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Abstract
In this paper it is shown that for the ordinaryDirichlet series,

∑∞
j=0

α j
( j+1)s ,α0 = 1, of a class,

say P , that contains in particular the series that define the Riemann zeta and the Dirichlet
eta functions, there exists limn→∞ ρn/n, where the ρn’s are the Henry lower bounds of the
partial sums of the given Dirichlet series, Pn(s) = ∑n−1

j=0
α j

( j+1)s , n > 2. Likewise it is given
an estimate of the above limit. For the series of P having positive coefficients it is shown the
existence of the limn→∞ aPn(s)/n, where the aPn(s)’s are the lowest bounds of the real parts
of the zeros of the partial sums. Furthermore it has been proved that limn→∞ aPn(s)/n =
limn→∞ ρn/n.

Keywords Dirichlet series · Zeros of partial sums of Dirichlet series · Henry lower bound

Mathematics Subject Classification 30B50 · 11M41 · 30D05

1 Introduction

The possible ordering of the zeros, all them aligned on a line, of certain functions defined by
Dirichlet series (the Riemann Hypothesis affirms it about all the non-trivial zeros on the line
�s = 1/2 of the function ζ(s) defined by the series

∑∞
j=1

1
j s ) contrasts with the chaoticity

in the distribution of the zeros of their partial sums. For instance, in the case of the above
series, its partial sums, ζn(s) = ∑n

j=1
1
j s , have their zeros scattered on vertical strips

Sζn(s) = {s ∈ C : aζn(s) ≤ �s ≤ bζn(s)},
where aζn(s), bζn(s), defined as

aζn(s) := inf{�s : ζn(s) = 0}, bζn(s) := sup{�s : ζn(s) = 0}, (1.1)
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are given by the expressions

aζn(s) = − log 2

log( n−1
n−2 )

+ Δn, lim sup
n→∞

|Δn | ≤ log 2, n > 2, (1.2)

and

bζn(s) = 1 + (
4

π
− 1 + o(1))

log log n

log n
, n → ∞, (1.3)

which can be found in [13] and [11, 12], respectively. From formulas (1.2) and (1.3) it follows
that limn→∞ aζn(s) = −∞whereas limn→∞ bζn(s) = 1, so we can find infinitely many zeros
of the partial sums ζn(s) irregularly distributed on the half-plane �s ≤ 1. Nevertheless it is
well known the regularity of the non-trivial zeros of ζ(s) in the sense that, all those found
so far, are located on the line �s = 1/2. Among the papers dealing with the issues raised on
the distribution of the zeros of the partials sums of the Riemann zeta function, we suggest [7,
8, 10, 15, 18–20, 24]; on the implication of the truth of the Riemann Hypothesis when those
zeros are close the line �s = 1 [23,Theorem III], see [22, 23] and [11, 12]. On Dirichlet
series, properties and abscissae of convergence, read [1,Chapter 8] and [5, 6].

Noticing that limn→∞ n log( n−1
n−2 ) = 1, fromformula (1.2) it follows that limn→∞ aζn(s)/n =

− log 2, result that appeared in [2], so known before formula (1.2) was given. The existence
and the value of the previous limit, points out the existence of certain regularity, with respect
to the infinity, of the lowest bounds of the real parts of the zeros of the partial sums of the
series that defines the Riemann zeta function. In the present article we have proved that such
regularity is shared with the partial sums of many other Dirichlet series. Indeed, for a given
ordinary Dirichlet series,

∑∞
j=0

α j
( j+1)s , α0 = 1, we have studied the existence and we have

given an estimate of the value of the limn→∞ aPn(s)/n, where the aPn(s)’s, as in (1.1), are
the lowest bounds of the real parts of the zeros of the partial sums Pn(s) := ∑n−1

j=0
α j

( j+1)s ,
n > 2, i.e.

aPn(s) := inf{�s : Pn(s) = 0}. (1.4)

More precisely, given an ordinary Dirichlet series
∑∞

j=0
α j

( j+1)s , α0 = 1, it has been settled:

(i) The link between aPn(s) and the Henry [9] lower bound, ρn , defined as the unique real
solution [17,p. 46] of the equation

|αn−1|e−ρ log n = 1 +
n−2∑

j=1

|α j |e−ρ log( j+1) (1.5)

for every n > 2.
(ii) The conditions that must be imposed on the coefficients of the series

∑∞
j=0

α j
( j+1)s , α0 =

1, to guarantee the existence and to give an estimate of limn→∞ ρn/n. These conditions
have defined a class of Dirichlet series, say P , that contains in particular the series,∑∞

j=1
1
j s ,

∑∞
j=1(−1) j−1 1

j s , that define the Riemann zeta and the Dirichlet eta functions,
respectively (about the latter, we suggest reading [2,p. 129], [14] and [23,TheoremVIII]).
For the series of P it has been proved the existence of the aforementioned limit as well
as it has been given an estimate of it.

(iii) The existence of limn→∞ aPn(s)/n and its coincidence with limn→∞ ρn/n for the series
of the class P having positive coefficients.
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2 The Henry bounds of the partial sums of an ordinary Dirichlet series

We consider exponential polynomials of the form (see [16,(3.1)])

Pn(s) = 1 +
m∑

j=1

β j e
−s log n j , m ≥ 2, s = σ + i t ∈ C (2.1)

where β j �= 0 are complex numbers and 2 ≤ n1 < n2 < . . . < nm = n integers. These
exponential polynomials will be called Dirichlet polynomial because they are partial sums
of ordinary Dirichlet series. Since n is an integer greater than 2, any Dirichlet polynomial
Pn(s) of the form (2.1) has at least three non-null terms.

The essential bounds of a Dirichlet polynomial Pn(s) (they can be defined for any expo-
nential polynomial) were introduced in [16] as four real numbers denoted by ρn , aPn(s), bPn(s)
and ρ0. The ρn’s and aPn(s)’s were defined in (1.5) and (1.4), respectively. The number bPn(s)
is defined as

bPn(s) := sup{�s : Pn(s) = 0}. (2.2)

whereas ρ0, depends on n, is defined, noticing Polya’s criterion [17,p. 46], as the unique real
solution of the equation

1 =
m∑

j=1

|β j |e−ρ log n j . (2.3)

As it was demonstrated in [17], given a Dirichlet polynomial Pn(s) the previous four
numbers satisfy the inequalities

ρn ≤ aPn(s) ≤ bPn(s) ≤ ρ0 for all n > 2. (2.4)

From now on, the numbers ρn , ρ0 will be called Henry lower, upper, bounds, respectively,
associated with an exponential polynomial Pn(s). The numbers aPn(s), bPn(s), will be merely
called lower, upper, bounds, respectively, associated with an exponential polynomial Pn(s).

Proposition 2.1 Let Pn(s) be a Dirichlet polynomial of the form (2.1) such that
∑m

j=1 |β j | <

1. Then the Henry upper bound ρ0 is negative, so all the zeros of Pn(s) are in the half-plane
�s < 0.

Proof By the Polya criterion [17,p. 46] the equation 1 = ∑m
j=1 |β j |e−ρ log n j has ρ0 as unique

real solution. Define now the real function

g(σ ) := 1 −
m∑

j=1

|β j |e−σ log n j , σ ∈ R. (2.5)

Then, since limσ→−∞ g(σ ) = −∞ and g(0) = 1 − ∑m
j=1 |β j | > 0, by Bolzano theorem

[21], there exists a negative real zero of g(σ ). But this zero is ρ0 because the equation (2.3
has only one real zero. Now, by (2.4), bPn(s) < 0. Consequently all the zeros of Pn(s) have
negative real part. 	

Proposition 2.2 Let Pn(s) be a Dirichlet polynomial of the form (2.1) such that 1 +∑m−1

j=1 |β j | < |βm |. Then the Henry lower bound ρn is positive, so all the zeros of Pn(s)
are in the half-plane �s > 0.
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Proof By Polya criterion [17,p. 46] the equation

|βm |e−ρ log n = 1 +
m−1∑

j=1

|β j |e−ρ log n j ,

has ρn as unique real solution (see (1.5)). Define the real function

f (σ ) := |βm |e−σ log n − (1 +
m−1∑

j=1

|β j |e−σ log n j ), σ ∈ R. (2.6)

Then, since f (0) = |βm | − (1 + ∑m−1
j=1 |β j |) > 0 and limσ→+∞ f (σ ) = −1, by Bolzano

theorem [21], there exists a positive real zero of f (σ ). This zero is ρn because the above
equation has only one real zero. Now, by (2.4), aPn(s) > 0. Consequently all the zeros of
Pn(s) have positive real part. 	

Proposition 2.3 Let Pn(s) be a Dirichlet polynomial of the form (2.1) such that 1 +∑m−1

j=1 |β j | > |βm |. Then the Henry lower bound ρn is negative.

Proof The real function f (σ ), defined in (2.6), satisfies limσ→−∞ f (σ ) = +∞ and f (0) =
βm−(1+∑m

j=1 β j ) < 0. Hence, by Bolzano theorem [21], f (σ ) has a negative real zero. But
this zero is ρn because it is the unique real zero of the function f (σ ), so ρn < 0. Therefore
the proof is completed. 	


Our aim is for giving an asymptotic estimate of ρn/n as n → ∞, where the ρn’s are
the Henry lower bounds of the partial sums on a class (below specified) of Dirichlet series
containing in particular the series that define the Riemann zeta and the Dirichlet eta functions.

3 The Henry lower bounds of the partial sums of a Dirichlet series of the
classP

We introduce the class P of the Dirichlet series of the form
∞∑

j=0

α j

( j + 1)s
, α0 = 1, α j ∈ C \ {0} , n > 2, s = σ + i t ∈ C, (3.1)

such that for every n > 2 one has

1 + |α1| + . . . + |αn−2| > |αn−1|, |α j−1

α j
| ≤ |αn−1

αn
| for all 1 ≤ j ≤ n − 1. (3.2)

Observe that the partial sums of a series of the class P are Dirichlet polynomials of the
form (2.1) with n j = 1 + j for 1 ≤ j ≤ m = n − 1 (see (2.1)). On the other hand, since
the coefficients of the series that define the Riemann zeta and the Dirichlet eta functions are
α j = 1 and α j = (−1) j , j ≥ 0, respectively (see Sect. 1, (ii)), it is clear that the class P
contains both remarkable series.

Lemma 3.1 Let
∑∞

j=0
α j

( j+1)s , α0 = 1, be a Dirichlet series of the class P and ρn the Henry

lower bound of each partial sum Pn(s) = 1 + ∑n−1
j=1

α j
( j+1)s . Then (ρn )n>2 and (ρn/n)n>2

are both strictly decreasing sequences of negative numbers.
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Proof Noticing the Proposition 2.3, the first part of the condition (3.2) implies that ρn < 0,
so ρn

n < 0 for every n > 2. On the other hand, by (1.5), for each n > 2, ρn+1 and ρn satisfy
the equations

1 +
n−1∑

j=1

|α j |e−ρn+1 log(1+ j) = |αn |e−ρn+1 log(n+1)

and

1 +
n−2∑

j=1

|α j |e−ρn log(1+ j) = |αn−1|e−ρn log n,

respectively. By dividing the above expressions by |αn |e−ρn+1 log(n+1) and |αn−1|e−ρn log n ,
respectively, we have

1

|αn |e
ρn+1 log(n+1) +

n−1∑

j=1

|α j

αn
|eρn+1 log(n+1)−ρn+1 log(1+ j) = 1

and

1

|αn−1| (
1

n
)−ρn +

n−2∑

j=1

| α j

αn−1
|eρn log n−ρn log(1+ j) = 1

We write the previous expressions under the form

1

|αn |
( 1

n + 1

)−ρn+1 +
n−1∑

j=1

|α j

αn
|
( j + 1

n + 1

)−ρn+1 = 1 (3.3)

and

1

|αn−1|
(1

n

)−ρn +
n−2∑

j=1

| α j

αn−1
|
( j + 1

n

)−ρn = 1. (3.4)

By substracting (3.3) and (3.4), we get

(1/|αn |)
( 1

n + 1

)−ρn+1 +
[
|α1

αn
|
( 2

n + 1

)−ρn+1 − 1

|αn−1|
(1

n

)−ρn
]

+ . . . +

+
[
|αn−1

αn
|
( n

n + 1

)−ρn+1 − |αn−2

αn−1
|
(n − 1

n

)−ρn
]

= 0.

Then, since the first summand in the above expression is positive, necessarily for at least
some 1 ≤ k ≤ n − 1 one has

[ ∣
∣
∣
∣
αk

αn

∣
∣
∣
∣

( k + 1

n + 1

)−ρn+1 −
∣
∣
∣
∣
αk−1

αn−1

∣
∣
∣
∣

( k

n

)−ρn
]

< 0.

Therefore
∣
∣
∣
∣
αk

αn

∣
∣
∣
∣

( k + 1

n + 1

)−ρn+1
<

∣
∣
∣
∣
αk−1

αn−1

∣
∣
∣
∣

( k

n

)−ρn
. (3.5)
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Now we claim that
( k + 1

n + 1

)−ρn+1
<

( k

n

)−ρn
. (3.6)

Indeed, assume (3.6) is not true, then it would be ( k+1
n+1 )

−ρn+1 ≥ ( kn )−ρn . By using the second
condition of (3.2) we have

∣
∣
∣
∣
αn−1

αn

∣
∣
∣
∣

( k + 1

n + 1

)−ρn+1 ≥
∣
∣
∣
∣
αk−1

αk

∣
∣
∣
∣

( k

n

)−ρn

or equivalently
∣
∣
∣
∣
αk

αn

∣
∣
∣
∣

( k + 1

n + 1

)−ρn+1 ≥
∣
∣
∣
∣
αk−1

αn−1

∣
∣
∣
∣

( k

n

)−ρn
.

But this contradicts (3.5). Consequently the claim (3.6) is true and then we get
(n + 1

k + 1

)−ρn+1
>

(n

k

)−ρn
. (3.7)

Now, by taking logarithms in (3.7) and taking into account that ρn < 0 for all n > 2, the
inequality (3.7) is equivalent to

ρn+1

ρn
>

log( nk )

log( n+1
k+1 )

> 1 (3.8)

because n
k > n+1

k+1 , due to the fact that 1 ≤ k ≤ n − 1 < n. This proves that (ρn )n>2 is a
strictly decresing sequence of negative terms. Regarding the sequence (ρn/n)n>2, by virtue
of (3.8), we have

ρn+1/(n + 1)

ρn/n
>

n

n + 1

log( nk )

log( n+1
k+1 )

= n

n + 1

log n − log k

log(n + 1) − log(k + 1)
. (3.9)

Now by applying Cauchy Mean Value Theorem [21] to the real functions f (x) := log x ,
g(x) := log(x + 1) on the interval [k, n], there exists a ∈ (k, n) such that

f (n) − f (k)

g(n) − g(k)
= log n − log k

log(n + 1) − log(k + 1)
= f ′(a)

g′(a)
= 1/a

1/(a + 1)
.

Then, from (3.9), we obtain

ρn+1/(n + 1)

ρn/n
>

n

n + 1

1/a

1/(a + 1)
= n(a + 1)

(n + 1)a
> 1

because n > a. This proves that (ρn/n)n>2 is a strictly decresing sequence of negative terms.
Therefore the lemma follows. 	


In order to attain our goal we will firstly prove a theorem that generalizes [2,Proposition
1, Part (iii)] and [4,Theorem 3.1].

Theorem 3.1 Let
∑∞

j=0
α j

( j+1)s , α0 = 1, be a Dirichlet series of the class P and ρn the Henry

lower bound of each partial sum of order n, Pn(s) = 1 + ∑n−1
j=1

α j
( j+1)s . Then the sequence

(ρn/n)n>2 has limit (finite or infinite) and it satisfies

− ln(1 + λ) ≤ lim
n→∞(ρn/n) ≤ − ln(1 + μ), (3.10)
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where λ := lim sup λn, μ := lim inf μn being

λn := max

{
1

|αn−1| , |
α j

αn−1
| : 1 ≤ j ≤ n − 2

}

,

μn := min

{
1

|αn−1| , |
α j

αn−1
| : 1 ≤ j ≤ n − 2

}

,

for each n > 2.

Proof Firstly note that fromLemma3.1, (− ρn
n )n≥1 is a strictly increasing sequence of positive

numbers, so 0 < L := limn→∞ − ρn
n exists (finite or infinite). In order to prove the theorem

we first consider the case λ = ∞ then the case λ < ∞ . If λ = ∞, the first inequality in
(3.10) is obvious, independently of the value of L . If L = ∞, trivially the second inequality
in (3.10) is also true and then the theorem follows in the case λ = L = ∞ . If L < ∞, we
claim that μ < ∞. Indeed, we write (3.4) under the form

1

|αn−1|
[
(
1

n
)n

]−ρn/n +
n−2∑

j=1

| α j

αn−1
|
[
(
j + 1

n
)n

]−ρn/n = 1. (3.11)

Now, noticing the definition of λn and μn , from (3.11), it follows

μn

n−1∑

j=1

[
(
j

n
)n

]−ρn/n ≤ 1 ≤ λn

n−1∑

j=1

[
(
j

n
)n

]−ρn/n
, n > 2,

or equivalently

μn

n−1∑

j=1

[
(1 − j

n
)n

]−ρn/n ≤ 1 ≤ λn

n−1∑

j=1

[
(1 − j

n
)n

]−ρn/n
, n > 2. (3.12)

Supposeμ = ∞. Then, sinceμ = lim inf μn , given an arbitrary A > 0 there exists a positive
integer l such that μn ≥ A for all n ≥ l. Therefore, by (3.12),

A
n−1∑

j=1

[
(1 − j

n
)n

]−ρn/n ≤ 1, for all n ≥ l. (3.13)

Taking into account that, for each fixed j , limn→∞(1 − j
n )n = e− j and 0 < L = limn→∞

− ρn
n exists and it is finite (this is what we are assuming), by taking the limit as n → ∞ in

(3.13), we have

A
∞∑

j=1

e− j L = A
e−L

1 − e−L
= A

1

eL − 1
≤ 1. (3.14)

But (3.14) implies that 1
eL−1

≤ 1
A for arbitrary large A > 0, which is a contradiction because

L is a fixed positive number. Hence the claim is true and then 0 ≤ μ < ∞. Now, since
μ := lim inf μn , given ε > 0 there exists a positive integer m such that μn > μ− ε for all
n ≥ m. Therefore, from (3.12), we get

(μ − ε)

n−1∑

j=1

[
(1 − j

n
)n

]−ρn/n ≤ 1, for all n ≥ m.
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Then, by taking the limit in the above inequality, we are led to

(μ − ε)
1

eL − 1
≤ 1 for arbitrary ε > 0,

so, μ 1
eL−1

≤ 1 or equivalently 1 + μ ≤ eL . Now, by taking logarithms, we deduce

− L = lim
n→∞(ρn/n) ≤ − ln(1 + μ), (3.15)

and then the second part of (3.10) follows. Consequently the theorem is true in the case
λ = ∞, L < ∞. Therefore it only remains to prove the validity of the theorem whenever
λ < ∞. To do this first observe that, since λ < ∞, the sequence (λn)n>2 is upper bounded.
Then there exists M > 0 such that 0 < λn ≤ M for all n > 2. Hence, from (3.12), it follows

1 ≤ λn

n−1∑

j=1

[
(1 − j

n
)n

]−ρn/n ≤ M
n−1∑

j=1

[
(1 − j

n
)n

]−ρn/n
, n > 2. (3.16)

Now we claim that L := limn→∞ − ρn
n is finite. Indeed, assume L = ∞. Then, given an

arbitrary A > 0, there exists a positive integer k such that − ρn
n > A for all n > k. Noticing

that (1 − j
n )n < 1 for all j , n, we have

n−1∑

j=1

[
(1 − j

n
)n

]−ρn/n
<

n−1∑

j=1

[
(1 − j

n
)n

]A
for all n > k. (3.17)

Hence, from (3.16) and (3.17), we infer

1 < M
n−1∑

j=1

[
(1 − j

n
)n

]A
for all n > k. (3.18)

Then, by taking the limit as n → ∞ in (3.18), we get

1 ≤ M
∞∑

j=1

e− j A = M
e−A

1 − e−A
for any A > 0. (3.19)

But e−A → 0 as A → ∞, so (3.19) is a contradiction. Hence the claim follows, i.e.,
0 < L < ∞. Now, noticing λ := lim sup λn < ∞, given ε > 0 there exists a positive integer
p such 0 < λn < λ+ ε for all n ≥ p. Then, from (3.12), we have

1 ≤ (λ + ε)

n−1∑

j=1

[
(1 − j

n
)n

]−ρn/n
for all n ≥ p.

By taking the limit in the above inequality, we get

1 ≤ (λ + ε)
1

eL − 1
for arbitrary ε > 0,

so 1 ≤ λ 1
eL−1

or equivalently eL ≤ λ + 1. Therefore

− ln(1 + λ) ≤ −L = lim(ρn/n)

and then the first part of (3.10) follows. Regarding the proof of the second inequality in (3.10),
it is enough to prove it in the case L < ∞ because, if L = ∞, the second inequality in (3.10)
follows independently of the value of μ. But for L < ∞, previously we have proved that
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μ < ∞ and then (3.15) applies. Therefore the second inequality in (3.10) follows. Now the
proof is completed. 	


From Theorem 3.1, we can deduce an important result on the partial sums of the Riemann
zeta and Dirichlet eta functions.

Theorem 3.2 Let
∑∞

j=1
1
j s ,

∑∞
j=1(−1) j−1 1

j s be the series that define the Riemann zeta and

theDirichlet eta functions, respectively, and ζn(s), ηn(s) their partial sums of order n. Denote
by ρζn , ρηn the Henry lower bounds of ζn(s), ηn(s), respectively. Then

lim
n→∞(ρζn/n) = lim

n→∞(ρηn/n) = − ln 2. (3.20)

Proof The series
∑∞

j=1
1
j s ,

∑∞
j=1(−1) j−1 1

j s are in the class P because both series satisfy

trivially (3.2) for every n > 2. On the other hand, the numbers

λn := max

{
1

|αn−1| , |
α j

αn−1
| : 1 ≤ j ≤ n − 2

}

,

μn := min

{
1

|αn−1| , |
α j

αn−1
| : 1 ≤ j ≤ n − 2

}

,

in the hypotheses of Theorem 3.1 corresponding to ζn(s) and ηn(s), are both equal to 1 for
all n > 2. Hence

λ := lim sup λn = μ := lim inf μn = 1.

Then, by (3.10), we get

− ln 2 ≤ lim
n→∞(ρζn/n) ≤ − ln 2

and

− ln 2 ≤ lim
n→∞(ρηn/n) ≤ − ln 2.

Consequently (3.20) follows. 	

Remark 3.1 The first part of formula (3.20) coincides exactly with the statement of
[2,Proposition 1, Part (iii)] and [4,Theorem 3.1].

4 Themain results

We now introduce the first main result on the lower bounds of the partial sums of a Dirichlet
series of the class P , which generalizes [2,Theorem 1].

Theorem 4.1 Let
∑∞

j=0
α j

( j+1)s , α0 = 1, be a Dirichlet series of the class P having positive
coefficients and aPn(s), ρn the lower bound and the Henry lower bound of each partial sum
Pn(s) = 1 + ∑n−1

j=1
α j

( j+1)s , n > 2. Then the sequence (aPn(s)/n)n>2 has limit (finite or
infinite) and it satisfies

lim
n→∞(aPn(s)/n) = lim

n→∞(ρn/n). (4.1)
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Proof Given the nth partial sum

Pn(s) := 1 +
n−1∑

j=1

α j e
−s log( j+1),

by defining γ j := α j−1, 1 ≤ j ≤ n, with α0 := 1, we can write it of the form

Pn(s) =
n∑

j=1

γ j j
−s . (4.2)

Associate with Pn(s), for each 1 < k < n, we define the Dirichlet polynomial

Pn,k(s) := γnn
−s −

∑

n−k≤ j<n

γ j j
−s +

∑

1≤ j<n−k

γ j j
−s . (4.3)

Firstly we claim that for every n > 2 there exists some k with 1 < k < n such that Pn,k(s) has
at least a real zero. Indeed, to prove this it is enough to take k = n−1 because for s = σ ∈ R,
the real function Pn,n−1(σ ) = γnn−σ − ∑

1≤ j<n γ j j−σ satisfies limσ→−∞ Pn,n−1(σ ) =
+∞ and limσ→+∞ Pn,n−1(σ ) = −1. Therefore, by using Bolzano’s theorem [21], Pn,k(s)
has at least a real zero. So for a k like that, noticing in Pn,k(s) there are at most two changes
of sign, Pn,k(s) can have at most two real zeros by Polya criterion [17,p. 46] and then we
define

ρn,k := min
{
σ ∈ R : Pn,k(σ ) = 0

}
. (4.4)

Now we claim that

lim
n>k→∞ ρn,k/n = lim

n→∞(ρn/n). (4.5)

To prove this, firstly observe that for k = n − 1, ρn,n−1 = ρn , i.e., ρn,n−1 is the Henry
lower bound of Pn(s) (see (1.5)). Therefore for k = n − 1 the claim is true. Let k be an
integer with 1 < k < n such that Pn,k(s) has at least a real zero. If n > k′ ≥ k it is obvious
that Pn,k(σ ) ≥ Pn,k′(σ ) for all σ ∈ R. Therefore Pn,k′(s) has at least a real zero and then
ρn,k ≥ ρn,k′ . Hence ρn,k , as a function of k, is decreasing. Therefore taking k′ = n − 1 we
have ρn,k ≥ ρn,n−1 = ρn for those k with 1 < k < n such that Pn,k(s) has at least a real
zero. Then, noticing the existence of limn→∞(ρn/n) by virtue of Theorem 3.1, it follows that
limn>k→∞ ρn,k/n exists and one has limn>k→∞ ρn,k/n = limn→∞(ρn/n). Consequently
the claim (4.5) follows.

The next claim is the following: given 1 < k < n such that Pn,k(s) has at least a real zero,
there exists n0 = n0(k) such that

aPn(s) ≤ ρn,k for all n ≥ n0. (4.6)

Indeed, by
[
2, Proposition 2

]
, given k ≥ 1 there exists n0 = n0(k) such that, for all n ≥ n0,

there is a completelymultiplicative function [1,p. 138], sayΩ , valued on {±1} and satisfying:
(i)

Ω(n) = 1, Ω(n − 1) = Ω(n − 2) = . . . = Ω(n − k) = −1 (4.7)

or
(ii)

Ω(n) = −1, Ω(n − 1) = Ω(n − 2) = . . . = Ω(n − k) = 1. (4.8)
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Consequently the Dirichlet polynomial

Pn,Ω(s) :=
n∑

j=1

Ω( j)γ j j
−s (4.9)

is Bohr equivalent to Pn(s) (see [1,Theorem 8.12]). Now, noticing (4.7), (4.8), it is immediate
that, in the case (i), one has

Pn,Ω(σ ) ≤ Pn,k(σ ) for all σ ∈ R. (4.10)

Likewise, in the case (ii), one has

− Pn,Ω(σ ) ≤ Pn,k(σ ) for all σ ∈ R. (4.11)

Furthermore, in the case (i),

lim
σ→−∞ Pn,Ω(σ ) = lim

σ→−∞ Pn,k(σ ) = +∞ (4.12)

and also in the case (ii),

lim
σ→−∞ −Pn,Ω(σ ) = lim

σ→−∞ Pn,k(σ ) = +∞. (4.13)

Therefore, noticing Pn,k(σ ) has at least a real zero, from (4.10), (4.11), (4.12) and (4.13),
in both cases (i) and (ii), there is a real zero of Pn,Ω(σ ), say σ0, such that σ0 ≤ ρn,k . Then,
by applying Bohr equivalence Theorem in the open strip Sa,b := {s = σ + i t : a < σ < b},
with a < σ0 < b (see [1,Theorem 8.16] and [2, Proposition 1]), there exists at least a zero,
say s0, of Pn(s) in Sa,b. Since a, b with a < σ0 < b are arbitrary, we have �s0 ≤ σ0 and
then, from (1.4), we get aPn(s) ≤ �s0 ≤ σ0 ≤ ρn,k . Consequently the claim (4.6) follows.
Finally, as we saw, ρn,n−1 = ρn and, by (2.4), we have ρn ≤ aPn(s). Therefore for k = n−1,
ρn ,k ≤ aPn(s) for all n. The latter, along with (4.6), and taking into account the existence
of limn>k→∞ ρn,k/n, implies the existence of limn→∞(aPn(s)/n) and the equality of both
limits. Therefore, noticing (4.5), the formula (4.1) follows and then the proof is completed.

	

The second main result of the paper is the following.

Theorem 4.2 Let
∑∞

j=0
α j

( j+1)s , α0 = 1, be a Dirichlet series of the class P having positive

coefficients and aPn(s) the lower bound of each partial sum Pn(s) = 1+∑n−1
j=1

α j
( j+1)s , n > 2.

Then the sequence (aPn(s)/n)n>2 has limit (finite or infinite) and it satisfies

− ln(1 + λ) ≤ lim
n→∞(aPn(s)/n) ≤ − ln(1 + μ),

where λ := lim sup λn, μ := lim inf μn being

λn := max

{
1

|αn−1| ,
∣
∣
∣
∣

α j

αn−1

∣
∣
∣
∣ : 1 ≤ j ≤ n − 2

}

,

μn := min

{
1

|αn−1| ,
∣
∣
∣
∣

α j

αn−1

∣
∣
∣
∣ : 1 ≤ j ≤ n − 2

}

,

for each n > 2.

Proof It is enough to apply first Theorem 4.1 then Theorem 3.1 and the proof is completed.
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