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Abstract
For a given pair of random lifetimes whose dependence is described by a time-
transformed exponential model, we provide analytical expressions for the distribution
of their sum. These expressions are obtained by using a representation of the joint
distribution in terms of bivariate distortions, which is an alternative approach to the
classical copula representation. Since this approach allows one to obtain conditional
distributions and their inverses in simple form, then it is also shown how it can be used
to predict the value of the sum from the value of one of the variables (or vice versa)
by using quantile regression techniques.

Keywords Dependence models · C-convolution · Distorted distributions · Quantile
regression · Confidence bands
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1 Introduction

LetX = (X1, X2) be a pair of dependent lifetimes. The vectorX is said to be described
by a time-transformed exponential model (shortly, TTE model) if its joint survival
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function F̄(x1, x2) = Pr(X1 > x1, X2 > x2) can be written as

F̄(x1, x2) = Ḡ(R1(x1) + R2(x2)), x1, x2 ≥ 0, (1.1)

for a suitable one-dimensional, continuous, convex and strictly decreasing sur-
vival function Ḡ and two suitable continuous and strictly increasing functions
Ri : [0,+∞) → [0,+∞) such that Ri (0) = 0 and limx→∞ Ri (x) = ∞, for
i = 1, 2. Clearly, the marginal survival functions for the lifetimes Xi are given by
F̄i (xi ) = Ḡ(Ri (xi )), xi ≥ 0, i = 1, 2.

TTE models have been considered in the literature as an appropriate manner to
describe bivariate lifetimes (see, e.g., Bassan and Spizzichino (2005), Mulero et al.
(2010), Navarro and Mulero (2020) and references therein). Their main characteristic
is that they “separate", in a sense, aging of single lifetimes through the functions
Ri , and dependence properties through Ḡ, being the corresponding survival copula a
transformation of Ḡ only (see Eq. (2.2) below and the references above for definition
of the copula). This model is of interest in a variety of fields of application, given
that it is equivalent to the random frailty model, which assumes that the two lifetimes
are conditionally independent given a random parameter that represents the risk due
to a common environment. The well-known proportional hazard rate Cox model,
where the proportional factor is not fixed but random, is an example. In this case, the
different choices for the function Ḡ are obtained just by changing the distribution of
the random risk parameter. This dependence model is also equivalent to consider the
wide family of strict Archimedean survival copulas. Moreover, it contains the model
recently proposed in Genest and Kolev (2021) and the Schur constant model.

For a number of applicative purposes, one can be interested in the sum S = X1+X2.
This happens, for example, in considering the total lifetime in stand-by systems, where
a component is replaced by a new one under the same environmental stress after its
failure, or in insurance theory, where the sum of two dependent claims, due to common
risks, may be evaluated. In this case, because of the dependence between X1 and X2,
the classical convolution cannot be applied to determine the distribution of S, and
C-convolutions (whose definition is recalled in the next section) must be used instead.
But in some cases, like for the one considered here, the integrals appearing in formulas
for C-convolutions are not easy to be solved, especially when a simple expression of
the copula is not available.

The aim of this paper is to provide an alternative tool to deal with the sum S =
X1 + X2 that can be used when the joint distribution of X is defined as in Eq. (1.1).
This approach is based on a different representation for the survival function of X,
whichmakes use of the distortion representations of multivariate distributions recently
introduced in Navarro et al. (2022), whose definition is provided in the next section.
The advantage of this approach is twofold. On the one hand, it is particularly useful
when the inverse of Ḡ is not available in closed form, thus also ̂C . On the other hand,
it provides simple representations of the conditional distribution of S given one of the
Xi , and of its inverse, so that one can use it to predict the value of the sum from the
value of one of the variables (or vice versa) by using quantile regression techniques.
The purpose of this paper is to describe such an approach.
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The rest of the paper is structured as follows. Basic definitions, notations and some
preliminary results are introduced in Sect. 2. The main results for the representation
of the distribution of the sum S under model (1.1) are provided in Sect. 3, while the
expressions for predictions and examples of their application are presented in Sects. 4
and 5, respectively.

Throughout the paper the notions increasing and decreasing are used in a wide
sense, that is, they mean non-decreasing and non-increasing, respectively, and we
say that f is increasing (decreasing) if f (x) ≤ f (y) for all x ≤ y (where this last
inequality means that for every i th component of the vectors one has xi ≤ yi ). Also,
if f is a real-valued function in more than one variable, then ∂i f denotes the partial
derivative of f with respect to its i th variable. Analogously, ∂i, j f = ∂i∂ j f and so on.
Whenever we use a partial derivative we are tacitly assuming that it exists.

2 Notation and preliminary results

To simplify the notation we just consider here the bivariate case; the extension to the
n-dimensional case is straightforward.

Thus, let X = (X1, X2) be a random vector with two possibly dependent nonneg-
ative random variables having an absolutely continuous joint distribution function F
and marginal distributions F1 and F2. Let f be the joint probability density function
(PDF) of (X1, X2) and let f1 and f2 be the PDFs of X1 and X2, respectively. Then
it is well known (see, e.g., Nelsen 2006) that, from Sklar’s Theorem, there exists a
unique absolutely continuous copula C such that F can be written as

F(x1, x2) = Pr(X1 ≤ x1, X2 ≤ x2) = C(F1(x1), F2(x2)) (2.1)

for all x1, x2. The copula of a random vector (which is the joint distribution of a vector
having univariate marginal distributions) entirely describes the dependence between
the components of the vector, as extensively pointed out in the monograph Nelsen
(2006) (see also Navarro et al. (2021)), for a recent survey on how to describe different
dependence notions of a random vector in terms of the properties of the corresponding
copula).

As a consequence of (2.1), the PDF function of (X1, X2) can be expressed as

f(x1, x2) = f1(x1) f2(x2)c(F1(x1), F2(x2)),

where c := ∂1,2C is the PDF of the copula C . A similar representation holds for the
joint survival function

F̄(x1, x2) = Pr(X1 > x1, X2 > x2) = ̂C(F̄1(x1), F̄2(x2))

for all x1, x2, where F̄1(x1) = Pr(X1 > x1) and F̄2(x2) = Pr(X2 > x2) are the
marginal survival functions and ̂C is another suitable copula, called survival copula.
We observe that from a mathematical viewpoint, both the connecting copula C and
the survival copula ̂C can be used to describe the dependence structure of (X1, X2).
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In the particular case of TTE models, i.e., when the joint survival function F̄ is
defined as in Eq. (1.1), then the corresponding survival copula ̂C is defined as

̂C(u1, u2) = Ḡ(Ḡ−1(u1) + Ḡ−1(u2)) (2.2)

for all u1, u2 ∈ [0, 1]2, which is a strict bivariate Archimedean copula [see, e.g.,
McNeil andNešlehová (2009), Nelson (2006, p. 112)]. Thiswidemodel containsmany
families of copulas [(see Nelsen (2006, p. 117)], thus it is a very general dependence
model. The inverse function Ḡ−1 is called the additive generator of the copula.

Given a vector (X1, X2), consider now the sum S = X1 + X2. When X1 and
X2 are dependent then one can calculate the survival function of S by means of the
C-convolution, i.e., as

F̄S(s) = Pr(S > s) =
∫ ∞

−∞
f1(x) ∂1̂C(F̄1(x), F̄2(s − x))dx, s ∈ R, (2.3)

where F̄1 and F̄2 are the marginal survival functions of X1 and X2, respectively, f1
is the density function of X1 (assuming its existence) and ̂C is the survival copula
of the vector X. This expression, obtained in Cherubini et al. (2011), is a key tool
in our results (see, also Cherubini et al. (2016) and Navarro and Sarabia (2020), for
additional examples of C-convolutions).

Note that the integral appearing in Eq. (2.3) cannot be solved analytically in many
cases, especially when the expression of ̂C is complicate, or, as an extreme case,
when its expression is not available. This is the case, for example, of a copula defined
as in (2.2) when the inverse Ḡ−1 cannot be expressed in closed form. In this case
an alternative approach for the computation of the survival function of S must be
considered. The alternative approach suggested here is based on the representation of
F̄ through the distortion representations of multivariate distributions introduced in the
recent paper (Navarro et al. 2022).

For it first recall that a function d : [0, 1] → [0, 1] is said to be a distortion function
if it is continuous, increasing and satisfies d(0) = 0 and d(1) = 1. IfG is a distribution
function, we say that F is a distorted distribution from G if there exists a distortion
function d such that F(x) = d(G(x)) for all x , and similarly for the survival functions.
This kind of representations were introduced in the theory of decision under risk (see,
e.g., Wang (1996); Yaari (1987)) and they were also applied in the fields of coherent
systems, order statistics and conditional distributions (see, e.g., Navarro et al. (2013)
and Navarro and Sordo (2018), and the references therein).

These representations were further extended to the multivariate case in Navarro
et al. (2022). According to what is defined there, and restricting to the bivariate case,
a function D : R2 → R is a bivariate distortion if it is a continuous 2-dimensional
distribution with support included in [0, 1]2, and a bivariate distribution function F is
a distortion of the univariate distribution functions H1 and H2 if there exists a bivariate
distortion D such that

F(x1, x2) = D(H1(x1), H2(x2)) (2.4)
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for all x1, x2. This representation is similar to the copula representation, but here H1
and H2 are not necessarily the marginal distributions of X and D is not necessarily a
copula. Actually, in some situations, we can choose a common univariate distribution
H = H1 = H2. Some examples will be provided later (see also Navarro (2021);
Navarro et al. (2022)). Moreover, if D has uniform univariate marginal distributions
over the interval (0, 1), then D is a copula, H1 and H2 are the marginal distributions
and (2.4) is the same as the copula representation (2.1) (but only in this case).

The main properties of the model given in (2.4) were provided in Navarro et al.
(2022) and they are very similar to that of copulas. For example, if D is a distortion
function, then the right-hand side of (2.4) defines a proper multivariate distribution
function for any univariate distribution functions H1 and H2. Moreover, a similar
representation holds for the joint survival function, that is, one can write

F̄(x1, x2) = ̂D(H̄1(x1), H̄2(x2)), (2.5)

where F̄(x1, x2) = Pr(X1 > x1, X2 > x2), H̄i = 1 − Hi for i = 1, 2, and ̂D is
another suitable distortion function.

For the TTE model note that, defining

H̄i (xi ) = exp(−Ri (xi )), i = 1, 2, (2.6)

one has

F̄(x1, x2) = Ḡ(R1(x1) + R2(x2)) = ̂D(H̄1(x1), H̄2(x2))

for all x1, x2 ≥ 0, where

̂D(u, v) = Ḡ(− ln(uv)), u, v ∈ (0, 1] (2.7)

and ̂D(u, v) = 0 for u = 0 or v = 0. The function ̂D satisfies the property to be a
bivariate distortion if Ḡ satisfies the properties mentioned above, i.e., when Ḡ is an
absolutely continuous strictly decreasing and strictly convex function in [0,∞) with
Ḡ(0) = 1 and Ḡ(∞) = 0. Note that if we add Ḡ(t) = 1 for t < 0, then Ḡ is the
survival function of a nonnegative random variable. Also note that H̄1 and H̄2 are two
arbitrary survival functions satisfying H̄1(0) = H̄2(0) = 1. Thus, a representation
through bivariate distortions as in (2.4) holds for the TTE model, with ̂D defined as
in (2.7). Even more, note that our model can be used to extend the TTE model by
considering also reliability functions H̄1 and H̄2 with bounded support. In particular,
if we choose H̄1(x) = H̄2(x) = 1− x for x ∈ [0, 1], then (X1, X2) has support [0, 1]2
and the joint distribution of (1− X1, 1− X2) is D̂. However, in any case, the support
of the reliability function Ḡ should be (0,∞).

It must be pointed out that with this representation the marginal survival functions
F̄i , i = 1, 2, are not explicitly displayed, but can be obtained as

F̄i (xi ) = Ḡ(− ln H̄i (xi )) = ̂D(H̄i (xi ), 1) = ˜d(H̄i (xi )), xi ≥ 0,
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where ˜d(u) = Ḡ(− ln u) for u ∈ (0, 1] and ˜d(0) = 0. Note that ˜d is a univari-
ate distortion function. Finally, note that the representation through the multivariate
distortion (2.7) and the univariate survivals (2.6) is a copula representation if and
only if ̂D(u, 1) = u, that is, Ḡ(− ln(u)) = u for 0 ≤ u ≤ 1. This property leads
to Ḡ(x) = exp(−x) for x ≥ 0 and ̂D(u, v) = uv for u, v ∈ [0, 1] which is the
product copula that represents the independence case. For other (non-exponential)
survival functions Ḡ, we obtain models with dependent variables, whose dependence
is described by Ḡ (i.e., by the Archimedean survival copula obtained from Ḡ given in
(2.2)).

As an interesting particular case, this dependence model includes the one recently
proposed by Genest and Kolev (2021) for nonnegative random variables, which is
characterized by the joint survival function

F̄(x1, x2) = Ḡ(αx1 + βx2) (2.8)

for x1, x2 ≥ 0, where α, β > 0 are two positive scale parameters and Ḡ satisfies the
above mentioned properties [see Proposition 3.1 in Genest and Kolev (2021)]. This
model that from now on will be referred asGK-model [where the letters G and K refer
to the initials of the authors of reference Genest and Kolev (2021)]. This model is an
extension of the well-known Schur-constant model which is obtained when α = β

(see Caramellino and Spizzichino (1994), and references therein). Properties of the
Schur-constant model and of the corresponding sum X1 + X2 are studied also in
Pellerey and Navarro (2021). The GK-model represents distributions satisfying the
so-called law of uniform seniority of dependent lives (see Genest and Kolev 2021).
It must be observed that the marginal survival functions are F̄1(x1) = Ḡ(αx1) and
F̄2(x2) = Ḡ(βx2) for x1, x2 ≥ 0, and both of them belong to the scale parameter
model defined by Ḡ. Actually, this model is obtained by the distortion of univariate
exponential distributions, i.e., (2.8) holds if and only if

F̄(x1, x2) = ̂D(H̄1(x1), H̄2(x2))

for all x1, x2 ≥ 0, where H̄1(x1) = exp(−αx1), H̄2(x2) = exp(−βx2) and ̂D is
defined as in Eq. (2.7).

3 Joint and conditional distributions of the sum

In this sectionwe use the distortion representation (2.5), with the bivariate distortion ̂D
defined as in (2.7), to study the sum S = X1+X2 under the dependence model defined
in the preceding section. As a consequence, we also obtain analogous properties for
the GK-model, i.e., the generalization (2.8) of the Schur-constant model.

Proposition 3.1 If (2.5) and (2.7) hold for (X1, X2) and S = X1 + X2, then the joint
PDF of (X1, S) is

g(x, s) = r1(x)r2(s − x)Ḡ ′′ (− ln H̄1(x) − ln H̄2(s − x)
)

(3.1)
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for 0 ≤ x ≤ s (zero elsewhere), where ri = (− ln H̄i )
′ is the hazard rate function of

H̄i for i = 1, 2.

Proof From (2.5), the joint PDF of (X1, X2) is

f(x1, x2) = h1(x1)h2(x2)̂d(H̄1(x1), H̄2(x2))

for x1, x2 ≥ 0, where hi = −H̄ ′
i and ̂d = ∂1,2̂D. Then the joint PDF of (X1, S) is

g(x, s) = f(x, s − x) = h1(x)h2(s − x)̂d(H̄1(x), H̄2(s − x))

for 0 ≤ x ≤ s. The PDF of our specific distortion function ̂D is

̂d(u, v) = 1

uv
Ḡ ′′(− ln(uv))

and

g(x, s) = h1(x)h2(s − x)

H̄1(x)H̄2(s − x)
Ḡ ′′ (− ln H̄1(x) − ln H̄2(s − x)

)

for 0 ≤ x ≤ s, which concludes the proof. �	
Remark 1 In particular, for the GK-model in (2.8), that is, with exponential survival
functions H1 and H2 with shape parameters (hazard rates) α and β, the PDF reduces
to

g(x, s) = αβḠ ′′((α − β)x + βs)

for 0 ≤ x ≤ s (zero elsewhere). Therefore, its joint distribution function is

G(x, s) = −
∫ x

0

∫ s

y
αβG ′′((α − β)y + βt)dtdy

=
∫ x

0
αG ′(αy)dy −

∫ x

0
αG ′((α − β)y + βs)dy

where G = 1 − Ḡ. To solve this integral we consider two cases. If α = β, then

G(x, s) = G(αx) − αxG ′(αs), (3.2)

while if α 
= β, then

G(x, s) = G(αx) − α

α − β
G((α − β)x + βs) + α

α − β
G(βs) (3.3)

for 0 ≤ x ≤ s. In both cases, (3.2) and (3.3) can be represented as distorted distribu-
tions from G by replacing x with G−1(G(x)) and s with G−1(G(s)).
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In particular, as an immediate consequence one can obtain the distribution of the
sum (C-convolution) for the GK-model as

FS(s) = lim
x→∞G(x, s) = G(s, s).

If α = β, then

FS(s) = G(αs) − αsG ′(αs),

or if α 
= β, then

FS(s) = α

α − β
G(βs) − β

α − β
G(αs)

for s ≥ 0. Note that the second expression is a negative mixture (i.e., a linear combi-
nation with a negative weight) of the distribution functions of X1 and X2 with PDF

fS(s) = αβ

β − α
[g(αs) − g(βs)] (3.4)

for s ≥ 0, where g = G ′. In the first case, one gets

fS(s) = −α2sG ′′(αs) (3.5)

for s ≥ 0, which is the expression in Remark 2.7 of Caramellino and Spizzichino
(1994) (i.e., for the Schur-constant model).

The joint survival function of (X1, S) under the model defined by (2.5) and (2.7) is
obtained in the following proposition. Unfortunately, an explicit expression cannot be
provided in general, but it is available in some cases, or easily available numerically
(see the examples in the next sections).

Proposition 3.2 If (2.5) and (2.7) hold for (X1, X2) and S = X1 + X2, then the joint
survival function of (X1, S) is

Ḡ(x, s) = Ḡ(− ln H̄1(s)) +
∫ s

x
r1(y)g

(− ln H̄1(y) − ln H̄2(s − y)
)

dy

for 0 ≤ x ≤ s, where g = −Ḡ ′ is the PDF of Ḡ and ri = (− ln H̄i )
′ is the hazard

rate function of H̄i for i = 1, 2.

Proof From Eq. (3.1) for the PDF of (X1, S) we get

Ḡ(x, s) =
∫ s

x

∫ ∞

s
g(y, t)dtdy +

∫ ∞

s

∫ ∞

y
g(y, t)dtdy

=
∫ s

x

∫ ∞

s
r1(y)r2(t − y)Ḡ ′′(− ln H̄1(y) − ln H̄2(t − y))dtdy
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+
∫ ∞

s

∫ ∞

y
r1(y)r2(t − y)Ḡ ′′(− ln H̄1(y) − ln H̄2(t − y))dtdy

= −
∫ s

x
r1(y)Ḡ

′(− ln H̄1(y) − ln H̄2(s − y))dy −
∫ ∞

s
r1(y)Ḡ

′(− ln H̄1(y))dy

= Ḡ(− ln H̄1(s)) +
∫ s

x
r1(y)g(− ln H̄1(y) − ln H̄2(s − y))dy,

which concludes the proof. �	
Therefore, the survival function of S can be obtained as

F̄S(s) = Ḡ(0, s) = Ḡ(− ln H̄1(s))

+
∫ s

0
r1(y)g

(− ln H̄1(y) − ln H̄2(s − y)
)

dy (3.6)

and its PDF as fS(s) = −∂2Ḡ(0, s), s ≥ 0.
To get the explicit expression for F̄S we need to explicate Ḡ and/or H̄i and to solve

this integral, eventually numerically. For example, if H̄i (x) = exp(−x) for x ≥ 0 and
i = 1, 2, then

F̄S(s) = Ḡ(0, s) = Ḡ(s) +
∫ s

0
g(y + s − y)dy = Ḡ(s) + sg(s)

and fS(s) = sg′(s) for s ≥ 0 which is the expression in Remark 2.7 of Caramellino
and Spizzichino (1994) for the Schur-constant model.

4 Predictions

The aim of this section is to show how to predict the value of the sum S = X1 + X2
from X1 = x or vice versa by making use of the results in the previous section. To this
purpose we need the conditional distribution of (S | X1 = x) in the TTE dependence
model, that is obtained in the following proposition.

Proposition 4.1 If (2.5) and (2.7) hold for (X1, X2) and S = X1 + X2, then the PDF
of (S | X1 = x) is

fS|X1(s | x) = −r2(s − x)
g′(− ln H̄1(x) − ln H̄2(s − x))

g(− ln H̄1(x))

and its distribution function is

FS|X1(s | x) = 1 − g(− ln H̄1(x) − ln H̄2(s − x))

g(− ln H̄1(x))
(4.1)

for 0 ≤ x ≤ s, where g = −Ḡ ′ and r2 = (− ln H̄2)
′ is the hazard rate function of H̄2.
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Proof From (3.1), the PDF of (X1, S) is

g(x, s) = −r1(x)r2(s − x)g′(− ln H̄1(x) − ln H̄2(s − x))

for 0 ≤ x ≤ s. Moreover, the first marginal survival function is

F̄1(x) = Pr(X1 > x) = G(x, 0) = Ḡ(− ln H̄1(x))

and its PDF is f1(x) = r1(x)g(− ln H̄1(x)), for x ≥ 0.
Hence, the PDF of (S | X1 = x) for x ≥ 0 such that f1(x) > 0 can be obtained as

fS|X1(s | x) = g(x, s)
f1(x)

= −r2(s − x)
g′(− ln H̄1(x) − ln H̄2(s − x))

g(− ln H̄1(x))

for s ≥ x (zero elsewhere).
Then the associated distribution function is

FS|X1(s | x) =
∫ s

x
fS|X1(t | x)dt

= −
∫ s

x
r2(t − x)

g′(− ln H̄1(x) − ln H̄2(t − x))

g(− ln H̄1(x))
dt

=
[

−g(− ln H̄1(x) − ln H̄2(t − x))

g(− ln H̄1(x))

]s

t=x

= 1 − g(− ln H̄1(x) − ln H̄2(s − x))

g(− ln H̄1(x))

for s ≥ x ≥ 0 and we conclude the proof. �	
Hence, the conditional survival function is

F̄S|X1(s | x) = g(− ln H̄1(x) − ln H̄2(s − x))

g(− ln H̄1(x))

Clearly, this is a distortion representation from H̄2(s − x), since

F̄S|X1(s | x) = dS|X1(H̄2(s − x) | H̄1(x))

for s ≥ x > 0, where

dS|X1(v | u) = g(− ln uv)

g(− ln u)

for v ∈ [0, 1] is a distortion function for all 0 < u < 1.
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Note that the inverse function of F̄S|X1 can be obtained from the inverse functions
of g and H̄2 as

F̄−1
S|X1

(q | x) = x + H̄−1
2

(

exp
(−g−1

(

qg(− ln H̄1(x))
))

H̄1(x)

)

(4.2)

for 0 < q < 1. The inverse function of FS|X1 can be obtained in a similar way.
One can thus predict S from X1 = x by using the quantile (or median) regression

curve

mS|X1(x) := F̄−1
S|X1

(0.5 | x).

Moreover, one can compute the centered p confidence bands for these predictions
as

Ip(x) :=
[

F̄−1
S|X1

(0.5 + 0.5p | x) , F̄−1
S|X1

(0.5 − 0.5p | x)
]

.

For example, the p=90% centered confidence band for S is

I0.9(x) :=
[

F̄−1
S|X1

(0.95 | x), F̄−1
S|X1

(0.05 | x)
]

.

Such an interval is computed below in some illustrative examples.

Remark 2 In particular, for the GK-model in (2.8) we get

F̄S|X1(s | x) = g(αx + β(s − x))

g(αx)
= g((α − β)x + βs)

g(αx)
(4.3)

and

F̄−1
S|X1

(q | x) = β − α

β
x + 1

β
g−1 (qg(αx)) (4.4)

for s ≥ x ≥ 0 and 0 < q < 1. Note that these expressions hold both for α = β and
for α 
= β.

The other conditional distribution can be obtained in a similar manner. However,
it is more difficult to get an explicit expression since we need the PDF fS of S. It is
stated in the following proposition.

Proposition 4.2 If (2.5) and (2.7) hold for (X1, X2) and S = X1 + X2, then the PDF
of (X1 | S = s) is

fX1|S(x | s) = −r1(x)r2(s − x)g′ (− ln H̄1(x) − ln H̄2(s − x)
)

fS(s)
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and its distribution function is

FX1|S(x | s) = −
∫ x

0

r1(t)r2(s − t)g′ (− ln H̄1(t) − ln H̄2(s − t)
)

fS(s)
dt (4.5)

for 0 ≤ x ≤ s, where g = −Ḡ ′ and ri = (− ln H̄i )
′ is the hazard rate function of H̄i

for i = 1, 2, and

fS(s) = −
∫ s

0
r1(x)r2(s − x)g′(− ln H̄1(x) − ln H̄2(s − x))dx . (4.6)

Proof From (3.1), the PDF of (X1, S) is

g(x, s) = −r1(x)r2(s − x)g′(− ln H̄1(x) − ln H̄2(s − x))

for 0 ≤ x ≤ s. Its second marginal survival function was obtained in (3.6). It can also
be obtained as in (4.6).

Hence, the conditional PDF of (X1 | S = s) is

fS|X1(x | s) = g(x, s)
fS(s)

= −r1(x)r2(s − x)g′(− ln H̄1(x) − ln H̄2(s − x))

fS(s)
.

Then the associated distribution function is the one given in (4.5) for 0 ≤ x ≤ s
and the assertion is proved. �	

In particular, for the GK-model we have the following explicit expressions.

Proposition 4.3 If (2.8) holds for (X1, X2) and S = X1 + X2, then the distribution
function of (X1 | S = s) is

FX1|S(x | s) = x

s
(4.7)

when α = β and

FX1|S(x | s) = g((α − β)x + βs) − g(βs)

g(αs) − g(βs)
(4.8)

when α 
= β, for 0 ≤ x ≤ s, where g = −Ḡ ′ and α, β > 0 are the scale parameters
in (2.8).

Proof From the preceding proposition we have

g(x, s) = −r1(x)r2(s − x)g′(− ln H̄1(x) − ln H̄2(s − x)) = −αβg′((α − β)x + βs)

for 0 ≤ x ≤ s (zero elsewhere). Its second marginal PDF function fS was obtained
in (3.5) (α = β) and in (3.4) (α 
= β).
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In the first case we get

fX1|S(x | s) = g(x, s)
fS(s)

= −α2g′(αs)
−α2sg′(αs)

= 1

s

and in the second

fX1|S(x | s) = g(x, s)
fS(s)

= (α − β)
g′((α − β)x + βs)

g(αs) − g(βs)

for 0 ≤ x ≤ s.
Then the associated distribution functions are

FX1|S(x | s) =
∫ x

0

1

s
dt = x

s

(in the first case) and

FX1|S(x | s) =
∫ x

0
(α − β)

g′((α − β)t + βs)

g(αs) − g(βs)
dt

=
[

g′((α − β)t + βs)

g(αs) − g(βs)

]x

t=0

= g((α − β)x + βs) − g(βs)

g(αs) − g(βs)

(in the second case) for 0 ≤ x ≤ s. �	
Note that the expression (4.7) was obtained previously in Proposition 2.3 of

Caramellino and Spizzichino (1994) for the Schur-constant model, which is equiv-
alent to (2.8) with α = β.

As in the preceding case, equations (4.7) and (4.8) can be used to obtain quantile
regression curves to predict X1 from S. An illustrative example is given in the following
section. In both cases, they can be represented as distorted distributions from G by
replacing x with G−1(G(x)) and s with G−1(G(s)).

In the first case (α = β), the inverse function is F−1
X1|S(q | s) = qs for 0 < q < 1

and the trivial median regression curve ismX1|S(s) = s/2 (which in this case coincides
with the classic mean regression curve E(X | S = s)).

In the second case (α 
= β), we get

F−1
X1|S(q | s) = β

β − α
s + 1

α − β
g−1 (qg(αs) + (1 − q)g(βs)) (4.9)

for 0 < q < 1 and s > 0. Then the median regression curve is

mX1|S(s) = β

β − α
s + 1

α − β
g−1

(

1

2
g(αs) + 1

2
g(βs)

)

.

The confidence bands can be obtained in a similar manner from (4.9) (see Example 2).

123



892 J. Navarro et al.

5 Examples

In this sectionwe provide some examples to illustrate the theoretical findings described
in previous sections. In the first one we consider the sum of two dependent random
variables satisfying the GK-model proposed in Genest and Kolev (2021), i.e., the
model (2.8).

Example 1 Let us assume that (X1, X2) satisfies (2.8) forα 
= β and Ḡ(x) = (1+x)−γ

for x ≥ 0 (Pareto type II survival function) and γ > 0. This model is equivalent
to consider an Archimedean Clayton survival copula with θ = 1/γ [see (4.2.1) in
Nelson (Nelsen (2006), p. 116)] and Pareto type II marginals. Then, from (3.3), the
joint distribution function of (X1, S) is

G(x, s) = G(αx) − α

α − β
G((α − β)x + βs) + α

α − β
G(βs)

= 1 − (1 + αx)−γ + α

α − β
(1 + (α − β)x + βs)−γ − α

α − β
(1 + βs)−γ

for 0 ≤ x ≤ s. Hence, the distribution function FS of S (i.e., the C-convolution) is

FS(s) = G(s, s) = 1 + β

α − β
(1 + αs)−γ − α

α − β
(1 + βs)−γ

for s ≥ 0. Its PDF is

fS(s) = αβγ

α − β
(1 + βs)−γ−1 − αβγ

α − β
(1 + αs)−γ−1

for s ≥ 0. The distribution of S is a negativemixture of two Pareto type II distributions;
thus, its hazard rate goes to zero when s → ∞ (which is the limit of the hazard rates
of the members of the C-convolution). They are plotted in Fig. 1 (right) jointly with
the associated PDF functions (left) for γ = α = 2 and β = 1. Note that the hazard
rates of X1 and X2 are decreasing while the one of S is not monotone, showing that the
increasing failure rate (IFR) class is not preserved by the sum of dependent random
variables. Some preservation properties can be seen in Navarro and Pellerey (2021).

If we want to predict X1 from S = s, we need the conditional distribution obtained
from (4.8) as

FX1|S(x | s) = g((α − β)x + βs) − g(βs)

g(αs) − g(βs)

= (1 + (α − β)x + βs)−γ−1 − (1 + βs)−γ−1

(1 + αs)−γ−1 − (1 + βs)−γ−1

for 0 ≤ x ≤ s. Its inverse function is then

F−1
X1|S(q | s) = −1 − βs + (

q(1 + αs)−γ−1 + (1 − q)(1 + βs)−γ−1
)−1/(γ+1)

α − β
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Fig. 1 Probability density (left) and hazard rate (right) functions for X1 (red), X2 (green) and S = X1+ X2
(blue) under the dependence model (2.8) with Pareto type II marginals studied in Example 1
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Fig. 2 Scatterplot of a simulated sample from (S, X1) in Example 1 jointly with the exact median regression
curve (continuous red lines) and the exact 50% and 90% confidence bands (continuous blue lines). The
dashed lines represent the estimated curves when the model is known and the parameters are estimated (top)
and when the model is unknown and we use a nonparametric linear quantile regression estimators (bottom)
from these data

for 0 < q < 1. The median regression curve is obtained by replacing q with 1/2. It
is plotted in Fig. 2, jointly with a sample from (X1, S) and the associated 50% and
90% centered confidence bands. We also include there the parametric (top) and non-
parametric (bottom) estimations for these curves (dashed lines). Here, nonparametric
means that we use the linear quantile regression procedure in R (see Koenker (2005);
Koenker and Bassett (1978)).

To estimate the parameters in the model from the sample we use the Kendall’s tau
coefficient of the pair (X1, X2), which is given by

τ = θ

2 + θ
= 1

1 + 2γ
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[see Nelson (2006, p. 163)]. Therefore, γ can estimated by

γ̂ = 1 − τ̂

2τ̂
= 1 − 0.158

2 · 0.158 = 2.664557,

where τ̂ is the estimator of the Kendall’s tau. Then, to estimate α and β, we recall that
E(X1) = 1/(α(γ − 1)) and E(X2) = 1/(β(γ − 1)), obtaining

α̂ = 1

(γ̂ − 1)X̄1
= 1

1.664557 · 0.3880776 = 1.548042

and

̂β = 1

(γ̂ − 1)X̄2
= 1

1.664557 · 0.8674393 = 0.6925677.

For the nonparametric linear estimators of the quantile regression curves, we use
the R library quantreg (see Koenker (2005); Koenker and Bassett (1978); Navarro
(2020)). The estimated median regression line to estimate X1 from S obtained from
our sample is

m̂X1|S(s) = 0.09752378 + 0.17721635s.

The procedure to predict S from X1 is analogous.

In the second example we consider the more general TTE dependence model; in
this case we show how to predict S from X1.

Example 2 Let (X1, X2) have joint survival function defined as in (2.5), where ̂D is
given in (2.7). Thus, we can use the expressions obtained in Sect. 4, (4.1) and (4.2),
to predict S from X1.

For example, we can choose

Ḡ(x) = H̄1(x) = H̄2(x) = c (1 − �(1 + x)) = c �(−1 − x))

for x ≥ 0, where� is the standard normal distribution and c = 1/�(−1) = 6.302974
(i.e., G is a truncated normal distribution). Hence, g(x) = c φ(1 + x) where φ = �′
is the PDF of a standard normal distribution. Note that, in this case, the corresponding
Archimedean copula (that we could call Gaussian Archimedean copula) does not have
an explicit expression (since it depends on Ḡ and on Ḡ−1). Thus, this is a practical
example where the distortion representation can be used as a proper alternative.

Under the previous assumptions, the inverse functions are

Ḡ−1(x) = −1 − �−1
( x

c

)

and

g−1(x) = −1 + (2 ln c − ln(2π) − 2 ln x)1/2 .
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Fig. 3 Scatterplot of a simulated sample from (X1, S) in Example 2 jointly with the median regression
curve (red) and the centered (top) or bottom (bottom) 50% and 90% confidence bands (blue). The dashed
lines represent the estimated values when we use a linear quantile regression estimator

By using these expressionswe compute F̄−1
S|X1

as in (4.2), obtaining the quantile regres-
sion curve plotted in Fig. 3 (top). The same figure also includes a sample of n = 100
points from (X1, S) and the exact centered 50% and 90% (blue) confidence bands.
Moreover, it shows the plot of the nonparametric linear quantile estimate (dashed
lines) obtained from this sample.

As we know that X1 < S, we could also provide bottom 50% and 90% confidence

bands obtained as
[

x, F̄−1
S|X1

(0.5 | x)
]

and
[

x, F̄−1
S|X1

(0.1 | x)
]

, respectively. They are

plotted in Fig. 3 (bottom). In this case, the median regression curve is also the upper
limit for the 50% confidence band. In our sample we obtain 10 data above the upper
(exact) limit and 46 above the median regression curve (i.e., 54 data in the exact
bottom 50% confidence band). The estimated median regression line obtained from
our sample is

m̂S|X1(x) = 0.3159734 + 0.7284655x

for x ≥ 0.

In the next examplewe showa case ofmodel (2.8) that cannot be representedwith an
explicit Archimedean copula, thus for which the distortion representations consists in
a useful alternative tool. In fact, in this example Ḡ is convex and an explicit expression
for its inverse is not available. For this model we compute the explicit expressions for
the C-convolution and the two conditional survival functions.

Example 3 Let us consider (2.8) with α 
= β and the survival function

Ḡ(x) = 2 + x

2
e−x
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for x ≥ 0. Its PDF is

g(x) = 1 + x

2
e−x

for x ≥ 0, that is, a translatedGamma (Erlang) distribution. The joint survival function
of (X1, X2) is

F̄(x1, x2) = Ḡ(αx1 + βx2) = 2 + αx1 + βx2
2

exp(−αx1 − βx2)

for x1, x2 ≥ 0. The marginals also follow translated Gamma distributions.
The joint distribution of (X1, S) can be obtained from (3.3). From this expression,

the survival function of S (C-convolution) is

F̄S(s) = α

α − β
Ḡ(βs) − β

α − β
Ḡ(αs)

= α

α − β
e−βs − β

α − β
e−αs + αβs

2(α − β)

(

e−βs − e−αs)

for s ≥ 0. Note that it is a negative mixture of two translated Gamma distributions.
The conditional survival function of (S | X1 = x) can be obtained from (4.3) as

F̄S|X1(s | x) = g((α − β)x + βs)

g(αx)
= 1 + (α − β)x + βs

1 + αx
e−β(s−x)

for s ≥ x . Analogously, from (4.8), the conditional survival function of (X1 | S = s)
is

F̄X1|S(x | s) = g(αs) − g((α − β)x + βs)

g(αs) − g(βs)

= 1 + αs − (1 + (α − β)x + βs)e(α−β)(s−x)

1 + αs − (1 + βs)e(α−β)s

for 0 ≤ x ≤ s.
In Fig. 4 we plot the probability density (left) and hazard rate (right) functions of

X1 (red), X2 (green) and S (blue) when α = 2 and β = 1. Note that both marginals
are IFR and the same holds for S. Also note that the limiting behavior of the hazard
rate of S coincides with that of the best component in the sum (X2). This is according
with the results on mixtures obtained in Lemma 3.3 of Navarro and Shaked (2006)
(or Lemma 4.6 in Navarro and Sarabia (2020)) and that in Theorem 1 of Block et al.
(2015) on usual convolutions.

In the last example we show a case dealing with the GK model (2.8) where
the inverse of the conditional distribution function FX1|S of (X1 | S) cannot be
obtained in a closed form. Then we need to use numerical methods (or implicit
function plots). Moreover, it also shows that the quantile (median) regression curve
mX1|S(s) = F−1

X1|S(0.5 | s) is not always increasing.
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Fig. 4 Probability density (left) and hazard rate (right) functions for X1 (red), X2 (green) and S = X1+ X2
(blue) under the dependence model (2.8) with translated Gamma marginals studied in Example 3. The
dashed lines represent the limiting behavior

Example 4 Let us consider the model (2.8) with a survival copula in the family of
Gumbel–Barnett copulas [see (4.2.9) inNelson (2006, p. 116]. In this case, the additive
generator of the copula is Ḡ−1(x) = ln(1 − θ ln x) for x ∈ (0, 1] and θ ∈ (0, 1].
These copulas are strict Archimedean copulas and the independence (product) copula
is obtained for θ → 0. Hence,

Ḡ(x) = exp

(

1

θ
− 1

θ
ex

)

and

g(x) = 1

θ
exp

(

x + 1

θ
− 1

θ
ex

)

for x ≥ 0. Note that the inverse of g does not have an explicit form, thus one cannot
use (4.9) to compute the quantile functions of (X1 | S). The same happens in (4.4) for
the quantile functions of (S | X1).

However, it is possible to plot the level curves of the conditional distribution function
by using (4.8), obtaining

FX1|S(x | s) = g((α − β)x + βs) − g(βs)

g(αs) − g(βs)
(5.1)

when α 
= β. For example, if we choose α = 3, β = 1 and θ = 1 in (5.1), we get

FX1|S(x | s) = g(2x + s) − g(s)

g(3s) − g(s)
= exp

(

2x + s + 1 − e2x+s
) − exp (s + 1 − es)

exp
(

3s + 1 − e3s
) − exp (s + 1 − es)

for 0 ≤ x ≤ s. These level curves are plotted in Fig. 5 (left) for q =
0.05, 0.25, 0.5, 0.75,0.95. Note that the median regression curve mX1|S(s) =
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Fig. 5 Median regression curve (red) and quantile regression curves (blue) for q = 0.05, 0.25, 0.75, 0.95
(left) for (S, X1) in Example 4. Conditional distribution functions FX1|S(x | s) for s = 0.2 (red), 0.4
(blue), 0.6 (green), 0.8 (orange), 1 (black) and 2 (purple). The black line in the left plot represents the line
X1 = S

F−1
X1|S(0.5 | s) (red line, left) is first increasing and then decreasing. To explain

this surprising fact we plot FX1|S(x | s) in Fig. 5 (right) for different values of s,
where one can observe that these distribution functions are not ordered in s, that is,
(X1 | S = s) is not stochastically increasing in s. Here the greater values for X1 are
obtained when S ≈ 0.6 (green line). Also note that E(X2) = 3E(X1) and that X1 and
X2 are negatively correlated. Therefore, the greater values of S are mainly obtained
from the greater values of X2 and the smaller values of X1. For that reasons mX1|S is
decreasing at the end.

Also note that

Cov(X1, S) = Var(X1) + Cov(X1, X2) = Var(X1) + E(X1X2) − E(X1)E(X2).

Therefore, Cov(X1, S) ≥ 0 when Cov(X1, X2) ≥ 0 and, in particular, when X1
and X2 are independent. However, the covariance Cov(X1, S) will be negative if
Var(X1) < −Cov(X1, X2). In our case, the marginal reliability functions of X1
and X2 are F̄1(t) = Ḡ(3t) and F̄2(t) = Ḡ(t), respectively. Their means are
E(X1) = 0.198782 and E(X2) = 0.596347, their variances Var(X1) = 0.019589
and Var(X2) = 0.176301 and their covariance Cov(X1, X2) = −0.029889. Hence

Cov(X1, S)=Var(X1)+Cov(X1, X2) = 0.019589 − 0.029889 = −0.010299 < 0.

6 Conclusions

We formulated the TTE dependence model by using a distortion representation based
on a specific fixed distortion function ̂D. This representation is useful to compute the
joint distribution of X1 and the sum S = X1 + X2, as well as to provide expressions
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for the survival function of S and the conditional distributions of S given X1 or X1
given S. They can be used also to predict one value from the other by using quantile
regression. Some examples illustrate these facts, showing that sometimes the classical
copula approach cannot be applied.

This paper is a first step on applications of distortion representations for the TTE
dependence model. Thus, there are several tasks for future research. The main one
could be to get explicit models by choosing appropriate functions Ḡ, H̄1 and H̄2, to
study their main properties and how they fit to real data sets, allowing for the use of the
prediction techniques developed here for these data sets. Other interesting questions
deal with dependence models for which the multivariate distortion function ̂D differs
from the one in Eq. (2.7), or how to get explicit expressions for the multivariate case.
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