such as the one provided for this sur-
vey? (Yes or No)  

9. In general, are you satisfied with the information provided by the 
API documentation? (from 1 to 5, being 1 not at all and 5 fully 
satisfied)  

10. What improvements or changes would you propose? (optional) 

References 

[1] F.T. Neves, M. de Castro Neto, M. Aparicio, The impacts of open data initiatives on 
smart cities: a framework for evaluation and monitoring, Cities 106 (2020). 

[2] M.S. Altayar, Motivations for open data adoption: an institutional theory 
perspective, Gov. Inf. Q. 35 (4) (2018) 633–643. 

[3] P. Hanrahan, Analytic database technologies for a new kind of user: The data 
enthusiast. Proceedings of the 2012 ACM SIGMOD International Conference on 
Management of Data, 2012, pp. 577–578. 

[4] K. Morton, M. Balazinska, D. Grossman, R. Kosara, J. Mackinlay, Public data and 
visualizations: how are many eyes and tableau public used for collaborative 
analytics? SIGMOD Rec. 43 (2) (2014) 17–22. 

[5] D. Roman, N. Nikolov, A. Putlier, D. Sukhobok, B. Elvesæter, A. Berre, X. Ye, 
M. Dimitrov, A. Simov, M. Zarev, et al., Datagraft: one-stop-shop for open data 
management, Semant. Web 9 (4) (2018) 393–411. 

[6] M. Lnenicka, A. Nikiforova, Transparency-by-design: what is the role of open data 
portals? Telemat. Informat. 61 (2021) 101605. 

[7] E. Daga, L. Panziera, C. Pedrinaci, A BASILar approach for building Web APIs on 
top of SPARQL endpoints. Proceedings of the 3rd Workshop on Services and 
Applications over Linked APIs and Data volume 1359, 2015, pp. 22–32. 

[8] R. Mchov, M. Lnnika, Evaluating the quality of open data portals on the national 
level, J. Theoret. Appl. Electron. Commer. Res. 12 (1) (2017) 21–41. 

[9] S. Neumaier, J. Umbrich, A. Polleres, Automated quality assessment of metadata 
across open data portals, J. Data Inform. Qual. 8 (1) (2016). 

[10] K. Braunschweig, J. Eberius, M. Thiele, W. Lehner, The state of open data - limits of 
current open data platforms. Proceedings of the 21st WWW Conference, 2012. 

[11] A. Abelló Gamazo, C.P. Ayala Martínez, C. Farré Tost, C. Gómez Seoane, M. Oriol 
Hilari, Ó. Romero Moral, A Data-driven approach to improve the process of data- 
intensive API creation and evolution. Proceedings of the Forum and Doctoral 
Consortium Papers Presented at CAiSE 2017, 2017, pp. 1–8. 

[12] M.P. Robillard, R. DeLine, A field study of API learning obstacles, Empirical 
Software Engineering 16 (6) (2011) 703–732. 

[13] D.A. Keim, Information visualization and visual data mining, IEEE Trans. Vis. 
Comput. Graph. 8 (1) (2002) 1–8. 

[14] P.J. Danielsen, A. Jeffrey, Validation and interactivity of web API documentation. 
IEEE ICWS, 2013, pp. 523–530. 

[15] R. Koi, X. Franch, P. Jovanovic, A. Abell, A data-driven approach to measure the 
usability of web apis. 2020 46th Euromicro Conference on SEAA, 2020, pp. 64–71. 

[16] H. Ed-douibi, J.L. Cánovas Izquierdo, J. Cabot, Example-driven web API 
specification discovery. Modelling Foundations and Applications, 2017, 
pp. 267–284. 

[17] Survey of the State of the Art in Human Language Technology, in: R. Cole (Ed.), 
Cambridge University Press, New York, USA, 1997. 

[18] J. Bateman, M. Zoch, Natural Language Generation, Oxford University Press, 2003. 
[19] P. Suter, E. Wittern, Inferring web api descriptions from usage data. 3rd IEEE 

Workshop on Hot Topics in Web Systems and Technologies, 2015, pp. 7–12. 
[20] B. Hancock, H. Lee, C. Yu, Generating titles for web tables. The World Wide Web 

Conference, 2019, pp. 638–647. 
[21] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, K. Vijay-Shanker, 

Automatic generation of natural language summaries for Java classes. 21st 
International Conference on Program Comprehension, 2013, pp. 23–32. 

[22] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, A. Paradkar, Inferring method 
specifications from natural language API descriptions. Proceedings of the 34th 
ICSE, 2012, pp. 815–825. 

[23] H. Cao, J.-R. Falleri, X. Blanc, Automated generation of REST API specification 
from plain HTML documentation, in: M. Maximilien, A. Vallecillo, J. Wang, 
M. Oriol (Eds.), Service-Oriented Computing, 2017, pp. 453–461. 

[24] Y. Lu, G. Li, Z. Zhao, L. Wen, Z. Jin, Learning to infer API mappings from API 
documents, in: G. Li, Y. Ge, Z. Zhang, Z. Jin, M. Blumenstein (Eds.), Knowledge 
Science, Engineering and Management, 2017, pp. 237–248. 

[25] A. De Renzis, M. Garriga, A. Flores, A. Cechich, C. Mateos, A. Zunino, A domain 
independent readability metric for web service descriptions, Comput. Stand. 
Interface. 50 (2017) 124–141. 

C. González-Mora et al.                                                                                                                                                                                                                       

https://wake.dlsi.ua.es/EmploymentAPI/docs/
https://wake.dlsi.ua.es/EmploymentAPI/docs/
https://wake.dlsi.ua.es/EmploymentAPI/docs/
https://wake.dlsi.ua.es/EmploymentAPI/docs/
https://wake.dlsi.ua.es/EmploymentAPI/docs/
https://wake.dlsi.ua.es/EmploymentAPI/docs/
https://wake.dlsi.ua.es/EmploymentAPI/docs/
https://wake.dlsi.ua.es/EmploymentAPI/docs/
https://wake.dlsi.ua.es/EmploymentAPI/docs/
https://wake.dlsi.ua.es/EmploymentAPI/docs/
https://wake.dlsi.ua.es/EmploymentAPI/docs/
https://wake.dlsi.ua.es/EmploymentAPI/docs/
https://wake.dlsi.ua.es/EmploymentAPI/docs/
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0001
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0001
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0002
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0002
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0003
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0003
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0003
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0004
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0004
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0004
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0005
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0005
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0005
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0006
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0006
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0007
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0007
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0007
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0008
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0008
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0009
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0009
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0010
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0010
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0011
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0011
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0011
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0011
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0012
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0012
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0013
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0013
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0014
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0014
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0015
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0015
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0016
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0016
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0016
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0017
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0017
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0018
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0019
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0019
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0020
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0020
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0021
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0021
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0021
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0022
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0022
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0022
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0023
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0023
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0023
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0024
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0024
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0024
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0025
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0025
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0025


Computer Standards & Interfaces 83 (2023) 103657

16

[26] C. González-Mora, C. Barros, I. Garrigós, J. Zubcoff, E. Lloret, J.-N. Mazón, 
Applying natural language processing techniques to generate open data web APIs 
documentation. ICWE, 2020, pp. 416–432. 

[27] G. Smith, J. Sandberg, Barriers to innovating with open government data: 
exploring experiences across service phases and user types, Inf. Polity 23 (3) (2018) 
249–265, https://doi.org/10.3233/IP-170045. 

[28] J. Kopecký, T. Vitvar, C. Pedrinaci, M. Maleshkova, RESTful Services with 
Lightweight Machine-readable Descriptions and Semantic Annotations, 2011, 
pp. 473–506. 

[29] H. Ed-douibi, J.L. Cánovas Izquierdo, G. Daniel, J. Cabot, A model-based chatbot 
generation approach to converse with open data sources. Web Engineering, 2021, 
pp. 440–455. 

[30] G. Uddin, M.P. Robillard, How API documentation fails, IEEE Software 32 (4) 
(2015) 68–75. 

[31] M. Maleshkova, C. Pedrinaci, J. Domingue, Investigating Web APIs on the World 
Wide Web. ECOWS, 2010, pp. 107–114. 

[32] I. Koren, R. Klamma, The exploitation of openapi documentation for the generation 
of web frontends. Companion Proceedings of the The Web Conference 2018, 2018, 
pp. 781–787. 

[33] H. Hardy, A. Vlachos, Guided neural language generation for abstractive 
summarization using abstract meaning representation. Proceedings of the EMNLP 
Confrerence, 2018, pp. 768–773. 

[34] C. Huang, O. Zaiane, A. Trabelsi, N. Dziri, Automatic dialogue generation with 
expressed emotions. Proceedings of the 2018 Conference of the North American 
Chapter of the Association for Computational Linguistics: Human Language 
Technologies volume 2, 2018, pp. 49–54. 

[35] I. Macdonald, A. Siddharthan, Summarising news stories for children. Proceedings 
of the 9th INLG Conference, 2016, pp. 1–10. 

[36] N. Alharbi, Y. Gotoh, Natural language descriptions for human activities in video 
streams. Proceedings of the 10th INLG conference, 2017, pp. 85–94. 

[37] A. Ramos-Soto, J. Janeiro, J. Alonso, A. Bugarin, D. Berea-Cabaleiro, Using fuzzy 
sets in a data-to-text system for business service intelligence. EUSFLAT Conference, 
2017, pp. 220–231. 

[38] C. Gonzlez-Mora, D. Toms, I. Garrigs, J.J. Zubcoff, J.N. Mazn, Model-driven 
development of web APIS to access integrated tabular open data, IEEE Access 8 
(2020) 202669–202686. 

[39] C. González-Mora, I. Garrigós, J. Zubcoff, J.-N. Mazón, Model-based generation of 
web application programming interfaces to access open data, Journal of Web 
Engineering (2020) 194–217. 

[40] H. Ed-Douibi, J.L.C. Izquierdo, J. Cabot, OpenAPItoUML: a tool to generate UML 
models from OpenAPI definitions. International Conference on Web Engineering, 
2018, pp. 487–491. 

[41] R. Rodríguez, R. Espinosa, D. Bianchini, I. Garrigós, J.-N. Mazón, J.J. Zubcoff, 
Extracting models from web API documentation. International Conference on Web 
Engineering, 2012, pp. 134–145. 

[42] A. Gatt, E. Krahmer, Survey of the state of the art in natural language generation: 
core tasks, applications and evaluation, J. Artif. Int. Res. 61 (1) (2018) 65–170. 

[43] C. Van der Lee, E. Krahmer, S. Wubben, PASS: a Dutch data-to-text system for 
soccer, targeted towards specific audiences. Proceedings of the 10th INLG 
Conference, 2017, pp. 95–104. 

[44] N. Braun, M. Goudbeek, E. Krahmer, The multilingual affective soccer corpus 
(MASC): Compiling a biased parallel corpus on soccer reportage in English, 
German and Dutch. Proceedings of the 9th INLG Conference, 2016, pp. 74–78. 

[45] G. Trivino, A. Sanchez, A.S. Montemayor, J.J. Pantrigo, R. Cabido, E.G. Pardo, 
Linguistic description of traffic in a roundabout. International Conference on Fuzzy 
Systems, 2010, pp. 1–8. 

[46] J.M. Alonso, A. Ramos-Soto, C. Castiello, C. Mencar, Explainable AI beer style 
classifier. The SICSA Reasoning, Learning and Explainability Workshop, 2018. 

[47] B. Aysolmaz, H. Leopold, H.A. Reijers, O. Demirörs, A semi-automated approach 
for generating natural language requirements documents based on business process 
models, Inf. Softw. Technol. 93 (2018) 14–29. 

[48] A. Moro, A. Raganato, R. Navigli, Entity linking meets word sense disambiguation: 
a unified approach, Trans. Assoc. Comput. Linguist. 2 (2014) 231–244. 

[49] R. Navigli, S.P. Ponzetto, Babelnet: the automatic construction, evaluation and 
application of a wide-Coverage multilingual semantic network, AIJ 193 (2012) 
217–250. 

[50] C. Fellbaum, WordNet: An Electronic Lexical Database (Language, Speech, and 
Communication), MIT Press, 1998. 

[51] I. Iacobacci. Neural-grounded semantic representations and word sense 
disambiguation: a mutually beneficial relationship, 2018. Ph.D. thesis. 

[52] E. van Miltenburg, M. Clinciu, O. Dusek, D. Gkatzia, S. Inglis, L. Leppänen, 
S. Mahamood, E. Manning, S. Schoch, C. Thomson, L. Wen, Underreporting of 
errors in NLG output, and what to do about it, in: A. Belz, A. Fan, E. Reiter, 
Y. Sripada (Eds.), Proceedings of the 14th International Conference on Natural 
Language Generation, INLG 2021, Aberdeen, Scotland, UK, 20–24 September, 
2021, Association for Computational Linguistics, 2021, pp. 140–153. 

[53] C. Dong, Y. Li, H. Gong, M. Chen, J. Li, Y. Shen, M. Yang, A survey of natural 
language generation, 2021. https://arxiv.org/abs/2112.11739. 10.48550/ 
ARXIV.2112.11739. 

[54] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. Bang, A. Madotto, P. Fung, 
Survey of hallucination in natural language generation, CoRR abs/2202.03629 
(2022). 

C. González-Mora et al.                                                                                                                                                                                                                       

http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0026
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0026
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0026
https://doi.org/10.3233/IP-170045
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0028
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0028
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0028
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0029
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0029
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0029
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0030
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0030
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0031
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0031
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0032
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0032
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0032
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0033
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0033
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0033
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0034
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0034
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0034
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0034
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0035
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0035
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0036
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0036
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0037
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0037
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0037
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0038
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0038
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0038
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0039
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0039
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0039
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0040
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0040
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0040
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0041
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0041
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0041
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0042
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0042
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0043
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0043
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0043
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0044
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0044
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0044
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0045
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0045
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0045
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0046
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0046
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0047
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0047
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0047
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0048
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0048
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0049
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0049
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0049
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0050
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0050
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0051
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0051
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0052
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0052
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0052
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0052
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0052
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0052
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0054
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0054
http://refhub.elsevier.com/S0920-5489(22)00034-4/sbref0054

	Improving open data web API documentation through interactivity and natural language generation
	1 Introduction
	2 Related work
	2.1 Human vs machine readable API documentation
	2.2 Supporting web APIs understandability

	3 NLP For improving API documentation
	3.1 Starting point: An existing openAPI documentation
	3.2 Natural language descriptions generator
	3.3 Generating an interactive openapi documentation

	4 Evaluation
	4.1 Case study
	4.1.1 Generating documentation for employment data
	4.1.2 API Documentation comparison

	4.2 Experiment with users
	4.2.1 Experiment setup
	4.2.2 Online surveys
	4.2.3 Experiment results

	4.3 Discussion

	5 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	Appendix A Result tables
	Appendix B Survey example used in the experiment (API employment survey)
	References


