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Abstract: Space-based cropland phenology monitoring substantially assists agricultural managing
practices and plays an important role in crop yield predictions. Multitemporal satellite observations
allow analyzing vegetation seasonal dynamics over large areas by using vegetation indices or by
deriving biophysical variables. The Nile Delta represents about half of all agricultural lands of Egypt.
In this region, intensifying farming systems are predominant and multi-cropping rotations schemes
are increasing, requiring a high temporal and spatial resolution monitoring for capturing successive
crop growth cycles. This study presents a workflow for cropland phenology characterization and
mapping based on time series of green Leaf Area Index (LAI) generated from NASA’s Harmonized
Landsat 8 (L8) and Sentinel-2 (S2) surface reflectance dataset from 2016 to 2019. LAI time series were
processed for each satellite dataset, which were used separately and combined to identify seasonal
dynamics for a selection of crop types (wheat, clover, maize and rice). For the combination of L8 with
S2 LAI products, we proposed two time series smoothing and fitting methods: (1) the Savitzky–Golay
(SG) filter and (2) the Gaussian Processes Regression (GPR) fitting function. Single-sensor and L8-S2
combined LAI time series were used for the calculation of key crop Land Surface Phenology (LSP)
metrics (start of season, end of season, length of season), whereby the detection of cropland growing
seasons was based on two established threshold methods, i.e., a seasonal or a relative amplitude
value. Overall, the developed phenology extraction scheme enabled identifying up to two successive
crop cycles within a year, with a superior performance observed for the seasonal than for the relative
threshold method, in terms of consistency and cropland season detection capability. Differences
between the time series collections were analyzed by comparing the phenology metrics per crop
type and year. Results suggest that L8-S2 combined LAI data streams with GPR led to a more
precise detection of the start and end of growing seasons for most crop types, reaching an overall
detection of 74% over the total planted crops versus 69% with S2 and 63% with L8 alone. Finally, the
phenology mapping allowed us to evaluate the spatial and temporal evolution of the croplands over
the agroecosystem in the Nile Delta.

Keywords: green leaf area index; Sentinel-2; Landsat 8; land surface phenology; Gaussian Process
Regression (GPR); time series analysis

1. Introduction

Satellite Earth observation data are increasingly used for analyzing dynamic land
surface processes at different spatial and temporal scales [1–3]. Their processing into easy
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interpretable products become a valuable tool in relevant contexts, such as food secu-
rity, assisting agricultural practices or studying the vegetation response to environmental
changes [4–6]. Current agriculture challenges are related to the growing global popula-
tion aiming to yield increase and sustainable intensification of cropland production [7–9],
which requires regular crop growth monitoring in agroecosystems. Based on satellite data,
changes in vegetation dynamics and crop growth evolution can be studied through the
estimation of Land Surface Phenology (LSP) metrics from vegetation indices or biophysical
variables time series [10]. Among the LSP metrics relevant for croplands, the most impor-
tant ones are start-of-season (SOS) and end-of-season (EOS), marking the green-up and
senescing of the crop growth cycle [11]. LSP products have been traditionally developed
from coarse to moderate spatial resolution satellites, such as Moderate Resolution Imaging
Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR) and
Visible Infrared Imaging Radiometer Suite (VIIRS) [12–17]. Thanks to the frequent image
acquisitions of these missions, derived LSP products allowed regional to global long-term
phenology detection of vegetation across diverse land cover types, but with low spatial de-
tail and with the occurrence of mixed pixels over heterogeneous landscapes. For cropland
growth cycle monitoring, however, both fine spatial and temporal resolutions are required
to enable characterizing individual crop fields at their different phenological stages [18,19].
Available imagery from Landsat 8 (L8) at 30 m, with a single orbit and a 16-day repeat cycle,
favoured time series and data fusion studies for identifying phenology patterns at the field
scale [20–24]. On the other hand, ESA’s Sentinel-2 (S2) constellation (S2A/S2B) provides
imagery at an even shorter revisit frequency, up to 5 days, and with similar spatial and
spectral characteristics as L8. The combination of both satellites, therefore, provides optimal
systematic land imaging coverage adequate for timely cropland mapping applications [25].
NASA’s initiative to create the Harmonized Landsat and Sentinel-2 (HLS) dataset brings
forth freely available time series of spectral and radiometric consistent surface reflectance
imagery with a uniform gridding from both satellites [26]. The HLS dataset has already
been used in vegetation monitoring studies, showing a good performance and sufficient
capability to capture seasonal dynamics of vegetation phenology, with high agreement
compared to coarse-resolution satellites estimations, but at a finer spatial resolution of
30 m [21,27]. The HLS dataset was also positively evaluated in its feasible shorter revisit
time to monitor grasslands [28], and proved to be able to achieve high overall accuracies
of cropland mapping over different regions across the world [29]. Hence, the HLS dataset
emerged as a potentially ideal data source for cropland phenology monitoring.

When it comes to LSP metrics estimation, widely used products derived from satellite
data streams include spectral bands combination of vegetation indices (VIs) and biophys-
ical variables obtained from either physical or empirical retrieval models [10]. Similarly
to the broadly used VIs, i.e., normalized difference vegetation index (NDVI), enhanced
vegetation index (EVI) and two-band EVI (EVI2) [11], which used alone can present a
limited sensitivity to changes of vegetation photosynthesis dynamics [30] and high biomass
growth stages [31,32], biophysical variables such as Leaf Area Index (LAI) can reflect the
seasonal evolution of photosynthetic active vegetation in addition to serve as indicator of
canopy structure condition [33]. Moreover, while established VIs represent an arithmetic
formulation based on a few bands to maximize the spectral response to vegetative compo-
nents, an LAI multiband retrieval model can exploit the full spectral information available
from the satellite [34–36]. LAI is an essential input for land surface and atmospheric energy
exchange modeling [37] and has been used for global scale phenology monitoring as well
as to map cropping systems [38,39]. Despite the lower proportion of LAI-based phenology
studies published, it was previously shown as a biophysical variable capable to improve
the detection performance over croplands with respect to the EVI [40].

The timing of cropland phenology seasonality and growing seasons length are typically
estimated as LSP metrics corresponding to key dates of the crop growth cycle by time series
processing and fitting functions approaches [41–43]. As pre-processing for later extraction
of LSP metrics, data smoothing methods are usually applied in order to reduce time series
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disturbances and possible artifacts [44,45]. Established methods include double logistic and
asymmetric Gaussian functions and the moving Savitzky–Golay filter for noise mitigation
of remote sensing time series [10]. More recently, machine learning fitting techniques
emerged as attractive alternatives for bringing the possibility of further perform time series
gap-filling with promising results [46]. In particular, the Gaussian Processes Regression
(GPR) algorithm proved to be a competitive gap-filling technique, being able to additionally
provide an approximation of the estimates uncertainty [47,48].

Compared to other vegetation canopies, time series analysis over croplands can be
particularly challenging due to highly dynamic seasonal growth cycles, management
practices and the complex spatial patterns in areas with high cropping frequency, with
more than a single growing season per year [49]. LSP metrics calculation allow to map the
cropland extent and characterize seasonality of different crop types. The simplest way to
estimate cropping frequency is by counting the number of growing seasons as the number
of peaks corresponding to a complete growth cycle in the time series [12,50]; while a single
cropping time series presents one growth cycle per year, the identification of two to three
crop cycles within a single year is more difficult. Moreover, multi-cropping patterns can
span over consecutive years with different crop types rotations [22,51]. Standard phenology
detection methods essentially extract transition dates representative of crop growth stages
from the time series curve, either based on identifying curvature changes or defining a
magnitude thresholds [44,46]. Particularly, threshold-based methods are generally adapted
by the user accounting for the variability of cropland seasonal dynamics of the study site by
setting temporal constraints and maximum magnitude thresholds to dismiss noisy peaks
or minimize the non-vegetated spectral influence [10].

Altogether, the aim of this study is to demonstrate the added value of using har-
monized S2 and L8 data streams, i.e., HLS dataset, with respect to single-sensor based
approaches for characterizing the phenology of multi-cropping systems. To this end, we
present a workflow using green LAI time series derived from the HLS data stream. The
following objectives were defined: (1) to adapt an S2 GPR retrieval model to L8 imagery in
order to obtain consistent estimations from both sensors data; (2) to derive, respectively,
distinct green LAI time series and subsequently combine them; (3) to extract phenology
indicators of different crop types and assess the consistency of the crop seasonal dynam-
ics retrieved from different time series datasets during the same time period; and (4) to
generate final crop phenology descriptor maps. The remainder of this paper is structured
as follows. Section 2 describes the generation process of green LAI time series used for
LSP metrics estimation. Section 3 presents the results of crop phenology characterization
and mapping, while major findings and limitations of this work are discussed in Section 4.
Finally, conclusions and future research lines are provided in Section 5.

2. Materials and Methods

With the ambition to characterize multi-season cropland phenology with HLS data [26],
we propose the workflow sketched in Figure 1. First, HLS tile time series were separately
processed for green LAI estimation applying a retrieval model originally developed for
S2 [52], and here adapted to the spectral configuration of L8. As such, we obtained two
single-sensor green LAI time series, which were separately processed with a Savitzky–
Golay (SG) [53] smoothing filter based on a local average moving window. Second, both
single-sensor LAI data streams were combined using two time series processing methods:
(1) SG and (2) Gaussian Process Regression (GPR) [54], a machine learning fitting technique
able to perform temporal gap-filling interpolation [48]. Next, the four green LAI data
collections generated were analyzed on their ability to identify multi-season growth cycles
by extracting a set of key LSP metrics (start of season, end of season, length of season)
per crop type at parcel level. To do so, two different threshold strategies were applied
defining either a seasonal or a relative amplitude value [46,55]. The performances of both
methods were assessed by quantifying the number of growth seasons detected per crop
type during the period of time studied, and then compared against crop calendar data.
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Finally, the phenology extraction process was applied to the combined GPR LAI time
series for mapping the annual evolution of cropland phenology and cropping frequency
over the study site. The complete data processing chain and analysis are detailed in the
following sections.

Figure 1. Workflow of the proposed methodology for cropland phenology extraction from HLS.

2.1. Study Area

The Nile Delta accounts for nearly half of all agricultural lands of Egypt. This region
is characterized by an arid climate, with relatively moderate temperatures and low pre-
cipitation occurring mostly during winter. Annual rainfall ranges from 100 to 150 mm
and annual mean temperature is around 21.5 ◦C. A variety of crop types are cultivated by
irrigation with water supply coming from the Nile. Major summer crops are rice and maize.
Winter wheat is the third most important cash crop in terms of production area, while the
Egyptian clover is a major winter forage crop. These crops are alternatively cultivated,
allowing to identify multiple crop cycles within a single year. Extended perennials annual
crops include grape and citrus species. The absence of remarkable variations in climate
conditions allow to establish a reference crop calendar, with regular plant and harvest
dates (Table 1). It should be noted that these are the dates usually employed for crop
management over all years, and here provide a reference framework to enable evaluation
of the identified crop phenology evolution.

Information on crop type planting was collected from 2016 to 2019 within the study
site (Figure 2), which is an agricultural area covering approximately 326 ha in the region of
Tanta, within El Gharbia Governorate. From 162 parcels available in total, 55 are under crop
rotation schemes with more than 1 crop type per year, planted and harvested twice annually.
The remaining 107 parcels correspond to single-cropping systems with the same annual
crop type. We focus on major cash crops, namely, rice, maize, wheat and clover, excluding
fruit and tree crops. Parcels’ delimitation into a geospatial vector file for carrying out the
later processing per parcel crop type was provided by the University of Tanta (Egypt).

Figure 2. Location and climatology of the study site over the region of Tanta (Egypt).



Remote Sens. 2022, 14, 1812 5 of 23

Table 1. Established crop calendar over the study site (Tanta, El Gharbia governorate, Egypt).

Crop Planting Date Harvest Date

rice 15 May 10 October
maize 1 May 10 August
wheat 10 November 1 May
clover 1 October 1 May

2.2. Harmonized Landsat and Sentinel-2 (HLS)

NASA’s Harmonized Landsat and Sentinel-2 (HLS) surface reflectance imagery data
streams were used to conduct this study. The HLS dataset is routinely produced, over a lim-
ited number of regions across the world, from observations of the Operational Land Imager
(OLI) aboard Landsat 8 (L8) and the Multi-spectral Instrument (MSI) aboard Sentinel-
2A/B (S2), providing seamless products from both sensors, based on applying a common
atmospheric correction algorithm [56] and performing radiometric and geometric adjust-
ments [26]. HLS provides separately BRDF-normalized surface reflectance, respectively,
derived from MSI and OLI, using a fixed solar angle and a common nadir view. For the
bands common to both sensors, the MSI spectral bands are adjusted to OLI’s spectral
bandpasses, which are used as reference. The HLS projection and gridding correspond
to the tilling system used by Sentinel-2, which is UTM/WGS84 projection [26]. We used
the current version of the HLS dataset (v1.4) corresponding to tile 36RUV (T36RUV) at
30 m resolution, from the beginning of 2016 to the end of 2020. Only images with less
than 50% of cloud coverage were selected to further processing. This led to a collection of
221 S2 images and 173 L8 images.

2.3. Green LAI Retrieval

The HLS L8 and S2 datasets were separately processed into independent data streams
of green LAI based on an earlier S2 green LAI model that was developed within the
framework of the H2020 project SENSAGRI (Sentinels Synergy for Agriculture (http:
//sensagri.eu/, accessed on 24 January 2022) [52]. Gaussian Processes Regression (GPR)
was chosen as retrieval modeling technique as a competitive machine learning regression
algorithm in vegetation properties mapping applications in terms of prediction accu-
racy [36,57], and noteworthy for providing uncertainty estimates of the predictions [58],
as well as insight on the bands relevance in the trained model [59]. In brief, a GPR model
was trained from data pairs of green LAI ground-based measurements and their corre-
sponding S2 reflectance spectra, which was either synthesized from hyperspectral data or
extracted from simultaneous S2 imagery, covering the S2 spectral bands of 10 and 20 m
spatial resolution, i.e., 10 bands in total [60]. The training dataset comprises a variety of
crop types over diverse agricultural sites across Europe. Additionally, training samples of
forested and non-vegetation areas were added to improve the performance of the retrieval
model and to make the model widely applicable. A total of 218 data samples were used to
train the green LAI retrieval model, which was validated based on an independent dataset
(R2 = 0.7, RMSE = 0.67 m2/m2). Detailed information about data sampling and validation
procedures can be found in [52]. Given the spectral configuration compatibility between
S2 and L8 (Table 2), a new model adapted to L8 was developed. The spectral data of the
described training dataset were resampled according to the band settings of L8; 6 bands
ranging from the visible to the shortwave infrared (SWIR). Subsequently, these data were
used to train a new GPR model. A general introduction into GPR can be found in [61], and
a summary of the generic formulation is given in the next section.

http://sensagri.eu/
http://sensagri.eu/
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Table 2. S2 and L8 spectral bands.

Visible & NIR SWIR

S2 band 2 3 4 5 6 7 8 8A 11 12
Wavelength (nm) 490 560 665 705 740 783 842 865 1610 2190
Spatial resolution (m) 10 10 10 20 20 20 10 20 20 20

L8 band 2 3 4 - - - - 5 6 7
Wavelength (nm) 480 560 655 – - – – 865 1610 2200
Spatial resolution (m) 30 30 30 - - - - 30 30 30

2.4. Gaussian Processes Regression

In general, the GPR technique models the relation between input samples x ∈ RD

and output observations y ∈ R as y = f (x) + ε, where ε is an additive Gaussian noise
with zero mean and variance σ2

n , and f (x) is a Gaussian-distributed random vector with
zero-mean and covariance matrix K(x, x), i.e., f (x) ∼ N (0, K). The role of the Covariance
matrix is to encode the similarity between each combination of the input samples xi and
xj using a kernel function k(xi, xj). The covariance design is of paramount relevance, as it
must take into account the main properties of the variable to be modeled. Concerning the
retrieval of vegetation properties such as LAI from Earth observation data, the asymmetric
Square Exponential (SE) kernel is usually preferred due to its capability to (1) successfully
approximate smoothly varying functions and (2) take into account asymmetries in the
feature space [54].

The asymmetric SE defines the covariance kernel function as:

k(xi, xj) = σ2
s exp

(
− 1

2

D

∑
b=1

[xi(b)− xj(b)
σb

]2)
, (1)

where σ2
s > 0 represents the output variance and σb is related to the spread of the training

information along the input dimension b in a way that the inverse of σb describes the
relevance of band b in the prediction process: the higher σb the lower informative content
of b. The covariance matrix is completely defined once the kernel’s free parameters and the
noise variance σ2

n are set. These terms, usually referred to as GPR model’s hyperparameters,
can be collectively denoted as θ = {σ2

s , σ2, σ2
n}, where σ = [σ1, . . . , σD].

The Bayesian framework of GPR allows estimating the distribution of f at any test
point x∗ conditioned on the information carried by the training data. According to its
formulation, f (x∗) is normally distributed with mean and variance given by:

f (x∗) = kT
∗ (K + σ2

n IN)
−1y

σ2
f (x∗) = c∗ − kT

∗ (K + σ2
n IN)

−1k∗
(2)

where N is the number of training samples, k∗ = [k(x∗, x1), . . . , k(x∗, xN)]
T is an N × 1

vector containing the similarity between x∗ and the training input information, y =
[y1, . . . , yN ]

T is the training output and c∗ = k(x∗, x∗) + σ2
n .

The probability of the observations given the model’s hyperparameters p(y|x, θ) is
provided by the marginal likelihood over the function values f [61], whose logarithmic
expression is:

log p(y|x, f ) = −1
2

yT
(

K + σ2
n IN

)−1
y− 1

2
log |K + σ2

n IN | −
n
2

log 2π (3)

Equation (3) is made up of three terms: the first one is essentially a data-fit term, the
second one represents a complexity penalty and the last one is just a normalizing constant.
The maximization of the marginal likelihood, i.e., the minimization of Equation (3), provides
directly the optimum value of θ. This optimization procedure is usually referred to as
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training the GPR [61,62]. Once θ values have been estimated, the prediction of y for a new
input vector x∗ is given along with its uncertainty by Equation (2).

Finally, the formulation for the time series domain is straightforward. By imposing the
dimension of input data be unitary, i.e., D = 1, and substituting x for t, the hyperparameters
of the GPR model to be employed to gapfill the collection of a generic surface property PS
such as LAI become θt = {σ2

st, σt
2, σ2

nt}, and the corresponding SE kernel for covariance
estimation is given by:

kt(ti, tj) = σ2
st exp

(
− 1

2

[ ti − tj

σt

]2)
, (4)

where ti and tj denotes two generic acquisition dates. The estimation of LAI at any dates is
still given by Equation (2), with the new covariance matrix Kt being now calculated using
the optimized θt among the elements of the input time series.

2.5. Smoothing and Gap-Filling

Smoothing filters allow to mitigate the noise effect to produce enhanced time series for
later feature extraction [10,44]. In particular, the Savitzky–Golay (SG) filter minimizes the
least-squares error in fitting a polynomial function to noisy data within a moving window
centered at a point [53]. In this study, the smoothing window size (span) was set to 7 and
the polynomial function to a quadratic. The resulting smoothed value (gi) is obtained from
a linear combination according to the following expression:

gi =
∑nR

n=−nL cn fi+n

n
(5)

where fi represents the original data point value, n is the width of the moving window
and nL and nR are the left and right edges of the defined window frame. Then, each data
value is replaced by a locally weighted average of nearby data points, and thus, the greater
the value of the span is, the smoother is the fitted curve. SG is considered essentially a
low-pass filtering method, which tends to preserve high frequency signal components, and
responds less effectively in case of high noise levels [53], although it is commonly applied
for data smoothing in crop phenology monitoring studies [39,63–65].

Optical remote sensing data streams are affected by cloud cover and unfavorable
atmospheric conditions, reducing the data temporal continuity [66,67]. Compared to
smoothing filters, gap-filling techniques (i.e., fitting functions) allow to reconstruct complete
time series with missing data. Given the good precedent of the GPR algorithm as fitting
function in reconstructing optically derived LAI time series due to cloud-cover [47,48], the
GPR formulation was here adapted as fitting function for gap-filling purposes.

2.6. Generation of Green LAI Time Series Collections

Both S2 and L8 GPR LAI models were implemented in an HLS image processing
chain for generating LAI time series, which were analyzed for different configurations: S30,
L30 and S30+L30. The former two were derived from HLS S2 and L8 surface reflectance
dataset, denoted as S30 and L30, respectively. For the latter, previous to the cropland
phenology detection, the single-sensor LAI time series derived from each sensor were
merged in a single time series by adding up both time series and applying independently
and pixel-wise: (1) the local moving Savitzky–Golay smoothing filter and (2) GPR fitting
for interpolation and gap-filling processing. These methods were run over all image
acquisition dates, leading to continuous time series data streams, hereafter termed as
SL30SG and SL30GPR, respectively.

2.7. Crop Phenology Estimation

LAI time series smoothing and reconstruction are previous steps to facilitate calcu-
lation of phenology metrics [45,68]. The phenology extraction process was conducted
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for each green LAI time series configuration, over the five years of available time series,
focusing on multi-crop parcels, whose major crop types are maize, rice, wheat and clover.
Each of the LAI time series collections (S30, L30, SL30SG, SL30GPR) were first spatially
averaged per parcel and subsequently analyzed to characterize their seasonal dynamics
over time by calculating the following key LSP metrics corresponding to crucial stages of
crops growth cycle [44]: (1) start-of-season (SOS) or green-up, (2) end-of-season (EOS) or
dormancy, (3) length-of-season (LOS)—as the time span in days between SOS and EOS and
(4) the seasonal integral area under the curve between SOS and EOS (Area).

The procedure for identifying the number of seasons from a time series is according
to previous conventional approaches [69,70]. It makes use of consecutive local minimum,
maximum and minimum of the curve to extract a single growing season, when the time
series surpasses predefined thresholds. These specific constraints (i.e., thresholds) allow
to reduce contributions from undesired artifacts at low frequencies. Consequently, the
phenological cycles were evaluated using two criteria [46]: (1) peak prominence and
(2) minimum separation thresholds. The former one corresponds to the minimum vertical
distance from the season maximum to any side of the peak either reaching a local minimum
or an endpoint, i.e., it measures how much the peak stands out due to its intrinsic height and
its location relative to other peaks. The latter criteria determines the minimum separation
in time between two consecutive potential peaks, so that only the largest maximum within
the predefined threshold is selected. Here, the minimum prominence applied ranged from
10% to 30% the difference between the absolute maximum and minimum of a given parcel
time series. The minimum separation was set to 90 days. Peaks not meeting the described
criteria were discarded.

Regarding the determination of start and end of cropland growth cycles across time,
two established strategies were evaluated on their seasonality detection capability, i.e.,
based on a seasonal or a relative amplitude threshold [44,46,71]:

• Seasonal. Each individual growing season extracted is analyzed to identify key phe-
nological dates (SOS and EOS), when the upward and downward part of the LAI
curve defining the growing season reaches a certain percentage fraction of the seasonal
amplitude (difference between the maximum and the average of the two local minima
per season), respectively.

• Relative. A fixed relative amplitude value is calculated as the difference between the
mean maximum and mean minimum of the whole time series and set for all seasons
detected, so that the start and end of season occur when the LAI curve reaches a
certain percentage fraction of this relative amplitude.

After testing and comparing a range of threshold values on their seasonality detection
capability, we defined an optimum threshold of 30% for both methods. Regardless of the
seasonality detection approach applied, LOS is calculated as the difference between EOS
and SOS. Finally, each season area refers to the integral encompassed between the LAI
curve describing a season and the curve minima corresponding to SOS and EOS.

2.8. Analysis Setup

First, for each crop parcel and LAI time series collection, the key LSP metrics were
extracted from valid growing seasons detected by independently applying the seasonal and
relative methods. Then, the corresponding crop type was assigned based on the SOS and
EOS dates retrieved throughout the studied years. LSP metrics were statistically analyzed
per crop type and year. The availability of a crop planting record for each parcel allowed to
assess the growing seasons detection accuracy for each crop type. Finally, spatio-temporal
crop seasonality patterns were evaluated over the four years by mapping phenology
descriptors over the study site. The smoothing, gap-filling and phenology extraction
steps were carried out based on the time series modeling processor imported from the
in-house developed scientific toolbox Decomposition and Analysis of Time Series software
(DATimeS, v1.12) [46]. DATimeS incorporates conventional interpolation techniques and
advanced machine learning fitting algorithms for time series analysis, as well as vegetation
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phenology modeling methods, with the advantage that unevenly spaced satellite time
series can be processed.

3. Results
3.1. Green LAI Time Series

The HLS green LAI time series are well able to capture seasonal dynamics from 2016
to the end of 2020 over croplands practicing different cropping systems. See Figure 3
for an illustration. In this example, multi-cropping rotation parcels are characterized by
more than one growth cycle per year, with generally two green-up and dormancy events,
while in single crop type parcels, the growing season is annually completed. Both cases
reflect a good agreement between the two single-sensor LAI estimations, which reveal
a relatively high density of cloud-free observations, without large time gaps of missing
data, throughout crops growing season. Reconstructed time series derived from the two
single-sensor LAI time series provide a more smoothed and temporally continuous LAI
profile. This effect is clearly visible over single cropping parcels, which initially present
nosier LAI estimations, indicating high spatial heterogeneity and temporal variability.

Figure 3. Comparison of S30 and L30 green LAI time series, respectively, derived from S2 and L8 HLS
acquisitions and the reconstructed combined LAI time series (SL30SG and SL30GPR) over a multiple
(top) and single (bottom) cropping parcel.

3.2. Crop Phenology Characterization and Evaluation

The temporal evolution of the targeted phenology metrics was computed for the four
LAI time series configurations and four crop types. Figure 4 shows the boxplot results
of day-of-year (DOY) of the crop phenology metrics along with the planting and harvest
dates from the reference crop calendar (Table 1). For later convenience and brevity, only the
results obtained from the seasonal method are shown.

Rice and maize SOS were usually detected about 30 days after the planting date.
Whereas rice EOS was estimated prior to the harvest date, maize EOS usually fell about
30 days after the harvest. For wheat, SOS was detected more closely to the planting
date, and occasionally even before, while EOS was mostly estimated before the harvest
date. Summer and winter crops can be clearly differentiated by the LOS values. For the
former, the mean value is approximately 90 days, while for the latter it oscillates around
190 days. More than for LOS, a more significant dispersion is shown for Area, suggesting a
higher variability in the estimation of this parameter. In general, all time series collections
provided similar estimations of the key phenological dates over the four years. Inter-annual
variations in phenology are reflected by all LAI time series collections, for instance, the
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sooner dormancy of rice and maize in 2018, matching the sooner green-up of wheat and
clover also reported in 2018.

Figure 4. Temporal evolution of LSP metrics distribution of major crops (rice, maize, wheat, clover)
parcels per year and time series. Horizontal dashed lines in SOS and EOS boxplots represent planting
and harvest dates, respectively.

Table 3 summarizes the global mean and standard deviation of SOS, EOS and LOS for
each time series and crop type, comparing the seasonal and relative threshold methods.
For the seasonal method, standard deviations for SOS range from 10 to 17 days for summer
crops and from 17 to 32 days for wheat and clover. Standard deviation values were analo-
gously registered for the EOS parameter, with a larger variability around the phenological
dates detected for winter crops. The range of variation of LOS was also comparable to
the previous metrics for summer crops, but not for winter crops, for which the standard
deviations were especially higher. Particularly for wheat, a maximum value of 40 days
(L30) was obtained.

Results obtained from the relative threshold method show for summer crops similar
SOS, EOS and LOS values as the ones from the seasonal method with differences between
1 and 4 days. In the case of winter crops, differences are between 1 and 7 days for SOS and
EOS and from 4 to 11 days for LOS. The relative method provided the higher LOS associated
standard deviation, up to 53 days (L30), for wheat. In general, for winter crops, the seasonal
method estimates green-ups later and dormancies sooner, consequently leading to shorter
crop seasons. Considering all crop types together, the seasonal method proved to be able to
reduce the overall average standard deviation of SOS and EOS calculated for each of the
time series collections. In particular, SL30GPR with the seasonal method detected growing
seasons across all crop types with a lower overall average standard deviation than the other
time series collections, i.e., 15 days for SOS, 16 days for EOS and 22 days for LOS.
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Table 3. Mean value and standard deviation (SD) in days of the key LSP metrics (SOS (DOY), EOS
(DOY) and LOS (days)) per crop type and time series collection, comparing the two phenology detec-
tion methods (sesonal and relative). An overall standard deviation average in days was calculated
from all crop types and each time series collection.

Time Series

Rice

SOS ± SD EOS ± SD LOS ± SD
Seasonal Relative Seasonal Relative Seasonal Relative

S30 171 ± 16 173 ± 17 265 ± 13 263 ± 14 94 ± 17 90 ± 21
L30 165 ± 10 161 ± 21 264 ± 13 263 ± 14 99 ± 14 102 ± 24
SL30SG 166 ± 12 166 ± 19 264 ± 15 265 ± 13 98 ± 17 98 ± 22
SL30GPR 166 ± 16 170 ± 19 260 ± 13 260 ± 15 94 ± 18 90 ± 24

Maize

SOS ± SD EOS ± SD LOS ± SD
Seasonal Relative Seasonal Relative Seasonal Relative

S30 169 ± 17 169 ± 15 259 ± 15 256 ± 19 90 ± 17 87 ± 18
L30 165 ± 12 165 ± 12 254 ± 14 252 ± 16 89 ± 14 87 ± 18
SL30SG 166 ± 13 167 ± 13 258 ± 15 255 ± 18 92 ± 15 89 ± 17
SL30GPR 167 ± 11 168 ± 11 254 ± 14 253 ± 16 87 ± 10 85 ± 15

Wheat

SOS ± SD EOS ± SD LOS ± SD
Seasonal Relative Seasonal Relative Seasonal Relative

S30 294 ± 23 290 ± 30 110 ± 24 116 ± 29 181 ± 34 192 ± 45
L30 294 ± 32 290 ± 39 108 ± 18 109 ± 27 179 ± 40 184 ± 53
SL30SG 298 ± 17 295 ± 19 113 ± 21 114 ± 23 180 ± 33 184 ± 36
SL30GPR 303 ± 17 296 ± 28 106 ± 22 107 ± 24 168 ± 32 177 ± 40

Clover

SOS ± SD EOS ± SD LOS ± SD
Seasonal Relative Seasonal Relative Seasonal Relative

S30 302 ± 19 298 ± 26 110 ± 17 113 ± 21 173 ± 24 180 ± 34
L30 307 ± 18 301 ± 24 112 ± 25 117 ± 26 170 ± 33 181 ± 37
SL30SG 303 ± 18 300 ± 16 113 ± 21 118 ± 19 176 ± 30 184 ± 28
SL30GPR 310 ± 17 305 ± 18 110 ± 16 114 ± 16 165 ± 27 174 ± 25

Total

SDSOS SDEOS SDLOS
Seasonal Relative Seasonal Relative Seasonal Relative

S30 19 22 17 21 23 29
L30 18 24 17 21 25 33
SL30SG 15 17 18 18 24 26
SL30GPR 15 19 16 18 22 26

The number of growing seasons detected for each crop type and time series configura-
tion is shown in Table 4. As an accuracy assessment, the detection capability was quantified
for each crop type by comparing the total number of seasons detected with respect to the
reference data of crop fields planted throughout the whole time period studied, expressed
as a percentage. From both single-sensor-derived LAI time series, a similar number of
phenology cycles were detected for rice and clover using the seasonal method, while for
maize and wheat, S30 was able to capture a higher number than L30. The relative method
led to a lower number of detected crop seasons for all time series collections and crop types,
thus achieving lower detection rates. Particularly with this method, L30 identified more
crop seasons over wheat and rice parcels than S30, while S30 identified more crop seasons
over maize and clover. Overall, both seasonal and relative detection methods applied to
multi-sensor combined time series captured the largest number of growing seasons for
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all crop types, achieving with GPR-gapfilled LAI time series the highest accuracy with a
correct identification of 74% and 66%, respectively. The second best performance of the two
methods were obtained with SG filtered time series, with an accuracy of 72% and 65% with
the seasonal and relative method, respectively. The seasonal method and GPR are hereafter
used for illustrating the subsequent phenology characterization analyzes and cropland
mapping carried out.

Table 4. Number (#) and accuracy detection (%) of crop seasons with respect of the number of crops
planted per time series collection and crop type from 2016 to 2019 over all available parcels. The
highest accuracy (%) per crop type and method columns is bolded.

Time Series

Rice Maize Wheat Clover Total

Seasonal Relative Seasonal Relative Seasonal Relative Seasonal Relative Seasonal Relative
# % # % # % # % # % # % # % # % # % # %

S30 36 60 33 55 124 71 105 60 60 67 52 58 73 72 66 65 293 69 256 60
L30 36 60 36 60 110 63 99 57 55 61 57 63 69 68 63 62 270 63 255 60
SL30SG 42 70 37 62 131 75 118 67 58 64 52 58 75 74 71 70 306 72 278 65
SL30GPR 42 70 39 65 131 75 115 66 63 70 56 62 79 77 70 69 315 74 280 66

Distinctions in crop seasonal patterns can be observed more precisely from the distri-
bution of phenology metrics over the major crop types parcels shown in the histograms in
Figure 5. This figure refers to the four years of SL30GPR time series, which were grouped
into 15 days bins for SOS, EOS and LOS, while differences of phenology timing between
winter and summer crops is apparent, differences in green-up and dormancy dates were
not as obvious within crops of the same season. Rice and maize SOS dates follow a close
distribution; while rice reaches dormancy later, although over the same time range of
distribution as maize. LOS number of days are slightly higher for rice than maize. Like-
wise, the Area values of both crops present a uniform overlap in the distribution, with
relatively higher values for rice than maize. As for winter crops, wheat shows an earlier
green-up and a slightly later dormancy than clover, which was already reported in Table 3.
Particularly, wheat green-up tends to take place before clover by 15 days ahead. Wheat
season length distribution is more irregular than clover, reaching higher values beyond
200 days. Differences in Area are not prominent between the two crop types.

Figure 5. Histogram of SOS, EOS, LOS and Area metrics calculated from SL30GPR 2016–2019 time
series over all available parcels of maize, rice, clover and wheat crop types. Data are grouped in
15-day bins.
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A comparison of the LOS against the Area metric is provided in Figure 6. Both
parameters show a strong linear correlation with a slope close to 1 (0.98), with higher data
pair dispersion for winter crops, with a few LOS outliers values lower than 100 days. In this
case, shorter crop seasons are due to an earlier retrieved EOS (Figure 5), while for summer
crops, very high LOS values are a consequence of an earlier SOS estimation (Figure 5).
All crop types considered, the Area parameter shows a relatively proportional increase
regarding the season length. Particularly for summer crops, a remarkable Area variability
occurs when approaching the maximum LOS value of 100 days when the highest Area
values are also estimated.

Figure 6. Comparison of Area and LOS for all crop types extracted from 2016 to 2019 SL30GPR

time series.

3.3. Cropping Frequency and Phenology Mapping

The complete HLS LAI time series dataset (S2 and L8) were processed with the GPR
interpolation technique with a 10-day regular spacing, as the temporal sampling used for
mapping phenology metrics using the seasonal method over the study site. Cropping
frequency was mapped as the number of crop growth cycles detected within the period of
time studied, allowing to clearly observe the spatial distribution of the two main cropping
patterns, for each year from 2016 to 2019 (Figure 7). Multi-cropping parcels being predom-
inant, single-cropping parcels are mainly located in the central region of the study site.
The extension covered by each cropping scheme varies locally over the years. Notably, a
substantial proportion of pixels located in the center of the study region were not mapped
in 2016, as no crop season were detected. Furthermore, when considering all years, the
least crop seasons were detected within the multi-cropping area in 2018. This was partly
due to the phenology detection method omission inferred from the time series, but mostly
because of a delay on cropland seasonality, resulting in a growing winter season computed
for the next year, in 2019.

Figure 7. Number of crop growth cycles yearly detected from GPR-gapfilled LAI time series.
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Cropland phenology temporal evolution of the study site is presented next by dis-
tinguishing between summer (Figure 8) and winter crop growing cycles (Figure 9) for
the multi-cropping pixels where two crop seasons are identified within a year. It should
be noted that while SOS of both summer and winter season crops takes place during
the same year, EOS dates corresponding to the latter ones are detected in the next year.
Single-cropping pixels with only one growing season identified within a given year are
mapped with the same value in the two figures. For better visualization, non-vegetated
pixels are masked out applying a maximum value threshold: those pixels whose maximum
LAI time series value does not exceed 1 are masked.

Figure 8. SOS, EOS, LOS and Area maps for the summer season from 2016 to 2019.

LSP metrics of summer season crops (Figure 8) were in general similarly retrieved
across the four years. A sooner dormancy occurred in 2018 in accordance with a shorter
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season length estimation, as well as a notable decrease for Area, shown in Figure 4. Regard-
ing the winter season, although the LSP metrics reveals a similar phenology spatial pattern
across the four years, especially in 2016 and 2017, differences can be observed because of an
early green-up detected in 2018, shown in Figure 4, consistent with the early dormancy of
summer season crops within the same year. Compared to Figure 8, the Area metric exhibits
a noisier pattern, though with a regular evolution in time, except in 2017 and 2018, where a
general increase and decrease with respect to other years is, respectively, observed.

Figure 9. SOS, EOS, LOS and Area maps for the winter season from 2016 to 2019. EOS maps
correspond to the following year to SOS.

In both Figures 8 and 9, some pixels were not mapped, since no crop growth cycle
was detected within that season year, corresponding to those pixels with a lower number
of seasons identified (Figure 7). This was particularly visible in the maps of 2016 and to a
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lesser extent of 2018. This is caused by intrinsic disturbances in the LAI time series and due
to the fact that, occasionally, the time series does not contain the complete growing cycle
(see Figure 3), which prevents the phenology method to compute a season.

4. Discussion

Having developed a workflow for LSP estimation and cropping patterns mapping
from HLS data, the following steps were accomplished: (1) obtaining comparable LAI
time series from HLS double-source data streams based on an S2 retrieval model; (2) con-
trasting the performance of two different threshold-based phenology detection methods;
(3) assessing the LSP metrics estimation; and (4) analyzing the time series smoothing
and gap-filling methods applied. These steps are further discussed below, followed by
encountered limitations and future opportunities of the workflow.

4.1. Adaptation of S2 LAI Model to HLS

The availability of harmonized moderate spatial resolution (30 m) satellite products
provides a high temporal resolution time series dataset advantageous for cropland mon-
itoring purposes. As opposed to single-source satellite data streams, integration of S2
and L8 increases the temporal frequency of observations, usually leading to improved
crop type classification and cropping intensity mapping [50,72]. Moreover, it was pre-
viously determined that data from both satellites can provide similar accuracies in LAI
retrieval [73]. Furthermore, the HLS two-sensor data collection has shown a superior
capability for LAI retrieval as opposed to single-sensor data streams separately in addition
to not underestimating high LAI values [74]. The HLS dataset has been previously used for
vegetation monitoring, revealing great improvements at detecting phenology at a finer scale
from vegetation indices time series, commonly NDVI and EVI2 [21,27,65]. HLS is capable
of capturing cropland phenology similarly to higher spatial resolution imagery such as
PlanetScope 3 m spatial resolution [75], and is adequate for spatially scaling phenology
field observations from GPR-based models [76]. Other multi-source based studies fused
HLS data with other satellite data (e.g., Sentinel-1, GOES-16 ABI, VIIRS), allowing high-
frequency, quality observations for an improved vegetation phenology estimation [77–79].
Here, four years of an HLS surface reflectance dataset was separately processed into a
green LAI time series; while the GPR model was originally trained for estimating LAI from
S2 data, the initial GPR model was successfully adapted to the spectral configuration of
L8, and showed a compatible and consistent LAI evolution between the different harmo-
nized satellites collections (S30 and L30). Therefore, despite the different original satellites
spatial resolution and spectral configuration, our results demonstrated the benefits of the
HLS data stream, likely thanks to a common radiometric adjustment and atmospheric
correction [26,80].

4.2. Comparison of Two Threshold-Based Phenology Detection Methods

The phenology metrics extraction procedure, based on pre-defined amplitude thresh-
old approaches as implemented in DATimeS, allowed to consistently capture cropland
seasonal evolution over four consecutive years. Although threshold methods represent
the simplest approach to extract phenology metrics from remote sensing time series [10],
these methods are easy to tune according to the study location [81] and represent the most
common method used to study vegetation dynamics [11]. This study compared two types
of thresholds-based approaches, i.e., relative and seasonal amplitude; while the relative
amplitude method makes use of a fixed amplitude threshold for the entire time series, the
seasonal amplitude method, defined in relative terms, implies an adaptive calculation of
phenology timing to individual growing seasons. This approach proved to be more flexible
in determining vegetation dynamics over the study area, where typically different crop
types are rotated in consecutive years following a periodic scheme. Therefore, each season’s
amplitude value varies over time and do not always meet the threshold defined in absolute
terms. The relative method has been widely applied for detecting green-up and dormancy
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events of single growing seasons within a year [16,20,41,82]. Yet, our findings suggest that
this threshold is not suitable to be applied for longer term cropland seasonality detection
over regions with different inter-annual crop species rotations. However, a quantitative
comparison analysis with other well-established phenology detection methods may be
necessary to further confirm these findings.

It must also be remarked that SOS and EOS dates, and consequently, the LOS and the
Area metrics, can vary depending on the used threshold value, i.e., lowering the threshold
generates earlier green-up dates and at the same time the estimation can be affected by
noise and small variations in the time series [20]. Usual applied thresholds range from 10%
to 50% [11], and may need to be adjusted for each crop type [16,20,71]. With the aim of
establishing a standard procedure capable of phenology characterization over single and
multi cropping parcels, we proposed a common threshold value of 30%, which allowed to
capture as many growing seasons as possible over both types of cropping schemes. Corre-
spondingly, other thresholds (prominence and minimum separation days) were defined
as the optimum values in view of the results obtained trying to maximize the number of
detected seasons. However, the presented workflow application to monitor larger regions
might need another thresholds settings to account for different agroecosystems. Thus, a
global parametrization of the threshold-based phenology detection methods should be
further investigated.

4.3. Evaluation of Crop Phenology Detection

In the absence of in situ crop growth stages data, fixed crop calendar data were used
as a reference to evaluate the detection of key phenological events in a general time frame
and to additionally assess the suitability of the defined detection threshold. SOS dates
were detected after planting and varied within 2–4 weeks, in accordance with previous
studies [16,20,43,65], while EOS dates were generally retrieved closer to the harvesting,
around 1–3 weeks ahead, except in the case of maize, for which dates were estimated later.
Consistency in determining crop phenology was further proven, with a reliable correlation
found between two key phenology metrics, such as LOS and Area. It opens opportunities
for modeling new agricultural applications in future research, considering, for instance,
that the Area parameter can be used to estimate crop yield [83,84]. Furthermore, phenology-
based estimation of cropping frequency permitted to monitor the distribution of cropping
patterns over the study site. When applied in an operational framework, the derived
yearly maps of cropland dynamics can, among others, help assessing if specific crop species
rotations affect soil quality [85,86] or the pressure over water resources [51]. Furthermore,
characterizing the spatial distribution of different phenological patterns can be useful
for distinguishing between vegetation types across heterogeneous landscapes [13,22] in
addition to evaluate the impact of climatic changing conditions [50].

4.4. High Temporal Resolution for Phenology Detection Improvement

Combined multi-sensor time series were generated using smoothing and gap-filling
techniques, obtaining a considerable noise reduction and data continuity, which eventually
benefited the automated phenology detection. Each of the analyzed data streams was
able to consistently monitor crop progress, with identified similar yearly patterns of crop
growth for the same crop type. These patterns varied from year to year, likely due to
weather conditions or changes in management practices. No substantial discrepancies in
the mean estimates of the LSP metrics were observed between the different LAI time series
configurations, mainly due to the initially available number of cloud-free observations
from S2 and L8 single-sensor collections over the study site. As such, it permitted to
automatically extract crop phenology seasons with a similar timing as the combined
reconstructed LAI time series. The results also revealed that combining time series can
reduce the dispersion around the estimation of the key crop phenology dates analyzed.
More significant is the improvement in the detection of the number of growing seasons,
providing S2 an overall accuracy of 69% in comparison to 63% obtained by L8. These results
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confirm the superior performance of S2 as compared to L8 as also demonstrated in previous
studies (see review [49]). The combined time series data flow led to the highest accuracies,
with GPR gap-filling being more effective than SG, i.e., 74% and 72%, respectively, in
addition to a reduction in the variability of the number of days associated with the key
phenological dates.

Given these promising results, the workflow should, however, be extended over other
regions where cloud contamination represents a more limiting factor for crop monitoring,
so that more substantial improvements derived from multi-sensor data combination can be
expected. Furthermore, expected in near future, the recent launch of Landsat 9 (L9) will
further contribute to reducing the time gap of data collection, since the combined L8 and
L9 revisit time will be each 8 days [87]. In anticipation of a higher frequency of satellite
acquisitions, preferences tend to move towards faster time series processing smoothing
methods with flexibility to preserve intra-seasonal variations (e.g., Savitzky–Golay [53] and
Whittaker [88,89]) [90].

4.5. Limitations and Future Opportunities

Cropland monitoring through phenology mapping requires a long-range time series
data stream to proper capture crop growing stages, by means of continuous and smooth
data. GPR represents an adequate technique for generating continuous time series that
can be widely applied without using any ancillary data but with an important inherent
disadvantage, i.e., the computational cost. In this respect, some efforts have been made
to overcome the computational inconvenience by optimizing the calculation of the GPR
hyperparameters per crop type, obtaining a considerable processing time reduction and
hardly affecting the fitting accuracy retrieving phenology parameters per pixel, although
it is necessary to have a land cover map at disposal [47]. Concerning this constraint, the
advent of cloud computing platforms such as Google Earth Engine (GEE) allow to process
satellite data for large-scale vegetation mapping with a high-performance computing
capacity [91]. With ambition to expand the applicability of this study, the here developed
workflow could be potentially implemented into GEE, where a similar GPR LAI retrieval
model was recently successfully imported for green LAI mapping from S2 over the Iberian
peninsula [48]. Furthermore, image fusion of different satellites (Landsat and MODIS) for
time series smoothing and gap-filling has already been investigated [23,92] and a framework
for cropland phenology monitoring in GEE using GPR has been recently devised [93]. These
works suggest that our proposed workflow can be almost directly integrated into GEE,
implying that the phenology detection can be realized anywhere in the world and for any
time window. However, some additional efforts will be required to enable integrating the
here presented flexible phenology detection method, i.e., with a seasonal-based amplitude
threshold. GEE-based phenology studies currently rely on a double logistic model, whereby
the SOS and EOS metrics are derived with a half-maximum criterion method, which is
unable to distinguish between two or more seasonal cycles [93,94].

5. Conclusions

A workflow was developed for cropland phenology estimation based on a green LAI
time series derived from NASA’s Harmonized Landsat 8 (L8) and Sentinel-2 (S2) surface
reflectance dataset. It was applied over an agricultural region in the Nile Delta from 2016
to 2020. Starting from a green LAI retrieval model previously trained with GPR for S2, an
adapted GPR model was trained for L8. Both models were implemented in an image-based
retrieval chain, obtaining two different LAI time series data streams, which were used sep-
arately and combined to extract LSP metrics for characterizing crop rotation of major cash
crops over the study area (maize, rice, wheat, clover). Two time series processing methods
were proposed to combine both single-sensor LAI data streams: the (1) the Savitzky–Golay
(SG) smoothing filter and (2) the GPR gap-filling fitting technique. Differences in detecting
cropland phenology seasonality were compared for the four resulting LAI data streams
(i.e., L8, S2 and combined SG and GPR). The evolution of cropland seasonal dynamics were
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observed by generating yearly phenology maps. Overall, the combined LAI time series
data by means of GPR, followed by SG, allowed to detect correctly a higher number of
within-year growing seasons per crop type within the same time period, as opposed to the
single-sensor LAI time series. Summarizing, this study demonstrated that distinct multi-
band green LAI retrieval models applied to HLS data can retrieve compatible estimations
that were successfully used to reconstruct enhanced time series. A dense temporal image
data stream, with a higher cloud-free observations availability provided by L8 with respect
to the individually use of S2, proved to be crucial for proper monitoring crop rotations of
dynamic and heterogeneous agricultural lands. Although our study focused on the Nile
Delta agroecosystem, the proposed workflow is neither site- nor crop-specific, and therefore,
can be easily applied over other regions where both S2 and L8 images are available.
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36. Verrelst, J.; Malenovskỳ, Z.; Van der Tol, C.; Camps-Valls, G.; Gastellu-Etchegorry, J.P.; Lewis, P.; North, P.; Moreno, J. Quantifying
vegetation biophysical variables from imaging spectroscopy data: A review on retrieval methods. Surv. Geophys. 2019, 40, 589–629.
[CrossRef]

http://dx.doi.org/10.1016/j.isprsjprs.2020.11.019
http://dx.doi.org/10.3390/rs10081203
http://dx.doi.org/10.1016/j.jag.2019.04.014
http://dx.doi.org/10.1016/S0034-4257(02)00128-1
http://dx.doi.org/10.1016/j.rse.2005.11.012
http://dx.doi.org/10.3390/rs10101540
http://dx.doi.org/10.1016/j.rse.2018.06.047
http://dx.doi.org/10.3390/drones4030041
http://dx.doi.org/10.1016/j.rse.2005.10.022
http://dx.doi.org/10.1016/j.rse.2016.11.004
http://dx.doi.org/10.1016/j.isprsjprs.2020.01.012
http://dx.doi.org/10.1016/j.still.2020.104838
http://dx.doi.org/10.1016/j.jag.2021.102323
http://dx.doi.org/10.3390/rs13245074
http://dx.doi.org/10.3390/rs12183062
http://dx.doi.org/10.1016/j.rse.2018.09.002
http://dx.doi.org/10.1016/j.rse.2020.111685
http://dx.doi.org/10.3390/rs11030328
http://dx.doi.org/10.1016/S2095-3119(19)62599-2
http://dx.doi.org/10.3390/rs9070695
http://dx.doi.org/10.1078/0176-1617-01176
http://dx.doi.org/10.1016/j.rse.2010.04.019
http://dx.doi.org/10.1016/j.agrformet.2018.11.033
http://dx.doi.org/10.1016/j.rse.2012.04.002
http://dx.doi.org/10.3390/s19040904
http://dx.doi.org/10.1007/s10712-018-9478-y


Remote Sens. 2022, 14, 1812 21 of 23

37. Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An overview of global leaf area index (LAI): Methods, products, validation,
and applications. Rev. Geophys. 2019, 57, 739–799. [CrossRef]

38. Verger, A.; Filella, I.; Baret, F.; Peñuelas, J. Vegetation baseline phenology from kilometric global LAI satellite products. Remote
Sens. Environ. 2016, 178, 1–14. [CrossRef]

39. Wang, C.; Zhang, Z.; Chen, Y.; Tao, F.; Zhang, J.; Zhang, W. Comparing different smoothing methods to detect double-cropping
rice phenology based on LAI products—A case study in the Hunan province of China. Int. J. Remote Sens. 2018, 39, 6405–6428.
[CrossRef]

40. Wang, C.; Li, J.; Liu, Q.; Zhong, B.; Wu, S.; Xia, C. Analysis of differences in phenology extracted from the enhanced vegetation
index and the leaf area index. Sensors 2017, 17, 1982. [CrossRef]

41. Diao, C. Remote sensing phenological monitoring framework to characterize corn and soybean physiological growing stages.
Remote Sens. Environ. 2020, 248, 111960. [CrossRef]

42. Li, X.; Zhou, Y.; Asrar, G.R.; Meng, L. Characterizing spatiotemporal dynamics in phenology of urban ecosystems based on
Landsat data. Sci. Total Environ. 2017, 605, 721–734. [CrossRef] [PubMed]

43. Sakamoto, T. Refined shape model fitting methods for detecting various types of phenological information on major US crops.
ISPRS J. Photogramm. Remote Sens. 2018, 138, 176–192. [CrossRef]

44. Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845.
[CrossRef]

45. Kandasamy, S.; Baret, F.; Verger, A.; Neveux, P.; Weiss, M. A comparison of methods for smoothing and gap filling time series of
remote sensing observations–application to MODIS LAI products. Biogeosciences 2013, 10, 4055–4071. [CrossRef]

46. Belda, S.; Pipia, L.; Morcillo-Pallarés, P.; Rivera-Caicedo, J.P.; Amin, E.; De Grave, C.; Verrelst, J. DATimeS: A machine learning
time series GUI toolbox for gap-filling and vegetation phenology trends detection. Environ. Model. Softw. 2020, 127, 104666.
[CrossRef]

47. Belda, S.; Pipia, L.; Morcillo-Pallarés, P.; Verrelst, J. Optimizing Gaussian Process Regression for Image Time Series Gap-Filling
and Crop Monitoring. Agronomy 2020, 10, 618. [CrossRef]

48. Pipia, L.; Amin, E.; Belda, S.; Salinero-Delgado, M.; Verrelst, J. Green LAI Mapping and Cloud Gap-Filling Using Gaussian
Process Regression in Google Earth Engine. Remote Sens. 2021, 13, 403. [CrossRef]

49. Misra, G.; Cawkwell, F.; Wingler, A. Status of phenological research using Sentinel-2 data: A review. Remote Sens. 2020, 12, 2760.
[CrossRef]

50. Liu, L.; Xiao, X.; Qin, Y.; Wang, J.; Xu, X.; Hu, Y.; Qiao, Z. Mapping cropping intensity in China using time series Landsat and
Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2020, 239, 111624. [CrossRef]

51. Biradar, C.M.; Xiao, X. Quantifying the area and spatial distribution of double-and triple-cropping croplands in India with
multi-temporal MODIS imagery in 2005. Int. J. Remote Sens. 2011, 32, 367–386. [CrossRef]

52. Amin, E.; Verrelst, J.; Rivera-Caicedo, J.P.; Pipia, L.; Ruiz-Verdú, A.; Moreno, J. Prototyping Sentinel-2 green LAI and brown LAI
products for cropland monitoring. Remote Sens. Environ. 2021, 255, 112168. [CrossRef]

53. Press, W.H.; Teukolsky, S.A. Savitzky-Golay smoothing filters. Comput. Phys. 1990, 4, 669–672. [CrossRef]
54. Camps-Valls, G.; Verrelst, J.; Munoz-Mari, J.; Laparra, V.; Mateo-Jimenez, F.; Gomez-Dans, J. A survey on Gaussian processes for

earth-observation data analysis: A comprehensive investigation. IEEE Geosci. Remote Sens. Mag. 2016, 4, 58–78. [CrossRef]
55. Eklundh, L.; Jönsson, P. TIMESAT 3.3 with Seasonal Trend Decomposition and Parallel Processing Software Manual. 2017.

Available online: https://web.nateko.lu.se/timesat/timesat.asp?cat=6 (accessed on 11 January 2022).
56. Vermote, E.; Roger, J.C.; Franch, B.; Skakun, S. LaSRC (Land Surface Reflectance Code): Overview, application and validation

using MODIS, VIIRS, LANDSAT and Sentinel 2 data’s. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience
and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8173–8176.

57. Verrelst, J.; Rivera, J.P.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI
estimation using parametric, non-parametric and physical retrieval methods—A comparison. ISPRS J. Photogramm. Remote Sens.
2015, 108, 260–272. [CrossRef]

58. Verrelst, J.; Rivera, J.; Moreno, J.; Camps-Valls, G. Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and
leaf chlorophyll content retrieval. ISPRS J. Photogramm. Remote Sens. 2013, 86, 157–167. [CrossRef]

59. Verrelst, J.; Rivera, J.P.; Gitelson, A.; Delegido, J.; Moreno, J.; Camps-Valls, G. Spectral band selection for vegetation properties
retrieval using Gaussian processes regression. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 554–567. [CrossRef]

60. Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.;
et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36.
[CrossRef]

61. Rasmussen, C.; Williams, C. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2006.
62. Blum, M.; Riedmiller, M. Optimization of Gaussian Process Hyperparameters using Rprop. In Proceedings of the European Sym-

posium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 2–4 October 2013.
63. Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI

time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [CrossRef]
64. Pan, Z.; Huang, J.; Zhou, Q.; Wang, L.; Cheng, Y.; Zhang, H.; Blackburn, G.A.; Yan, J.; Liu, J. Mapping crop phenology using

NDVI time-series derived from HJ-1 A/B data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 188–197. [CrossRef]

http://dx.doi.org/10.1029/2018RG000608
http://dx.doi.org/10.1016/j.rse.2016.02.057
http://dx.doi.org/10.1080/01431161.2018.1460504
http://dx.doi.org/10.3390/s17091982
http://dx.doi.org/10.1016/j.rse.2020.111960
http://dx.doi.org/10.1016/j.scitotenv.2017.06.245
http://www.ncbi.nlm.nih.gov/pubmed/28675882
http://dx.doi.org/10.1016/j.isprsjprs.2018.02.011
http://dx.doi.org/10.1016/j.cageo.2004.05.006
http://dx.doi.org/10.5194/bg-10-4055-2013
http://dx.doi.org/10.1016/j.envsoft.2020.104666
http://dx.doi.org/10.3390/agronomy10050618
http://dx.doi.org/10.3390/rs13030403
http://dx.doi.org/10.3390/rs12172760
http://dx.doi.org/10.1016/j.rse.2019.111624
http://dx.doi.org/10.1080/01431160903464179
http://dx.doi.org/10.1016/j.rse.2020.112168
http://dx.doi.org/10.1063/1.4822961
http://dx.doi.org/10.1109/MGRS.2015.2510084
https://web.nateko.lu.se/timesat/timesat.asp?cat=6
http://dx.doi.org/10.1016/j.isprsjprs.2015.04.013
http://dx.doi.org/10.1016/j.isprsjprs.2013.09.012
http://dx.doi.org/10.1016/j.jag.2016.07.016
http://dx.doi.org/10.1016/j.rse.2011.11.026
http://dx.doi.org/10.1016/j.rse.2004.03.014
http://dx.doi.org/10.1016/j.jag.2014.08.011


Remote Sens. 2022, 14, 1812 22 of 23

65. Gao, F.; Anderson, M.; Daughtry, C.; Karnieli, A.; Hively, D.; Kustas, W. A within-season approach for detecting early growth
stages in corn and soybean using high temporal and spatial resolution imagery. Remote Sens. Environ. 2020, 242, 111752.
[CrossRef]

66. Weiss, D.J.; Atkinson, P.M.; Bhatt, S.; Mappin, B.; Hay, S.I.; Gething, P.W. An effective approach for gap-filling continental scale
remotely sensed time-series. ISPRS J. Photogramm. Remote Sens. 2014, 98, 106–118. [CrossRef] [PubMed]

67. Zhou, J.; Jia, L.; Menenti, M.; Gorte, B. On the performance of remote sensing time series reconstruction methods–A spatial
comparison. Remote Sens. Environ. 2016, 187, 367–384. [CrossRef]

68. Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series
data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [CrossRef]

69. Lloyd, D. A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Int. J. Remote
Sens. 1990, 11, 2269–2279. [CrossRef]

70. White, M.A.; Nemani, R.R. Real-time monitoring and short-term forecasting of land surface phenology. Remote Sens. Environ.
2006, 104, 43–49. [CrossRef]

71. Huang, X.; Liu, J.; Zhu, W.; Atzberger, C.; Liu, Q. The Optimal Threshold and Vegetation Index Time Series for Retrieving Crop
Phenology Based on a Modified Dynamic Threshold Method. Remote Sens. 2019, 11, 2725. [CrossRef]

72. Tian, H.; Huang, N.; Niu, Z.; Qin, Y.; Pei, J.; Wang, J. Mapping winter crops in China with multi-source satellite imagery and
phenology-based algorithm. Remote Sens. 2019, 11, 820. [CrossRef]

73. Meyer, L.H.; Heurich, M.; Beudert, B.; Premier, J.; Pflugmacher, D. Comparison of Landsat-8 and Sentinel-2 data for estimation of
leaf area index in temperate forests. Remote Sens. 2019, 11, 1160. [CrossRef]

74. Mourad, R.; Jaafar, H.; Anderson, M.; Gao, F. Assessment of leaf area index models using harmonized landsat and sentinel-2
surface reflectance data over a semi-arid irrigated landscape. Remote Sens. 2020, 12, 3121. [CrossRef]

75. Moon, M.; Richardson, A.D.; Friedl, M.A. Multiscale assessment of land surface phenology from harmonized Landsat 8 and
Sentinel-2, PlanetScope, and PhenoCam imagery. Remote Sens. Environ. 2021, 266, 112716. [CrossRef]

76. Burke, M.W.; Rundquist, B.C. Scaling Phenocam GCC, NDVI, and EVI2 with Harmonized Landsat-Sentinel using Gaussian
Processes. Agric. For. Meteorol. 2021, 300, 108316. [CrossRef]

77. Torbick, N.; Huang, X.; Ziniti, B.; Johnson, D.; Masek, J.; Reba, M. Fusion of moderate resolution earth observations for operational
crop type mapping. Remote Sens. 2018, 10, 1058. [CrossRef]

78. Shen, Y.; Zhang, X.; Wang, W.; Nemani, R.; Ye, Y.; Wang, J. Fusing Geostationary Satellite Observations with Harmonized
Landsat-8 and Sentinel-2 Time Series for Monitoring Field-Scale Land Surface Phenology. Remote Sens. 2021, 13, 4465. [CrossRef]

79. Shen, Y.; Zhang, X.; Yang, Z. Mapping corn and soybean phenometrics at field scales over the United States Corn Belt by fusing
time series of Landsat 8 and Sentinel-2 data with VIIRS data. ISPRS J. Photogramm. Remote Sens. 2022, 186, 55–69. [CrossRef]

80. Pastick, N.J.; Wylie, B.K.; Wu, Z. Spatiotemporal analysis of Landsat-8 and Sentinel-2 data to support monitoring of dryland
ecosystems. Remote Sens. 2018, 10, 791. [CrossRef]

81. Tan, B.; Morisette, J.T.; Wolfe, R.E.; Gao, F.; Ederer, G.A.; Nightingale, J.; Pedelty, J.A. An enhanced TIMESAT algorithm for
estimating vegetation phenology metrics from MODIS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 361–371.
[CrossRef]

82. Moon, M.; Zhang, X.; Henebry, G.M.; Liu, L.; Gray, J.M.; Melaas, E.K.; Friedl, M.A. Long-term continuity in land surface
phenology measurements: a comparative assessment of the MODIS land cover dynamics and VIIRS land surface phenology
products. Remote Sens. Environ. 2019, 226, 74–92. [CrossRef]

83. Franch, B.; Vermote, E.F.; Skakun, S.; Roger, J.C.; Becker-Reshef, I.; Murphy, E.; Justice, C. Remote sensing based yield monitoring:
Application to winter wheat in United States and Ukraine. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 112–127. [CrossRef]

84. Skakun, S.; Vermote, E.; Franch, B.; Roger, J.C.; Kussul, N.; Ju, J.; Masek, J. Winter wheat yield assessment from Landsat 8 and
Sentinel-2 data: Incorporating surface reflectance, through phenological fitting, into regression yield models. Remote Sens. 2019,
11, 1768. [CrossRef]

85. Congreves, K.; Hayes, A.; Verhallen, E.; Van Eerd, L. Long-term impact of tillage and crop rotation on soil health at four temperate
agroecosystems. Soil Tillage Res. 2015, 152, 17–28. [CrossRef]

86. Triberti, L.; Nastri, A.; Baldoni, G. Long-term effects of crop rotation, manure and mineral fertilisation on carbon sequestration
and soil fertility. Eur. J. Agron. 2016, 74, 47–55. [CrossRef]

87. Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open
science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [CrossRef]

88. Eilers, P.H. A perfect smoother. Anal. Chem. 2003, 75, 3631–3636. [CrossRef]
89. Atzberger, C.; Eilers, P.H. A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large

parts of South America. Int. J. Digit. Earth 2011, 4, 365–386. [CrossRef]
90. Jönsson, P.; Cai, Z.; Melaas, E.; Friedl, M.A.; Eklundh, L. A method for robust estimation of vegetation seasonality from Landsat

and Sentinel-2 time series data. Remote Sens. 2018, 10, 635. [CrossRef]
91. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial

analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2020.111752
http://dx.doi.org/10.1016/j.isprsjprs.2014.10.001
http://www.ncbi.nlm.nih.gov/pubmed/25642100
http://dx.doi.org/10.1016/j.rse.2016.10.025
http://dx.doi.org/10.1016/j.rse.2012.04.001
http://dx.doi.org/10.1080/01431169008955174
http://dx.doi.org/10.1016/j.rse.2006.04.014
http://dx.doi.org/10.3390/rs11232725
http://dx.doi.org/10.3390/rs11070820
http://dx.doi.org/10.3390/rs11101160
http://dx.doi.org/10.3390/rs12193121
http://dx.doi.org/10.1016/j.rse.2021.112716
http://dx.doi.org/10.1016/j.agrformet.2020.108316
http://dx.doi.org/10.3390/rs10071058
http://dx.doi.org/10.3390/rs13214465
http://dx.doi.org/10.1016/j.isprsjprs.2022.01.023
http://dx.doi.org/10.3390/rs10050791
http://dx.doi.org/10.1109/JSTARS.2010.2075916
http://dx.doi.org/10.1016/j.rse.2019.03.034
http://dx.doi.org/10.1016/j.jag.2018.11.012
http://dx.doi.org/10.3390/rs11151768
http://dx.doi.org/10.1016/j.still.2015.03.012
http://dx.doi.org/10.1016/j.eja.2015.11.024
http://dx.doi.org/10.1016/j.rse.2020.111968
http://dx.doi.org/10.1021/ac034173t
http://dx.doi.org/10.1080/17538947.2010.505664
http://dx.doi.org/10.3390/rs10040635
http://dx.doi.org/10.1016/j.rse.2017.06.031


Remote Sens. 2022, 14, 1812 23 of 23

92. Moreno-Martínez, Á.; Izquierdo-Verdiguier, E.; Maneta, M.P.; Camps-Valls, G.; Robinson, N.; Muñoz-Marí, J.; Sedano, F.;
Clinton, N.; Running, S.W. Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud. Remote Sens.
Environ. 2020, 247, 111901. [CrossRef]

93. Salinero-Delgado, M.; Estévez, J.; Pipia, L.; Belda, S.; Berger, K.; Paredes Gómez, V.; Verrelst, J. Monitoring Cropland Phenology
on Google Earth Engine Using Gaussian Process Regression. Remote Sens. 2022, 14, 146. [CrossRef]

94. Li, X.; Zhou, Y.; Meng, L.; Asrar, G.R.; Lu, C.; Wu, Q. A dataset of 30 m annual vegetation phenology indicators (1985–2015) in
urban areas of the conterminous United States. Earth Syst. Sci. Data 2019, 11, 881–894. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2020.111901
http://dx.doi.org/10.3390/rs14010146
http://dx.doi.org/10.5194/essd-11-881-2019

	Introduction
	Materials and Methods
	Study Area
	Harmonized Landsat and Sentinel-2 (HLS)
	Green LAI Retrieval
	Gaussian Processes Regression
	Smoothing and Gap-Filling
	Generation of Green LAI Time Series Collections
	Crop Phenology Estimation
	Analysis Setup

	Results
	Green LAI Time Series
	Crop Phenology Characterization and Evaluation
	Cropping Frequency and Phenology Mapping

	Discussion
	Adaptation of S2 LAI Model to HLS
	Comparison of Two Threshold-Based Phenology Detection Methods
	Evaluation of Crop Phenology Detection
	High Temporal Resolution for Phenology Detection Improvement
	Limitations and Future Opportunities

	Conclusions
	References

