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a b s t r a c t 

In this paper, we present a method to estimate the signal subspace at all the frequencies in a given 

band, which is computed from the usual set of frequency-bin sample covariance matrices in wideband 

subspace estimation. Fundamentally, the method exploits the similarity between the signal subspace at 

any two near-by frequencies to produce an improved subspace estimate along the band. Its key idea con- 

sists of modeling the signal subspace by means of a projection matrix function which is approximated 

by a polynomial. The method provides two improvements: a reduced-size representation of the signal 

subspace along the frequency band, and a quality improvement in wideband direction-of-arrival (DOA) 

estimators such as Incoherent Multiple Signal Classification (IC-MUSIC) and Modified Test of Orthogonal- 

ity of Projected Subspaces (MTOPS). The paper includes the derivation of asymptotic bounds for the bias 

and root-mean-square (RMS) error of the projection matrix estimate, and a numerical assessment of the 

method and its combination with the previous two DOA estimators. 
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. Introduction 

In array processing, the estimation of the subspace spanned by 

everal sources is a fundamental step in DOA estimation [ 1 , Ch. 9].

his estimation relies on the so-called narrowband condition, i.e, 

he array response must be constant in the spectral band covered 

y the sources. 

In practice, however, this condition is often unrealistic in appli- 

ations involving high data rates or acoustic or seismic signals, in 

hich the array response varies with frequency significantly. In the 

iterature on DOA estimation, these cases are classified as “wide- 

and” and addressed by dividing the signals’ band into bins in 

hich the array response is approximately constant. The problem 

s then the way the data from all bins should be combined in order 

o produce a single set of DOA estimates. In the literature, there 

re fundamentally two approaches for this combination. The first 

s the coherent approach in which the data from all bins are lin- 

arly combined [2–5] , and the second is the incoherent approach 

n which the combination is performed by other means, such as 
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veraging the DOA narrowband estimates from each bin or adding 

p the bin pseudo-spectrum functions (as is done in IC-MUSIC), 

6] . Additionally, there exist other ways to process the bin data de- 

ived from general principles such as Maximum Likelihood (ML) 

7–11] , polynomial matrix decompositions [12–15] , group sparsity 

16–18] , or variants of the Test of Orthogonality of Projected Sub- 

paces (TOPS) method, [19–21] . 

In this estimation problem, there is a feature that seems to be 

verlooked in the literature: the signal subspace spanned by the 

mpinging waves varies smoothly along the band covered by the 

requency bins and, as a consequence, the subspaces at any two 

ear-by frequencies are similar. In this paper, we present a method 

or exploiting this smoothness in order to improve the quality of 

he subspace estimation at the frequency bins and, by extension, 

t any frequency in the band covered by them. The method is 

ased on modeling the signal subspace using a projection matrix 

unction, which must be estimated from the data signal subspaces 

omputed at the frequency bins. 

The paper has been organized as follows. In the next section, 

e present a signal model for wideband subspace estimation in 

hich the initial data processing is interpreted as a bank on nar- 

owband filters. Then, in Section 3 , we characterize the variation 

f the signal subspace along the frequency band using a projection 

atrix function and justify this characterization. After that, we in- 
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roduce an estimator for this last function in Section 4 and apply it 

o wideband DOA estimation in Section 5 . Finally, we evaluate the 

roposed method in Section 7 numerically. 

.1. Notation and main symbols 

We use the following notation and basic concepts: 

• We write vectors in lower case ( a , x ) and matrices in upper

case, ( A , Y ). 
• I M 

is an identity matrix of size M × M and 0 M 

the M × M zero 

matrix. 
• [ a ] m 

and [ A ] m,k respectively denote the m th and (m, k ) compo-

nents of a and A . Also, [ A ] ·,k denotes the k th column of A and

[ A ] ·,m : k denotes the matrix form by its columns m to k . 

• A 

H is the Hermitian of A and A 

† its pseudo-inverse. 
• The operator ’ ≡’ introduces new symbols. 
• ’ ∗’ denotes convolution: (a ∗ b)(t) is the convolution of a (t) and 

b(t) . 
• ’ E{·} ’ and ’ Var {·} ’ denote the expectation and variance opera- 

tors. 
• δ(t) and δn respectively denote the Dirac and Kronecker delta. 
• In the paper, a given M × M matrix P is said to be a projection 

matrix if P = P H and P 2 = P . 
• ‖ B ‖ F and ‖ B ‖ 2 denote the Frobenius and 2-norm of a given

matrix B respectively. 
• O (·) is the big-O notation. A function g(N) is O (1 /N) if there are

positive numbers N o and A such that | g(N) | ≤ A/N if N > N o . 
• o(·) is the little-o notation. A function g(N) is o(1 /N) if for any

ε > 0 there is positive N o such that | g(N) | ≤ ε/N if N > N o . 
• In some contexts, ’ ∼= 

’ marks an equality that holds if an o(1 /N)

term is added. 

. Signal model for wideband subspace estimation 

Consider an array of M sensors and K impinging waves carry- 

ng signals s k (t) , k = 1 , 2 , . . . , K, with spectra lying in a pass band

 f A , f B ] . Let a m,k ( f ) denote the response of the m th sensor to the

 th DOA as a function of the frequency variable f , and A ( f ) denote

he matrix formed by these MK responses, i.e, 

 

A ( f ) ] m,k ≡ a m,k ( f ) , m = 1 , . . . , M, k = 1 , . . . , K. (1) 

n a narrowband scenario, A ( f ) is approximately constant in 

 f A , f B ] and this allows us to regard the signals s (t) as concen-

rated at a single and fixed frequency f 1 lying in [ f A , f B ] . As a con-

equence, the M × 1 vector x (t) formed by the received signals can 

e written as 

 ( t ) = A ( f 1 ) s ( t ) + η( t ) , (2) 

here s (t) is the K × 1 vector formed by the impinging signals, 

 

s ( t ) ] k ≡ s k ( t ) , (3) 

nd η(t) is formed by independent, circularly-symmetric, complex- 

hite components of zero mean and variance σ 2 . As can be read- 

ly seen in (2) , the signal component of the vectors x (t) lie in the

olumn span of A ( f 1 ) and this fact allows us to estimate this last

pan from a set of samples of x (t) . Let us recall the procedure for

erforming this estimation. 

If the components of s (t) are zero-mean stationary processes, 

hen the covariance of s (t) has the form 

 ( f 1 ) ≡ E 
{

x ( t ) x ( t ) 
H 
}

= A ( f 1 ) R s ( f 1 ) A ( f 1 ) 
H + σ 2 I M 

, (4) 

here R s ( f ) denotes the covariance matrix of s (t) , 

 s ( f 1 ) ≡ E 
{

s ( t ) s ( t ) 
H 
}
. (5) 
2 
( f 1 ) can be estimated from a sample covariance matrix given by 

̂ 

 ( f 1 ) ≡ 1 

N 

N ∑ 

n =1 

x (nT ) x (nT ) H , (6) 

here T denotes the sampling period and N the number of sam- 

les taken. Additionally, the span of A ( f 1 ) can be estimated from 

he K eigenvectors of ̂ R ( f 1 ) corresponding to its K largest eigen- 

alues, provided R s ( f 1 ) is non-singular, i.e, provided the K signal 

omponents are not completely coherent. More precisely, let ̂ Q 1 ,K 

enote the M × K matrix formed by the eigenvectors corresponding 

o the largest K eigenvalues of ̂ R ( f 1 ) and following ̂ Q 

H 
1 ,K ̂

 Q 1 ,K = I K . 

hen, the span of ̂ Q 1 ,K is an estimate of the span of A ( f 1 ) . 

Next, let us consider the wideband scenario. If A ( f ) shows a 

ignificant variation in [ f A , f B ] then (2) is no longer valid. How-

ver, it is valid at the output of any filter selecting a narrow band 

entered at a frequency f inside [ f A , f B ] , provided A ( f ) is approxi-

ately constant in the filter’s output band. So, if we apply a bank 

f R such filters centered at distinct frequencies f r , ( f r < f r+1 ), ly-

ng in [ f A , f B ] , we obtain R models akin to (2) 

 r ( t ) = A ( f r ) s r ( t ) + ηr ( t ) , r = 1 , . . . , R, (7) 

here x r (t) , s r (t) , and ηr (t) denote the signals at the rth filter’s

utput. Here, we assume non-overlapping filter bands of equal 

idth, so that these last models are independent and all compo- 

ents of ηr (t) have the same variance σ 2 . 

The narrowband subspace estimation that we recalled before 

an now be performed at each filter output x r (t) , in order to ob-

ain a set of sample covariance matrices ̂ R ( f r ) , which are esti- 

ates of the corresponding covariance matrices R( f r ) , r = 1 , 2 , . . . , 

 . Additionally, we obtain matrices ̂ Q r,K whose spans are esti- 

ates of the corresponding spans of the signature matrices A ( f r ) , 

 = 1 , 2 , . . . , R . 

Up to this point, we have described the first processing steps 

n wideband subspace estimation in terms of a filter bank. In prac- 

ice, such a bank is implemented using the Fast Fourier Transform 

FFT) snapshot model, i.e, by computing the FFT of the data sam- 

les in consecutive time slots. Additionally, these steps are usually 

ollowed by further processing of either the matrices ̂ R ( f r ) or ̂ Q r,K 

n order to estimate the desired parameters, (which often consist 

f the waves’ DOAs). In this paper, we are interested in exploit- 

ng the similarity between the signal subspaces at any two near-by 

requencies lying in [ f A , f B ] as shown in the next section. 

. Wideband subspace characterization in terms of a projection 

atrix function 

We can make two basic observations about the processing steps 

escribed in the previous section. The first is that we may expect 

he span of two consecutive signature matrices, A ( f r ) and A ( f r+1 ) ,

o be close to each other if the difference f r+1 − f r is not too large.

ore precisely, if P ( f ) denotes the orthogonal projection matrix 

ssociated with the span of A ( f ) , i.e, the matrix, 

 ( f ) = A ( f ) 
(
A ( f ) 

H 
A ( f ) 

)−1 
A ( f ) 

H 
(8) 

hen, given a fixed unit-norm M × 1 vector y, we may expect 

 ( f r ) y to be close to P ( f r+1 ) y. Since y is arbitrary, we may re-state

his condition in more precise terms by saying that the magnitude 

sup 

 y‖ 2 =1 

‖ ( P ( f r+1 ) − P ( f r ) ) y‖ 2 (9) 

s small. However, note two features of this argument. First, this 

ast expression is the definition of the matrix 2-norm of P ( f r+1 ) −
 ( f r ) , i.e, 

 P ( f r+1 ) − P ( f r ) ‖ 2 = sup 

‖ y ‖ 2 =1 

‖ ( P ( f r+1 ) − P ( f r ) ) y‖ 2 , (10) 
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 22 , Section 2.3]. And second, we can repeat the argument for f r 
nd any frequency f between f r and f r+1 and, more generally, for 

ny frequency f and the closest bin frequency f r . So, in summary, 

his first observation leads us to view the projection matrix P ( f ) 

s a “signal” whose value at any f in [ f A , f B ] can be approximated

rom its “samples” P ( f 1 ) , P ( f 2 ) , . . . , P ( f R ) . 

The second observation is that the estimates ̂ Q r,K already pro- 

ide a set of noisy estimates of P ( f 1 ) , P ( f 2 ) , . . . , P ( f R ) , namely,

he projection matrices ̂ 

 0 ( f r ) ≡ ̂ Q r,K ̂
 Q 

H 
r,K , r = 1 , 2 , . . . , R. (11) 

esides, we can repeat the argument that led to (10) , but for ̂ P 0 ( f r )

nd P ( f r ) , to show that ̂ P 0 ( f r ) approximates P ( f r ) in the sense that

 ̂

 P 0 ( f r ) − P ( f r ) ‖ 2 is small. 

So, we have that the estimation of the signal subspace at any 

requency in [ f A , f B ] can be viewed as a signal approximation prob-

em, in which the true signal is P ( f ) and its noisy samples arê 

 0 ( f r ) , r = 1 , 2 , . . . , R . In order to estimate P ( f ) in this setting, we

eed to specify two aspects: a model for this matrix function and 

 quality estimate for the samples ̂ P 0 ( f r ) . 

Regarding the model, the fact is that P ( f ) is a very regular 

unction, due to the regularity of A ( f ) , that can be approximated 

y a Q-order polynomial of the form 

 ( f ) = 

( Q ∑ 

q =0 

G q f 
q 
)

+ �Q ( f ) (12) 

n [ f A , f B ] , where G q is a set of M × M coefficient matrices and

Q ( f ) is the error term. The norm of �Q ( f ) can be made arbi- 

rarily small by increasing Q . The justification of (12) consists of a 

hain of results available in the literature: 

1. The components of A ( f ) are typical band-limited functions due 

to the finite extent of the sensor array and, therefore, they are 

analytic functions for any complex f and, in particular, in range 

[ f A , f B ] . 
1 

2. A consequence of (1) is that the components of the Hermitian 

matrix A ( f ) A ( f ) H are also analytic in [ f A , f B ] . 

3. P ( f ) is the projection matrix associated with the non-zero 

eigenvalues of A ( f ) A ( f ) H . 

4. According to the Perturbation Theory result in [ 23 , Ch.2, Th. 

1.10], (2) and (3) imply that P ( f ) is also analytic in [ f A , f B ] . 

5. A consequence of 4) is that P ( f ) is approximable by a poly- 

nomial of the form in (12) for fixed DOAs, (Weiertrass theorem 

[ 24 , Th. 2.4.1]). 

6. Since the set of DOAs can be parameterized using a set of vari- 

ables whose domain is a compact set, (set of angles of arrival, 

for example), (5) implies that there is a finite order Q valid for 

all possible DOAs. 

The determination of Q given a bound for ‖ �Q ( f ) ‖ 2 seems to 

e a cumbersome problem from a theoretical point of view. How- 

ver, Q can be determined numerically for any specific sensor ar- 

ay by computing the interpolation error of a standard interpola- 

ion method such as Chebyshev’s. We do this in Section 7.2 for a 

en-sensor Uniform Linear Array (ULA). 

Regarding the quality of ̂ P 0 ( f r ) , we have that it can be analyzed

y extending the known results on the perturbation of the eigen- 

alues and eigenvectors of sample covariance matrices in [25,26] . 

n Appendix A we show that ̂ P 0 ( f r ) is an asymptotically unbiased 

stimate of P ( f ) , i.e, 

{ ̂  P 0 ( f r ) } = P ( f r ) + O (1 /N) . (13)
1 Any of the components of A ( f ) is the Fourier transform of a signal which is 

ime-limited, given that the delay between any two sensors is bounded for any im- 

inging wave, due to the finite spatial extent of the sensor array. 

(

T

[

3 
e also show in that appendix that ̂ P 0 ( f r ) is a consistent estimate 

f P ( f r ) . More precisely, let the eigenvalue decomposition of R( f r )

e given by 

 ( f r ) = 

M ∑ 

m =1 

λm 

( f r ) q m 

( f r ) q m 

( f r ) 
H 
, r = 1 , 2 , . . . , R, (14) 

here λm 

( f r ) denote the eigenvalues, sorted in decreasing or- 

er, and q m 

( f r ) the corresponding eigenvectors. The asymptotic 

uadratical error for any component (m, m 

′ ) of P ( f r ) admits the

ound 

 

{ ∣∣[ ̂  P 0 ( f r ) − P ( f r )] m,m 

′ 
∣∣2 

} 

≤ 8(M − K) σ 2 

N(λK ( f r ) − σ 2 ) 2 

K ∑ 

k =1 

λk ( f r ) + o 

(
1 

N 

)
. (15) 

 corollary of this bound is that the variance of any component of ̂ 

 0 ( f r ) is O (1 /N) , i.e, 

ar { ̂  P 0 ( f r ) } = O (1 /N) . (16) 

13) and this last formula imply that ̂ P 0 ( f r ) is an asymptotically 

nbiased and consistent estimator of P ( f r ) . 

The bound in (15) has an interesting interpretation. Since 

K ( f r ) − σ 2 is the power gap between the signal and noise sub- 

paces, the factor 

1 

λK ( f r ) − σ 2 

K ∑ 

k =1 

λk ( f r ) (17) 

s the signal power measured in number of gaps and 

(M − K) σ 2 

λK ( f r ) − σ 2 
(18) 

s the noise power again measured in number of gaps. Therefore, 

he bound in (A.14) is proportional to the product of these two 

elative powers and decreases as 1 /N. 

In the next section, we derive an estimator of P ( f ) based on 

he results in this section. 

. Estimation of the projection matrix function 

If the mismatch �Q ( f ) in (12) is small then we may estimate 

he coefficient matrices G q , by posing a linear regression model 

ith data ̂ P 0 ( f r ) component-wise, i.e, 

 ̂

 P 0 ( f r )] m,m 

′ ≈
Q ∑ 

q =0 

[ G q ] m,m 

′ f q r , 

(m, m 

′ = 1 , 2 , . . . , M; r = 1 , 2 . . . , R ) (19) 

n which [ G q ] m,m 

′ , q = 0 , 1 , . . . , Q , is the set of unknown param-

ters. The samples [ ̂  P 0 ( f r )] m,m 

′ are independent given that the 

ands of the filter banks used to produce x r (t) in (7) do not over-

ap. Besides, from (13) and (15) , they are asymptotically unbiased 

nd consistent. All these features suggest to pose a weighted least- 

quares cost function for the estimation of the coefficients [ G q ] m,m 

′ 
ith weights w r , i.e, the function 

R 
 

r=1 

w 

2 
r 

∣∣∣[ ̂  P 0 ( f r )] m,m 

′ −
Q ∑ 

q =0 

[ ̂  G q ] m,m 

′ f q r 

∣∣∣2 

. (20) 

We present a possible set of coefficients w r in the next Section.) 

he minimizer of this last cost function is the estimate 

 ̂

 G q ] m,m 

′ ≡
R ∑ 

r=1 

[ B ] q,r [ ̂  P 0 ( f r )] m,m 

′ , (21) 
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R

here ( r, r ′ = 1 , 2 , . . . , R ; q = 0 , 1 , . . . , Q) 

 ≡ (V 

H �2 V ) −1 V 

H �2 , [ V ] r,q +1 ≡ f q r , (22) 

 �] r,r ′ ≡ w r δr −r ′ . (23) 

ince B is independent of m and m 

′ , we may write (21) as 

̂ 

 q ≡
R ∑ 

r=1 

[ B ] q,r ̂
 P 0 ( f r ) (24) 

nd the estimate of P ( f ) at any f is 

̂ 

 1 ( f ) ≡
Q ∑ 

q =0 ̂

 G q f 
q . (25) 

̂ 

 1 ( f ) can be expressed in terms of ̂ P 0 ( f r ) by substituting (24) into 

25) . We have 

̂ 

 1 ( f ) ≡
R ∑ 

r=1 

d r ( f ) ̂  P 0 ( f r ) (26) 

here 

 r ( f ) = 

Q ∑ 

q =0 

[ B ] q,r f 
q . (27) 

Let us now analyze the quality of the estimate ̂ P 1 ( f ) by assess- 

ng its expected value and variance. But first, let us derive an ex- 

ression for the mismatch. (26) can be viewed as an interpolator 

hat is exact for the sum in (12) , i.e, 

Q 
 

 =0 

G q f 
q = 

R ∑ 

r=1 

d r ( f ) 

Q ∑ 

q =0 

G q f 
q 
r , (28) 

iven that the minimizer of (20) involves an (over-)determined lin- 

ar system. Using (12) to solve for the sums in this last equation, 

e have 

 ( f ) − �Q ( f ) = 

R ∑ 

r=1 

d r ( f ) 
(

P ( f r ) − �Q ( f r ) 
)

P ( f ) = 

R ∑ 

r=1 

d r ( f ) P ( f r ) −
R ∑ 

r=1 

d r ( f ) �Q ( f r ) + �Q ( f ) . 

(29) 

he last two terms on the right-hand side are the mismatch that 

an be made arbitrarily small by increasing Q . 

Next, let us derive a formula for the expected value of ̂ P 1 ( f ) . 

rom (26) and (29) , we have 

̂ 

 1 ( f ) = P ( f ) + 

R ∑ 

r=1 

d r ( f )( ̂  P 0 ( f r ) − P ( f r )) 

+ 

R ∑ 

r=1 

d r ( f ) �Q ( f r ) − �Q ( f ) . (30) 

o, taking expectations and using (13) , we obtain 

 

{ 

ˆ P 1 ( f ) 

} 

= P ( f ) + 

R ∑ 

r=1 

d r ( f ) �Q ( f r ) − �Q ( f ) + O ( 1 /N ) . (31) 

nd finally, from (16) and (26) , the variance is 

ar { ̂  P 1 ( f ) } = O (1 /N) . (32) 

In summary, if the mismatch term in (31) in negligible, (31) and 

32) imply that ̂ P 1 ( f ) is a consistent estimate of P ( f ) . 

For any f in [ f A , f B ] , 
̂ P 1 ( f ) is a projection matrix only approx-

mately, due to the mismatch in (31) and to the noise. This draw- 

ack can be mitigated by taking the rank- K projection matrix lying 
4 
losest to ̂ P 1 ( f ) as the final signal projection matrix estimate at 

ny frequency; i.e, the final signal projection matrix estimate is ̂ 

 2 ( f ) ≡ arg min 

rank K 

proj. matrix P 

‖ ̂

 P 1 ( f ) − P ‖ 

2 
F . (33) 

t can be easily checked that ̂ P 2 ( f ) is just the signal projection 

atrix of ̂ P 1 ( f ) , [i.e, the projection matrix associated with the K

argest eigenvalues of ̂ P 1 ( f ) ]. Though the computation of ̂ P 2 ( f ) 

rom 

̂ P 1 ( f ) requires an additional eigenvalue decomposition, we 

ay expect a small number of such decompositions in practice, 

iven that ̂ P ( f ) can be well approximated in [ f A , f B ] by a Q-order

olynomial. We assess this point in Secs. 7.5 and 7.6 numerically. 

.1. A possible choice for the coefficients w r 

The bound in (15) provides a possible choice of coefficients w r 

f we replace λ( f r ) and σ 2 with their corresponding estimates ob- 

ained from 

̂ R ( f r ) . Specifically, if ̂  λ( f r ) denotes the rth eigenvalue 

f ̂ R ( f r ) in the eigen-decomposition akin to (14) , then a possible 

hoice ̂ w r for the coefficients w r is specified by the equation 

1 ̂ w 

2 
r 

= 

8(M − K) ̂  σ 2 ( f r ) 

N( ̂  λK ( f r ) − ̂ σ 2 ( f r )) 2 

K ∑ 

k =1 ̂

 λk ( f r ) , (34) 

here 

 

2 ( f r ) ≡ 1 

N − K 

M ∑ 

m = K+1 ̂

 λm 

( f r ) . (35) 

. Application of the proposed method to wideband DOA 

stimation 

In this section, we apply the method in Section 4 to wideband 

OA estimation in a ULA. Let us first particularize the signal model 

n Section 2 to this type of array, then recall two wideband DOA 

stimators, IC-MUSIC and MTOPS, and finally adapt these estima- 

ors to the method proposed in this paper. 

In a ULA, the time-domain response of the m th sensor to the 

 th DOA is 

˜ 
 k,m 

(t) = e − j2 π f o τm γk δ(t − τm 

γk ) (36) 

here 

• f o is the array’s central frequency, so that the sensor spacing is 

c/ (2 f o ) where c is the propagation speed, 
• γk ≡ sin (θk ) and θk is the angle of arrival relative to the broad- 

side, 
• τm 

is the delay associated with the m th sensor along the array. 

If τmax denotes the array diameter, measured as a delay, then 

τm 

≡ −τmax 

2 

+ (m − 1) 
τmax 

M − 1 

, m = 1 , 2 , . . . , M. (37) 

The array response A ( f ) is just the Fourier transform of (36) , 

 m = 1 , 2 , . . . , M, k = 1 , 2 , . . . , K), 

 

A ( f, γ ) ] m,k ≡ e − j2 π( f o + f ) τm γk , (38) 

here 

 

γ] k ≡ γk , k = 1 , 2 , . . . , K, (39) 

nd where we have written A ( f, γ ) rather than A ( f ) to show the

ependence on the parameters γk explicitly. Finally, we may write 

he model in (4) but for the rth frequency bin as 

 ( f r ) = A ( f r , γ ) R s ( f r ) A ( f r , γ ) 
H + σ 2 I M 

. (40) 
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he problem of estimating the angles of arrival θk can now be cast 

s the problem of estimating the parameters γk , given that there is 

 one-to-one relationship between θk and γk , γk = sin (θk ) . 

In this paper, we consider the estimation of the DOA parame- 

ers γk by means of the following two methods: 

• IC-MUSIC , [ 27 , Section 4.4.3]. In this estimator, the K DOA esti- 

mates are given by the abscissa of the main K local maxima of 

the pseudo-spectrum 

φ(γ ) ≡
R ∑ 

r=1 

‖ ̂

 P 0 ( f r ) a ( f r , γ ) ‖ 

2 , (41) 

where 

[ a ( f, γ )] m 

≡ e − j2 π( f o + f ) τm γ , m = 1 , 2 , . . . , M. (42)

• MTOPS, [20] . This estimator starts by computing a set of M × K

matrices ̂ U ( f r ) and another set of M × (M − K) matrices ̂ V ( f r ) ,

r = 1 , 2 , . . . , R , whose columns are ortho-normal bases of the 

signal and noise subspaces respectively; i.e, the columns of ̂ U ( f r ) span the subspace associated with ̂ P 0 ( f r ) and 

[ ̂  U ( f r ) , ̂  V ( f r )] H [ ̂  U ( f r ) , ̂  V ( f r )] = I M 

. (43)

Note that we may view the matrix pair ( ̂  U ( f r ) , ̂  V ( f r )) as a func-

tion of ̂ P 0 ( f r ) , given that one such pair can be easily computed

from 

̂ P 0 ( f r ) . The MTOPS estimator uses the pseudo-spectrum 

μ(γ ) ≡
∥∥∥[

E 2 (γ ) , E 3 (γ ) , . . . , E R (γ ) 
]∥∥∥2 

F 
, (44) 

where ( r = 2 , 3 , . . . , R ) 

E r (γ ) ≡ ̂ U ( f 1 ) 
H diag (a ( f r − f 1 , γ )) ̂  V ( f r ) . (45) 

The MTOPS DOA estimates are the smallest K local minima of 

μ(γ ) . 

These estimators can be easily adapted to the method pro- 

osed in this paper, simply by applying them to a set of sam- 

les of the projection function estimate ̂ P 2 ( f ) ; i.e, the matrices ̂ 

 0 ( f r ) , ( r = 1 , 2 , . . . , R ), in IC-MUSIC and MTOPS would be replaced

y a set of matrices ̂ P 2 ( f ′ r ) , ( r = 1 , 2 , . . . , R ′ ), where the frequen-

ies f ′ r are regularly spaced in [ f A , f B ] and R ′ is close to Q + 1 .

ote that the computation of the matrices ̂ P 2 ( f ′ r ) involves R ′ eigen- 

alue decompositions. However, this additional complexity is small 

f R 	 Q , given that we may expect R ′ to be close to Q . 

. Computational burden 

The proposed method consists of four computation steps whose 

omplexities are the following: 

1. Sample projection matrices ̂ P 0 ( f r ) . The computation of the R 

projection matrices ̂ P 0 ( f r ) , r = 1 , 2 , . . . , R , requires R subspace 

decompositions and the total complexity is O (M 

3 R ) . 

2. Polynomial coefficient matrices G q . The coefficient matrices ̂ G q , q = 1 , 2 , . . . , Q , are computed using (21) and involve O (M 

2 R ) 

operations. 

3. First estimate ̂ P 1 ( f ) . The computation of ̂ P 1 ( f ) is done through 

(25) with cost O (M 

2 Q ) . 

4. Second estimate ̂ P 2 ( f ) . This estimate is obtained from the sub- 

space decomposition of ̂ P 1 ( f ) and involves O (M 

3 ) operations. 

Step (1) is the most expensive, though it must be performed 

n any method combining signal subspaces (such as IC-MUSIC and 

TOPS, for example). Steps (2) and (3) have less complexity than 

tep 1), given that they are just linear combinations of several 

atrices. Finally, step (4) has cost O (M 

3 ) and may be necessary 

t a set of R ′ frequencies in order to refine the projection ma- 

rix estimates. For this last point, see the numerical examples in 

ecs. 7.5 and 7.6 . 
5

. Numerical examples 

We have carried out several numerical examples for a 10-sensor 

LA following the model in Section 5 . The sub-sections that follow 

ontain the main results: 

• Section 7.1 contains a list of the main parameters in the numer- 

ical examples. 
• In Section 7.2 , we assess the selection of Q using Chebyshev in- 

terpolation in order to upper-bound the mismatch of the poly- 

nomial approximation in (12) for several values of Q . 
• In Section 7.3 , we evaluate the approximation error of one com- 

ponent of P ( f ) using the corresponding component of ̂ P 1 ( f ) . 
• In Section 7.4 , we evaluate the same error but for the whole 

matrix ̂ P 1 ( f ) using the error measure in (52) and in the RMS 

sense. 
• Finally, in Secs. 7.5 and 7.6 , we combine the proposed method 

with IC-MUSIC and MTOPS for DOA estimation. 

.1. Main parameters in the numerical examples 

The parameters in the numerical examples were the following: 

ensor array. Linear array of M = 10 sensors with half wavelength 

pacing. 

Central frequency. f o = 2 . 4 GHz. 

Maximum delay along the array. 

max = 

M − 1 

2 f o 
= 1 . 875 nsec . 

OA parameters. The DOA was parameterized in terms of γ rather 

han θ , where γ = sin (θ ) , following the approach in Section 5 . 

Received signals. Linearly-modulated signals of the form 

∞ ∑ 

 = −∞ 

a n g(t − nT ch ) (46) 

here 

• a n are zero-mean, independent complex Gaussian noise sam- 

ples of variance equal to 1. 
• g(t) is a raised-cosine pulse with chip period T ch ≡ 2 . 6 nsec and

roll-off factor β ≡ 0 . 25 . 

ampling period. T ≡ T ch / 2 . 

Signals’ bandwidth relative to f o . The signals’ two-sided 

andwidth B followed B/ f o = 0 . 2 , i.e, B = 0 . 48 GHz. However, 

n the numerical examples, only the band in which g(t) has 

at spectrum was used, i.e, the band [ −B 1 / 2 , B 1 / 2] , where

 1 ≡(1 − β) /T ch = 0 . 288 GHz. So, the relative bandwidth employed 

as B 1 / f o = 0 . 12 . 

Number of slots. N sl = 50 . 

Number of samples per slot. N = 1024 . 

Number of frequency bins. The number of frequency bins was 

xed to R = 41 and they were equally spaced in [ −B 1 / 2 , B 1 / 2] . 

Directions of arrival (DOAs). Two cases have been assessed: 

• Three DOAs given by 

γ = [ 0 . 1 , 0 . 27 , 0 . 82 ] 
T 
. (47) 

• Two DOAs of the form 

γ = [ 0 . 1 , 0 . 1 + �γ ] 
T 
, (48) 

where the increment �γ is a simulation parameter. 

ignal-to-noise ratio (SNR). The SNRs in the numerical examples 

re equal to the total signal energy at frequency f o divided by the 

orresponding noise energy. 

Least squares weights w r . Equal to 1. 
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Table 1 

Chebyshev interpolation error using measure in (50) . 

QK 1 2 3 4 

0 0.1486 0.2624 0.3313 0.3766 

1 0.06228 0.09993 0.1106 0.114 

2 0.01739 0.02558 0.03154 0.03407 

3 0.003732 0.007473 0.01038 0.01325 

4 0.0006299 0.00211 0.003046 0.00411 

5 0.00008891 0.0007461 0.001155 0.00163 

Table 2 

Chebyshev interpolation error using measure in (51) . 

QK 1 2 3 4 

0 0.5051 0.6319 0.6578 0.6794 

1 0.1552 0.1986 0.2247 0.2454 

2 0.03203 0.0652 0.07654 0.08669 

3 0.005908 0.02142 0.02551 0.03059 

4 0.0008885 0.006993 0.00854 0.01067 

5 0.0001158 0.00227 0.002881 0.003813 
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Fig. 1. Real and imaginary part of component [ P( f )] 1 , 10 (thick lines) and its associ- 

ated noisy estimates from [ ̂ P 0 ( f r )] 1 , 10 (thin lines). 

Fig. 2. Result of fitting a polynomial of order Q = 3 to R = 41 equally-spaced esti- 

mates Re { [ ̂  P 0 ( f r )] 1 , 10 } . 

Fig. 3. Error in approximating Re { [ P( f )] 1 , 10 } using either Re { [ ̂  P 1 ( f )] 1 , 10 } or 

Re { [ ̂  P 2 ( f )] 1 , 10 } . 
Generation method for numerical trials. The numerical trials 

ere generated using the domain model in (7) for reducing the 

imulation time. However, the results were validated by generating 

hese trials in the time domain and checking that the results are 

onsistent if N → ∞ . 

Number of Monte Carlo trials. 2200. 

.2. Polynomial order Q versus mismatch for a ten-sensor uniform 

inear array 

We have computed an upper bound for the approximation er- 

or in (12) by means of Chebyshev interpolation applied to P ( f ) in 

ange f ∈ [ f A , f B ] with Q + 1 nodes, where the array response ma- 

rix is given by (38) , [ 28 , Ch. 6]. This interpolation scheme delivers

 polynomial approximation in the f variable of the form 

 ( f ) ≈
Q ∑ 

q =0 

G q (Q, γ1 , . . . , γK ) f 
q (49) 

or f in [ f A , f B ] and fixed Q , γ1 , . . . , γK . Specifically, we have eval-

ated the error in (49) for any value of the variables involved. 

able 1 shows the maximum error in (49) for several values of Q

nd K, i.e the error measure 

max 
,m 

′ , f,γ1 , ... ,γK 

∣∣∣[ P ( f ) −
Q ∑ 

q =0 

G q (Q, γ1 , . . . , γK ) f 
q ] m,m 

′ 
∣∣∣. (50) 

ote that, since the components of P ( f ) are bounded by one, this 

nterpolation scheme provides significant accuracy even for small 

alues of Q . Table 2 shows the error measure 

sup 

f,γ1 , ... ,γK 

‖ P ( f ) −
Q ∑ 

q =0 

G q (Q, γ1 , . . . , γK ) f 
q ‖ F (51) 

here, again, the supremum is taken over all variables involved. 

his is the maximum error that would be incurred if P ( f ) were 

eplaced by its polynomial approximation in the computation of 

 ( f ) x for unit-norm vectors x . The conclusion is the same. 

.3. Approximation of ˆ P 1 ( f r ) and ˆ P 2 ( f ) to P ( f ) 

In this section, we assess qualitatively the error in approximat- 

ng the true projection matrix P ( f ) using either ̂ P 0 ( f r ) , ̂ P 1 ( f ) or̂ 

 2 ( f ) for a single component of these matrices and the DOAs in 

47) . The objective of this assessment is to show the improvement 

hat can be achieved graphically. 
6
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Fig. 4. RMS value of error norm in (52) versus the number of spectral bins R . 

Fig. 5. Difference in dBs between the RMS error of ̂ P 1 ( f ) for Q = 2 and the same 

error for Q  = 2 versus the number of covariance matrices R . 
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Fig. 6. RMS DOA error of IC-MUSIC in the estimation of γ1 for the DOAs in (48) ver- 

sus the DOA difference �γ . 
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Fig. 1 shows the real and imaginary parts of component 

 P ( f )] 1 , 10 and the state-of-the-art estimate [ ̂  P 0 ( f r )] 1 , 10 in one real- 

zation of the numerical example for SNR = 8 dB . The smooth thick 

urves are the components of [ P ( f )] 1 , 10 and the noisy thin curves 

he corresponding components of [ ̂  P 0 ( f r )] 1 , 10 . Note that [ ̂  P 0 ( f r )] 1 , 10 

pproximates [ P ( f )] 1 , 10 but with some error, fundamentally due to 

he variation of the received signals’ sample spectra. Though this 

gure only shows one component of P ( f ) and 

̂ P 0 ( f r ) , the trends

lso hold for the rest of components, i.e, the whole matrix P ( f ) is

 smooth function of f and P ( f r ) ≈ ̂ P 0 ( f r ) . 

Fig. 2 shows the result of fitting a polynomial of order Q = 3

o the real part of R = 41 equally-spaced samples Re { [ ̂  P 0 ( f r )] 1 , 10 } . 
he continuous curve is the true value [ P ( f )] 1 , 10 and the dashed 

urve the fitted value [ ̂  P 1 ( f )] 1 , 10 . Note that the fitted value is a

ignificantly better estimate of [ P ( f )] 1 , 10 along the frequency band 

han the initial estimates (dots). 

The final correction in (33) for obtaining ̂ P 2 ( f ) from 

̂ P 1 ( f ) pro- 

uces a slight variation, that can be readily seen in Fig. 3 for the

eal part of component (1,10). This figure shows the error in ap- 

roximating P ( f ) using either ̂ P 1 ( f ) or ̂ P 2 ( f ) for component (1,10). 

ote that the curve is smooth for ̂ P 1 ( f ) and 

̂ P 2 ( f ) and that the 

pproximation error is small in both cases. 
7 
.4. RMS approximation error of ˆ P 1 ( f ) versus the number of sample 

ovariance matrices R 

Fig. 4 shows the approximation error for the whole projection 

atrix in the example of the previous sub-section, where the error 

orm is 

1 

R 

R ∑ 

r=1 

‖ P ( f r ) − ̂ P 1 ( f r ) ‖ 

2 
2 

)
1 / 2 . (52) 

ote that, except for Q = 0 , ̂ P 1 ( f ) outperforms ̂ P 0 ( f ) by a signifi-

ant margin that can reach 17 dB for a high number of bins R . 
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Fig. 7. RMS DOA error of MTOPS in the estimation of γ1 for the DOAs in (48) versus 

the DOA difference �γ . 
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Fig. 8. RMS DOA error of IC-MUSIC in the estimation of γ1 for the DOAs in (47) ver- 

sus the SNR. 

o

t

Fig. 5 shows the curves in Fig. 4 for Q  = 2 minus the curve for 

 = 2 in dBs. This figure allows us to see what value of Q performs 

est versus the number of bins R . As can be readily seen, Q = 1 is

he best choice up to R = 10 (value below zero in “Q = 1 ” curve), 

hile Q = 2 is the best choice between R = 11 and R = 150 , and 

 = 3 is the best choice for R > 150 . 

.5. Improvement in DOA separation 

In order to assess the effect of the proposed method on the sep- 

ration of DOA estimates, we have evaluated the RMS error in the 

stimation of γ1 for varying �γ in (48) using several variants of 

C-MUSIC and MTOPS for SNR = −10 dB . The variants were the fol- 

owing: 

• Standard IC-MUSIC . Standard IC-MUSIC estimator using the 

pseudo-spectrum in (41) . 
• 41-bin IC-MUSIC . Standard IC-MUSIC estimator but with pro- 

jection matrices ̂ P 0 ( f r ) replaced with their estimates ̂ P 2 ( f r ) . 
• 5-bin IC-MUSIC . IC-MUSIC estimator applied to R ′ = 5 pro- 

jection matrices ̂ P 2 ( f ′ r ) as proposed at the end of Section 5 . 

The frequencies f ′ r formed a regular grid covering the band 

[ f o − B 1 / 2 , f o + B 1 / 2] and the IC-MUSIC pseudo-spectrum was

(41) but with frequencies f ′ r , r = 1 , 2 , . . . , R ′ . 
• 1-bin IC-MUSIC . The same estimator but computed from the 

single projection matrix ̂ P 2 ( f o ) , i.e, with f ′ 
1 

= f o and R ′ = 1 . 

And the MTOPS estimators were: 

• Standard MTOPS . MTOPS estimator computed from the 

pseudo-spectrum in (44) . Since this pseudo-spectrum has nu- 
8 
merous local peaks, the peak lying closest to 1-bin IC-MUSIC 

was selected as estimate. (See [20] for comments on this draw- 

back of MTOPS.) 
• 41-bin MTOPS . Standard MTOPS estimator but with projection 

matrices ̂ P 0 ( f r ) replaced with their estimates ̂ P 2 ( f r ) . 
• 5-bin MTOPS . MTOPS estimator applied to R ′ = 5 projection 

matrices ̂ P 2 ( f ′ r ) , ( Section 5 ), where the frequencies f ′ r formed 

a regular grid covering the band [ f o − B 1 / 2 , f o + B 1 / 2] . 

Fig. 6 a shows the performance of 41-bin IC-MUSIC versus that 

f standard IC-MUSIC. Note that the proposed method improves 

he smallest �γ for which the two DOAs are separable. With the 
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Fig. 9. RMS DOA error of MTOPS in the estimation of γ1 for the DOAs in (47) versus 

the SNR. 
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tandard estimator, we have �γ = 0 . 15 , while the adapted method 

ith Q = 1 provides �γ = 0 . 11 roughly. Larger values of Q imply

 larger threshold for �γ . We can explain this feature by the fact 

hat a smaller Q implies that less noise gets into the computation 

f ̂ P 1 ( f ) . However, if Q is too small then we may expect a bias

ue to the model mismatch. As shown in the next sub-section, this 

ias becomes visible at high SNRs. Fig. 6 b shows the same compar- 

son for 5-bin IC-MUSIC and the behavior is the same, but with a 

ore noticeable degradation with increasing Q . It is interesting to 

ote that the best threshold is obtained for Q = 0 and that it de-

rades with increasing Q . This phenomenon can be explained by 

he fact that less noise gets into the estimate ̂ P 2 ( f ) if Q is de- 

reased. However, note that the SNR is fixed at -10 dB. At higher 

NRs, a low value of Q introduces a bias due to the model mis- 

atch; (see curves for Q = 0 at high SNRs in the next section). 

Figs. 6 c, 7 a and b show the same comparison for 5-bin IC-

USIC, 41-bin MTOPS and 5-bin MTOPS, respectively, and the con- 

lusions that can be drawn are similar. 

.6. Performance improvement in SNR threshold 

We have assessed the RMS error of γ1 for varying SNR for the 

hree DOAs in (47) . Fig. 8 a to c show the performance of 41-bin, 5-

in and 1-bin IC-MUSIC respectively, while Figs. 9 a and b show the 

erformance of 41-bin MTOPS and 5-bin MTOPS respectively. Note 

hat the behavior is similar to the one in the previous sub-section, 

.e, the method provides an improvement of roughly 7 dBs in the 

NR threshold. Additionally, we can see that the mismatch for the 

olynomial approximation can be perceived in the high-SNR region 
9 
nd Q = 0 in all figures. Additionally, this mismatch can be seen for 

 = 1 in Fig. 8 c. 

. Conclusions 

We have presented a method for estimating the signal sub- 

pace along a frequency band from a set of frequency-bin sam- 

le covariance matrices. Fundamentally, the method consists of fit- 

ing a polynomial to the signal projection matrices associated with 

hese last matrices. The resulting polynomial provides an approxi- 

ate signal projection matrix at any frequency in the band, which 

an then be used to improve the quality of wideband DOA estima- 

ors such as IC-MUSIC and MTOPS. We have presented asymptotic 

ounds for the bias and RMS error of the polynomial estimate and 

e have assessed its performance in several numerical examples. 
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ppendix A. Assessment of the first two moments of ˆ P 0 ( f r ) 

In this appendix, we present asympotic expressions for the 

ean and for a bound on the variance of ̂ P 0 ( f r ) which prove 

13) and (15) . For simplicity, let us suppress the dependency on f r 
n writing in the sequel, i.e, let us write R rather than R( f r ) and R̂

ather than 

̂ R ( f r ) , etc. Let us start by recalling the existing results

n the perturbation of the eigenvalues of a sample covariance ma- 

rix [25,26] . For this, write the eigenvalue decomposition of R as 

 = 

M ∑ 

m =1 

λm 

q m 

q 

H 
m 

, (A.1) 

here λm 

is the m th eigenvalue in decreasing order and q m 

is a 

orresponding eigenvector, q H m 

q m 

′ = δm −m 

′ , ( m, m 

′ = 1 , . . . , M). Due

o the model in (4) , but applied to the rth frequency bin, we have

m 

= σ 2 , m = K + 1 , . . . , M. For the sample covariance matrix ̂ R in

6) , but again applied to the rth bin, this same decomposition takes 

he form 

ˆ 
 = 

M ∑ 

m =1 

ˆ λm ̂

 q m ̂

 q 

H 
m 

, (A.2) 

here “̂  ” marks the estimates of the corresponding parameters. 

et ˆ εm 

denote the estimation error for q m 

, i.e, 

ˆ  m 

= q m 

+ ˆ εm 

. (A.3) 

In order to recall the asymptotic expressions for the first two 

oments of ̂ εm 

, define the coefficients 

 m, ≡
{ 

λm 

λ 

N(λm 

− λ ) 2 
if m  =  

0 otherwise 
(A.4) 

rom Eqs. (12) to (14) in [26] , we have the following 

symptotic expressions, where “∼= 

” denotes an o(1 /N) equality 

 m, m 

′ = 1 , 2 , . . . , M): 

 

{
ˆ εm 

} ∼= 

( 

−1 

2 

M ∑ 

 =1 

b m, 

) 

q m 

, (A.5) 
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{ 

ˆ εm ̂

 ε
H 
m 

′ 

} 

∼= 

δm −m 

′ 
M ∑ 

 =1 

b m, q  q 

H 
 , (A.6) 

 

{ 

ˆ εm ̂

 ε
T 
m 

′ 

} 

∼= 

−( 1 − δm −m 

′ ) b m,m 

′ q m 

′ q 

T 
m 

. (A.7) 

In App. Appendix B , we use these expressions to prove the for- 

ula 

{ ̂  P 0 } = P + Q �b Q 

H + o(1 /N) , (A.8) 

here [ Q ] ·,m 

≡ q m 

, ( m = 1 , 2 , . . . , M) and �b is the diagonal matrix 

 �b ] m,m 

′ ≡

⎧ ⎨ ⎩ 

−δm −m 

′ 
M ∑ 

m = K+1 

b m, if m ≤ K 

δm −m 

′ 
∑ K 

k =1 b k, if K < m ≤ M. 

(A.9) 

Since b k, is O (1 /N) , (A.8) implies that ̂ P 0 is asymptotically un- 

iased provided there is some separation between the signal and 

oise subspaces, i.e, λK − λK+1 > 0 . To see this last point, note that 

ll coefficients b k, in (A.9) depend on one signal eigenvalue and 

ne noise eigenvalue and, therefore, we have 

 k, = 

λk λ 

N(λk − λ ) 2 
≤ λ1 λK+1 

N(λK − λK+1 ) 2 
. (A.10) 

The variance of the components of ̂ P 0 can be computed using 

he results in [25,26] through a laborious derivation and the result 

eems to depend on P . However, we may proceed in an indirect 

ay by bounding ‖ ̂  P 0 − P ‖ 2 
F 

, given that 

ax 
m,m 

′ 

∣∣[ ̂  P 0 − P ] m,m 

′ 
∣∣2 ≤ ‖ ̂

 P 0 − P ‖ 

2 
F . (A.11) 

n App. Appendix C , we prove the following asymptotic bound 

{‖ ̂

 P 0 − P ‖ 

2 
F } ≤ 8 

N(λK − λK+1 ) 2 

K ∑ 

k =1 

λk 

M−K ∑ 

 =1 

λK+  + o 

(
1 

N 

)
. (A.12) 

ecalling that λm 

= σ 2 if K < m ≤ M , we may combine the last two 

nequalities to obtain a bound on the quadratic error for any com- 

onent (m, m 

′ ) , 

 

{ ∣∣[ ̂  P 0 − P ] m,m 

′ 
∣∣2 

} 

≤ 8(M − K) σ 2 

N(λK − σ 2 ) 2 

K ∑ 

k =1 

λk + o 

(
1 

N 

)
. (A.13) 

ince, from (A.8) , the mean of [ ̂  P 0 − P ] m,m 

′ is O (1 /N) , (A.13) is also

alid for the variance, i.e, 

ar { [ ̂  P 0 − P ] m,m 

′ } ≤ 8(M − K) σ 2 

N(λK − σ 2 ) 2 

K ∑ 

k =1 

λk + o 

(
1 

N 

)
. (A.14) 

ppendix B. First- and second-order moments of sample 

ovariance matrix eigenvectors 

Let us first compute the first- and second-order moments of ̂  q m 

. 

rom (A.5) , we have 

 

{
ˆ q m 

} ∼= 

q m 

+ 

( 

−1 

2 

M ∑ 

 =1 

b m, 

) 

q m 

= c m 

q m 

, (B.1) 

here we define the coefficients 

 m 

≡ 1 − 1 

2 

M ∑ 

 =1 

b m, . (B.2) 

rom (A.6) and (B.1) , we have 
10 
 

{
ˆ q m ̂

 q 

H 
m 

′ 
}

= E 
{ (

q m 

+ ˆ εm 

)(
q m 

′ + ˆ εm 

′ 
)H 

} 

= q m 

q 

H 
m 

′ + q m 

E 
{

ˆ εH 
m 

′ 
}

+ E 
{

ˆ εm 

}
q 

H 
m 

′ + E 
{

ˆ εm ̂

 εH 
m 

′ 
}

= ( 1 + c m 

+ c m 

′ ) q m 

q 

H 
m 

′ + δm −m 

′ 
M ∑ 

 =1 

b m, q  q 

H 
 . (B.3) 

f m = m 

′ this expression reduces to 

 

{
ˆ q m ̂

 q 

H 
m 

}
= ( 1 + 2 c m 

) q m 

q 

H 
m 

+ 

M ∑ 

 =1 

b m, q  q 

H 
 . (B.4) 

dding up (B.4) for m = 1 , 2 , . . . , K, we obtain a formula for E{ ̂  P 0 } , 
oting that P = 

∑ K 
k =1 q k q 

H 
k 

: 

 

{
ˆ P 0 
} ∼= 

K ∑ 

k =1 

( 

( 1 + 2 c k ) q k q 

H 
k + 

M ∑ 

 =1 

b k, q  q 

H 
 

) 

= 

K ∑ 

k =1 

( ( 

1 −
M ∑ 

 =1 

b k, 

) 

q k q 

H 
k + 

M ∑ 

 =1 

b k, q  q 

H 
 

) 

= P −
K ∑ 

k =1 

M ∑ 

 =1 

b k, q k q 

H 
k + 

K ∑ 

k =1 

M ∑ 

 =1 

b k, q  q 

H 
 . (B.5) 

nd doing the same for m = K + 1 , . . . , M, we obtain 

 

{
I M 

− ˆ P 0 
} ∼= 

I M 

− P 

−
M ∑ 

m = K+1 

M ∑ 

 =1 

b m, q m 

q 

H 
m 

+ 

M ∑ 

m = K+1 

M ∑ 

 =1 

b m, q  q 

H 
 (B.6) 

he last two formulas involve coefficients b k, in which both k 

nd  are either smaller than K + 1 or larger than K, i.e, coeffi- 

ients computed from pairs of eigenvalues associated to either the 

ignal or noise subspace. Such coefficients b k, can be arbitrarily 

arge, given that the only condition on the eigenvalues λm 

is that 

here is a significant gap λK − λK+1 between the signal and noise 

igenvalues. We solve this drawback by writing E{ ̂  P 0 } in terms of 

{ (I M 

− P ) ̂  P 0 } and E{ P (I M 

− ̂ P 0 ) } . We have from (B.5) , 

 

{
( I M 

− P ) ̂  P 0 
} ∼= 

K ∑ 

k =1 

M ∑ 

 = K+1 

b k, q  q 

H 
 (B.7) 

nd from (B.6) , 

 

{
P 
(
I M 

− ˆ P 0 
)} ∼= 

M ∑ 

m = K+1 

K ∑ 

 =1 

b m, q  q 

H 
 . (B.8) 

inally, combining the last two equations, we have 

 

{
ˆ P 0 
}

= E 
{

P + ( I M 

− P ) ̂  P 0 − P 
(
I M 

− ˆ P 0 
)}

= P + E 
{
( I M 

− P ) ̂  P 0 
}

− E 
{

P 
(
I M 

− ˆ P 0 
)}

∼= 

P + 

M ∑ 

 = K+1 

( 

K ∑ 

k =1 

b k, 

) 

q  q 

H 
 

−
K ∑ 

 =1 

( 

M ∑ 

m = K+1 

b m, 

) 

q  q 

H 
 . (B.9) 

he matrix form of this expression is (A.8) . 

ppendix C. Derivation of bound on expected quadratical error 

The eigenvalue decomposition of R in (A.1) can be written as 

 = Q �Q 

H (C.1) 

here Q is unitary, [ Q ] m 

≡ q m 

, and � is a diagonal matrix with 

omponents [ �] m,m 

′ = δm −m 

′ λm 

, m, m 

′ = 1 , 2 , . . . , M. The sample 



J. Selva Signal Processing 198 (2022) 108600 

c

p

v

R

d

�

Ĉ

w

l

t

m

η̂

w

r

t

‖
(

c

t

[  

t

 

 

 

 

 

 

h

E

R

E

E

E
 

N

i

O

E

p  
ovariance matrix ̂ R can be described as the average of N inde- 

endent, complex normal M × 1 vectors x n , of zero mean and co- 

ariance R, 

̂ 

 = 

1 

N 

N ∑ 

n =1 

x n x 
H 
n . (C.2) 

Next, consider the vectors s n ≡ Q 

H x n which are also indepen- 

ent, complex normal and of zero mean, but of covariance matrix 

. The sample covariance matrix of these vectors is 

 

 ≡ 1 

N 

N ∑ 

n =1 ̂

 s n ̂  s H n . (C.3) 

here ˆ s n ≡ Q 

H ˆ x n . Given a realization 

̂ R and its corresponding ̂ C , 

et us bound the error in approximating P using ̂ P 0 by resorting 

o a perturbation theory result in [29] . First, define the following 

easure for the dissimilarity between the spans of P and 

̂ P 0 : 

 ≡ ‖ ̂

 C sn ‖ 

2 
F 

(λK − λK+1 ) 2 
, (C.4) 

here ̂ C sn is the block formed by the intersection of the first K

ows and last M − K columns of ̂  C , i.e, ̂  C sn ≡ [ ̂  C ] 1: K,K+1: M 

. Combining 

heorems 2.1 and 3.1 of [29] , we have that if ̂ η < 1 / 4 then 

 ̂

 P 0 − P ‖ 

2 
F ≤ 8 ̂

 η. (C.5) 

See also comments on page 232 of [29] .) 

In order to turn (C.5) into an asymptotic inequality, let us first 

ompute the first two moments of the components of ̂ C sn and then 

he mean and variance of ̂ η. For simplicity, let c k, and s n,k denote 

 ̂

 C ] k, and [ s n ] k respectively. For any indices k ,  , p and q , lying be-

ween 1 and M and following k  =  and p  = q , we have: 

• E{ c k, } = 0 given that k  =  and 

E{ c k, } = [ E{ ̂  C } ] k, = [ �] k, = 0 . (C.6)

• The formula 

E{ c k, c p,q } = 

1 

N 

δk −q δ −p λk λ . (C.7) 

To prove this result, recall the formula for the expectation of 

the product of four complex normal random variables a k , [30] : 

E{ a 1 a 2 a 3 a 4 } = E{ a 1 a 2 }E{ a 3 a 4 } + E{ a 1 a 3 }E{ a 2 a 4 } 
+ E{ a 1 a 4 }E{ a 2 a 3 } − E{ a 1 }E{ a 2 }E{ a 3 }E{ a 4 } . 

(C.8) 

The proof is the following. We have 

E{ c k, c p,q } = E 

{ [ 

1 

N 

N ∑ 

n =1 

s n s 
H 
n 

] 

k, 

[ 

1 

N 

N ∑ 

n ′ =1 

s n ′ s 
H 
n ′ 

] 

p,q 

} 

= 

1 

N 

2 

N ∑ 

n =1 

N ∑ 

n ′ =1 

E{ s n,k s 
∗
n, s n ′ ,p s 

∗
n ′ ,q } 

= 

1 

N 

2 

N ∑ 

n =1 

N ∑ 

n ′ =1 

(
E { s n,k s 

∗
n, }E { s n ′ ,p s 

∗
n ′ ,q } 

+ E { s n,k s n ′ ,p }E { s ∗n, s 
∗
n ′ ,q } + E { s n,k s 

∗
n ′ ,q }E { s ∗n, s n ′ ,p } 

− E { s n,k }E { s n, }E { s n ′ ,p }E { s n ′ ,q } 
)

(C.9) 

In this parenthesis, we have: 

– The first term is zero because E{ s n,k s 
∗
n, } = [ �] k, = 0 . 

– If n  = n ′ the second term is zero because s n and s n ′ are in-

dependent and E{ s n } = 0 . If n = n ′ this term is zero because

E{ s n s T n } = 0 M 

. 
11 
– The third term is zero if n  = n ′ because s n is independent of 

s n ′ and E{ s n } = 0 . And, if n = n ′ , then it is also zero if k  = q

or   = p, because E{ s n s H n } = � is a diagonal matrix. Thus, we

have that the third term is equal to 

δn −n ′ δk −q δ −p E{ s n,k s 
∗
n,k }E{ s n, s 

∗
n, } 

= δn −n ′ δk −q δ −p λk λ . (C.10) 

• The fourth term is zero because E{ s n } = 0 . 

So, in summary, we have 

E{ c k, c p,q } = 

1 

N 

2 

N ∑ 

n =1 

N ∑ 

n ′ =1 

δn −n ′ δk −q δ −p λk λ 

= 

1 

N 

δk −q δ −p λk λ . (C.11) 

• We also have 

E{ c k, c 
∗
p,q } = 

1 

N 

δk −p δ −q λk λ . (C.12) 

The proof is the following. We have 

E 
{

c k, c 
∗
p,q 

}
= E 

{ [ 

1 

N 

N ∑ 

n =1 

s n s 
H 
n 

] 

k, 

[ 

1 

N 

N ∑ 

n ′ =1 

s ∗n ′ s 
T 
n ′ 

] 

p,q 

} 

= 

1 

N 

2 

N ∑ 

n =1 

N ∑ 

n ′ =1 

E 
{

s n,k s 
∗
n, s 

∗
n ′ ,p s n ′ ,q 

}
= 

1 

N 

2 

N ∑ 

n =1 

N ∑ 

n ′ =1 

E 
{

s n,k s 
∗
n, s n ′ ,q s 

∗
n ′ ,p 

}
(C.13) 

Comparing this expression with the second line of (C.9) , we can 

readily see that 

E{ c k, c 
∗
p,q } = E{ c k, c q,p } . (C.14) 

Therefore, from (C.11) , we obtain (C.12) . 

Let us now compute the mean of ̂ η. From (C.4) and (C.12) , we

ave 

{ ̂  η} = 

1 

(λK − λK+1 ) 2 

K ∑ 

k =1 

M ∑ 

 = K+1 

E{ c k, c 
∗
k, 

} 

= 

1 

N(λK − λK+1 ) 2 

K ∑ 

k =1 

M ∑ 

 = K+1 

λk λ . (C.15) 

egarding the second-order moment, it follows the formula: 

{ ̂  η2 } = 

1 

(λK − λK+1 ) 4 

·
K ∑ 

k =1 

M ∑ 

 = K+1 

K ∑ 

k ′ =1 

M ∑ 

 ′ = K+1 

E{ c k, c 
∗
k, 

c ∗k ′ , ′ c k ′ , ′ } . (C.16) 

xpanding the summand using (C.8) , we have 

{ c k, c 
∗
k, 

c ∗k ′ , ′ c k ′ , ′ } = E{ c k, c 
∗
k, 

}E{ c ∗k ′ , ′ c k ′ , ′ } 
+ E { c k, c 

∗
k ′ , ′ }E { c ∗k, 

c k ′ , ′ } + E { c k, c k ′ , ′ }E { c ∗k, 
c ∗k ′ , ′ } . (C.17)

ote that this is a sum of products consisting of factors of the form 

n either (C.7) or (C.12) . As a consequence, all these products are 

 (1 /N 

2 ) and we have 

 

{
ˆ η2 

}
= O 

(
1 /N 

2 
)
. (C.18) 

Finally, let us derive the asymptotic inequality. Start by decom- 

osing the expectation of ‖ ̂  P 0 − P ‖ 2 by conditioning on 

̂ η2 < 1 / 4 :

F 
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E

F

E

R

s

b

u

P  

S  

t

a

E

R

[

 

[

[

[

[
[

[

[

[

[

[
[

{‖ ̂

 P 0 − P ‖ 

2 
F } = E 

{ 

‖ ̂

 P 0 − P ‖ 

2 
F | ̂  η2 ≤ 1 / 4 

} (
1 − P( ̂  η2 > 1 / 4) 

)
+ E 

{ 

‖ ̂

 P 0 − P ‖ 

2 
F | ̂  η2 > 1 / 4 

} 

P( ̂  η2 > 1 / 4) 

= E 
{ 

‖ ̂

 P 0 − P ‖ 

2 
F | ̂  η2 ≤ 1 / 4 

} 

+ 

(
E 
{ 

‖ ̂

 P 0 − P ‖ 

2 
F | ̂  η2 > 1 / 4 

} 

− E 
{ 

‖ ̂

 P 0 − P ‖ 

2 
F | ̂  η2 ≤ 1 / 4 

} )
· P( ̂  η2 > 1 / 4) . 

(C.19) 

rom (C.5) , we have that the first term follows 

{‖ ̂

 P 0 − P ‖ 

2 
F | ̂  η2 ≤ 1 / 4 } ≤ 8 E{ ̂  η} . (C.20) 

egarding the second term, the expectations inside the parenthe- 

is are bounded, because projection matrices have components 

ounded by one. Besides, we may apply Markov’s inequality and 

se (C.17) to obtain 

( ̂  η > 1 / 4) = P( ̂  η2 > 1 / 16) < 16 E{ ̂  η2 } = O (1 /N 

2 ) . (C.21)

o, we have that the whole second term in (C.18) is O (1 /N 

2 ) and,

herefore, is o(1 /N) . In summary, recalling (C.14) , we obtain the 

symptotic inequality 

{‖ ̂

 P 0 − P ‖ 

2 
F } ≤ 8 

N(λK − λK+1 ) 2 

K ∑ 

k =1 

M ∑ 

 = K+1 

λk λ + o 

(
1 

N 

)
. (C.22) 
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