
MDL, 2020, pp. 1–12

doi: 000000

MDL

Paper

PAPER

MDL+ A Manufacturing Description Language to
Describe and Control Assembling Tasks in Industry 4.0

Mauricio-Andres Zamora-Hernandez,1,∗ Jose Andrez Chaves Ceciliano,1

Alonso Villalobos Granados,1 John Alejandro Castro Vargas,2 Jose Garcia-Rodriguez2

and Jorge Azorin-Lopez2

1Industrial engineering, University of Costa Rica, Ciudad Universitaria Rodrigo Facio, 2060, San José, Costa Rica and 2Department of

Computer Technology, University of Alicante, San Vicente del Raspeig, 03690, Alicante, Spain
∗Corresponding author. mauricio.zamorahernandez@ucr.ac.cr

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

The assembly of products or components by operators in industries is a complex task with recurring problems. In these
processes, operators often make errors that can lead to defective products. Therefore, they need to be inspected later to
verify their correct assembly. The main problems are caused by several reasons including: high employee turnover, lack of
experience in manufacturing specific products, or confusion in interpreting instructions to assemble similar components.
In this paper, a novel structured language aimed to describe the required actions to manufacture a product in industrial
assembly environments is presented. The main contribution is to provide a formal language to feed automatic systems that
can verify through visual control whether the actions performed by the operator are carried out following the standard
described by this language. In general, the use of this formal language will allow to minimize the negative impact of errors
during assembly and to reduce waste in many forms in the industry.

Key words: Assembly representation, Automatic Inspection, Control language, Industry 4.0, Recommendation system

Introduction

This research work focuses on improving the quality and safety

in the industries during the manual product assembly process

by checking that the actions carried out by the operators

are according to the defined quality standards. The aim is

to achieve homogeneity in the assembly of final products,

minimizing manufacturing problems, or waste of time and

money due to reprocessing assemblies.

The control of manufacturing processes is a problem that

has always been present in industry. Kanawaty [2008] defines

that ”the study or engineering of methods is the registry

and systematic critical examination of the ways of carrying

out activities, in order to make improvements”. Studying the

method allows us to analyze processes from their most basic

elements, such as the sequence of necessary movements, to

complete tasks. In this way, improvements can be made in

production processes, determining changes in sequences or

reducing unnecessary movements. Therefore, it is a crucial

topic for research in Industrial Engineering, since it permits a

correct production planning and provides an adequate analysis

of operations. This becomes a way to establish more precise

calculations in the production capacities for the industry. In

addition, it promotes the improvement of the quality in the

processes from a granular level, reducing wastes in the form of

money, time, and materials.

Along with advances in technology, alternatives have been

proposed to solve the problem of assembly control, for

which the techniques of automatic inspection systems are

commonly used. These approaches compare the assemblies

against measurement standards. Due to the growing need for

high-quality and personalized products, new requirements have

been defined in quality control systems. Systems should learn

to identify or process specific parts that are designed for

particular solutions. These quality inspection processes can be

implemented by making use of simple sensors such as those

that measure weight, color or size [Fast-Berglund et al., 2013].

However, these inspections are limited to the capability of

© The Author 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com

1

This is a previous version of the article published in Logic Journal of the IGPL. 2023, 31(4): 664-687. https://doi.org/10.1093/jigpal/jzac032

email:mauricio.zamorahernandez@ucr.ac.cr
https://doi.org/10.1093/jigpal/jzac032

2 Mauricio-Andrés Zamora-Hernández et al.

the sensors available in the market, so they might not be

as useful in many cases. Recently, Computer Vision (CV) is

one of the most used technologies to validate the quality of

the manufactured products by visual control mechanisms at

workstations [Hedelind and Jackson, 2011].

Among the applications of computer vision in the

manufacturing industry for quality control stand out: quality

control (shapes, sizes, colors), collision detection [Wang et al.,

2013], navigation [Hornung et al., 2010] and augmented reality

[Makris et al., 2016]. However, this work proposes the use

of CV beyond the measurement of characteristics by visually

identify the actions executed by the operator and compare them

with a specified standard. The standard is described using our

proposed Manufacturing Description Language. This language

defines the sequence of manual construction steps needed to

succesfully build a product that meets the quality standard

defined by the company, guiding the operator through the

process.

There are already research proposals based on Artificial

intelligence (AI). For example, Luo et al. [2019] used the image

captioning technique for automatically generating an image

description. In this case, it could be applied to describe what

happens in assembly environments, considering verification

of the necessary manufacturing steps. However, usually in

manufacturing processes, more than a description with a

simple label is required, a complete semantic description of

the actions performed is demanded by the quality control

department. For this reason, researchers such as Wang

et al. [2018] have focused on captioning for video using

Hierarchical Reinforcement Learning techniques to generate

a more detailed description. Another important work has

been developed by Krishna et al. [2017] using long short-term

memory (LSTM) deep networks in a dense-captioning model

for event detection. In both cases, descriptive narratives in

natural language are used. In order to advance in this area,

Yao et al. [2017], proposed to create narratives in different

ways: template-based methods where structures are created,

or search for generate narratives in fixed forms. In general,

visual element-based approaches are being used to generate

texts and language-based models using k-nearest neighbour

retrieval models. However, these tehcniques have not a formal

specification of the image descriptions. It is convenient to

use grammatical systems to structure the instructions in such

a way that they are able to express rules applicable to the

industry. On the other hand, authors as Nguyen et al. [2019]

proposed techniques to understand and imitate human actions

without defining objectives or validations for the actions.

Therefore, a grammar that allows the quality control systems

to structure manufactuing instructions and enables adequate

communication of the actions to be carried out without creating

ambiguities between the parties involved is required.

To mitigate these deficiencies, Yang et al. [2015] proposed a

system of convolutional neural networks which, through video

analysis, constructs grammar trees of the observed actions.

These are unrestricted general use grammars for a particular

use, so it could generate unstructured actions for the strict

verification of what is captured. Mancini et al. [2018] are

working on object detection in specific domains of industry, but,

without the definition of a grammar to describe the sequence

of actions. Therefore, our proposal of designing an assembly

specific-domain grammar in Industry 4.0 is a novel researh area.

The goal is to create a simple grammar that describes the

daily activities in the manual assembly of a product. In order

to increase its usability, the principles of the Therbligs theory

have been applied Groover [2007], Universidad Politécnica

deValencia [2018], Ferguson [2000] to allows to represent all

the assembly sequences using micro-movement primitives. The

proposed language is based on the analysis of the most basic

movements and actions of the human hands while a product is

being manufactured.

The language allows describing the actions of the operators

in a manufacturing cell, supported by the grammar that will be

detailed in the following sections. A new method of representing

assembly instructions is proposed, which will be the base of a

visual control system implemented for the quality control of

the manual assembly process. Moreover, this paper extends the

features of our previous work [Zamora-Hernández et al., 2021],

including an extension to represent parallel tasks developed

in a coordinate way by different operators or whith a single

operator but using both hands. On the other hand, it introduces

new quantative experimentation with different actions and

evaluating the advantages of using the language with operators

manufacturing evaluation tests.

The remaining of the paper is structured as follows: Section

2 presents the different forms of description of actions in the

industry, then the proposed language and the general structure

of its main elements, as well as particular syntax elements is

presented in Section 3. In section 4, the general validation of

the proposal is carried out using some examples that shows how

different representative assembly tasks are developed. Finally,

the conclusions and future works are presented.

Description of Actions in Industry

The use of languages is required to express, in a formal and

standarized manner, the necessary steps to manufacture a

product. For this purpose, it is needed to define particular

semantics for the language. A literature review was carried

out in order to find existing languages that could represent

the necessary instructions for the manual assembly of products

by the operators. However, the specific work is scarce. Among

the most significant contributions, IBM proposed in the

mid-80s a language for the product assembly process, but

restricted to the use of robots without any interaction with the

operators. Moreover, the robots were only CNC-type machines

for repetitive work on fixed positions, without any kind of

cognitive analysis [Nackman et al., 1986].

Some works used CV to identify actions that can be

described by text, in some cases using Natural Language

Processing. However, as semantics are not available, a

standardized format is not generated, and that would

complicate the process of analyzing actions oriented towards

manufacturing.

One of the most advanced challenges in this area is to

provide to a machine with the capabilities to understand the

actions performed by a human (in this case, an operator)

through CV, so that a machine performs exacly the same

actions through an observation and learning process. One of

the possibilites to provide it is by recognizing actions through

task detection, which can output captioning in sentences using

natural language, but without grammar knowledge because this

form of language lacks of the semantics that allow to express

ideas correctly [Nguyen et al., 2019].

Human-robot collaboration applications should be natural

for people, so there can be a better understanding of the

steps needed to be followed along a process. In this line of

research, Starke et al. [2019] studied human factors generating

3

data from the position of the hands during the execution of

actions on assemblies and tools at the level of grip pressure and

movement of the skeletons. This could improve the definition of

manufacturing actions and their optimization in the assembly

processes.

Manufacturing Description Language

In this section we detail our proposal for the Manufacturing

Description Language (MDL). This language allows factory

managers to document the sequences of activities neceded for

the development of a product and to ensure that the operator

does it properly. This language was designed, not only as a

complement to automated visual inspection research, but for

general use in the description of manufacturing processes in a

standarized way.

While designing the language, it was established that it

would form a basic part of a global solution, which would

use CV systems, to indicate the general operating settings

automatically. For example, working area characteristics, tools

to be used, parts and components needed for assembly,

and their locations. However, for environments where these

capabilities are not available, the language provides a setup

section to set the parameters manually. In the latter, it is

required that the location for each element on the workplace is

standarized in order to eliminate the need to set the parameters

manually each time that the process is going to be performed.

Another language requirement during the design stage was

a simple and concise syntactic structure for the instructions.

Thus, its use should only requires brief and simple training,

since it can be used by people of different specialities and

skills: quality and production managers, and the operators of

the manufacturing cells themselves. Another relevant feature

to highlight is that the system allows defining an assembly by

its components, this generates an advantage since milestones

can be established during construction for quality evaluation

along the process. It also means flexibility, allowing to establish

alternate assembly routes for specific products.

A basic set of tools was defined, but the system gives

the possibility of extending the language with new tools and

configurations. Among those available within the basic version

of the language, it can be found:

• Clamp

• Gun Drill

• Screw Drill

• Ball Pein Hammer

• Claw Hammer

• Nut Driver

• Diagonal Pliers

• Lineman Pliers

• Locking Pliers

• Long Nose Pliers

• Ratchet

• Electric Screwdriver

• Phillips Screwdriver

• Slotted Screwdriver

• Socket

• Adjustable Wrench

• Allen Wrench

• Combination Wrench

Also, as a complement to the tools, some of them have

accessories defined in the language. As well as parts and

components of general use, among these are:

• Bolt

• Drill bit

• Gears

• Nut

• Screw

• Washer

A simple grammar is proposed using the micro-movements

theory of Therbligs and the study of how companies document

their processes. This grammar allows describing the daily

activities in the manual assembly of products, taking into

account the needs of people who work in this area and those

who evaluate the quality of the product.

Instructions developed with the micro-movement primitives

are used to represent entire assembly sequences. This also

encourages its use by Industrial engineering professionals due

to the advantages of using proven techniques. Also, since this

language was proposed as the basis of a visual control system,

some of its characteristics and structure were designed with

this purpose. In consequence, the instructions generated using

a formal grammar could be analyzed, interpreted and finally

compared with the visual inputs of the control system.

Therefore, the main objective of the language is to evaluate

whether an operator is assembling a component or product

according to the specifications given by the instructions

established. This evaluaton is carried out in two stages:

1. Expert stage: a process or quality engineer uses the

language to describe the actions necessary for the assembly

of a product.

2. Operator stage: the operator carries out the assembly

tasks, while an artificial vision system records as input

what is happening in the working area, processes it, and

converts it into a textual description using video captioning

techniques.

Subsequently, a comparison is made with the language

description to determine if the operator followed the

instructions correctly.

Besides, the system would be capable of determining the

current step or action, to indicate to the operator the next

steps. It reduces the possibility of errors when making the

assembly and the waste of time generated by the operator trying

to remember the next step (this happens to be a recurring

issue when an operator is trained to assemble many different

products). The full language proposal can be found in our

public repository 1

In the next subsection a general description of the sections

that make up the language are decribed. First, the instructions

that allow describing elements of the work environment are

explained. After that, the instructions that allow describing the

activities of the manual assembly process are detailed. Finally,

the whole grammar of the language is listed.

Operation parameters

This section details how the initial execution settings are

described within the language distinguising two different modes

of operation: automatic and manual.

In the automatic mode, the system will be self-configured

using visual information of the cell obtained through computer

vision techniques that are able to describe the work

environment. It is carried out by identifying the elements

present on the working table and their locations.

In the second mode, an operator or process engineer is

required to describe the working area using the elements that

the language provides, which are detailed below. As mentioned

before, this alternative requires the position of the elements on

the workplace to be standarized.

To carry out the manual configuration, the following

instructions are necesary (can be seen in detail in listing 8):

1 https://github.com/mazamorahdez/manufacturing_

language

https://github.com/mazamorahdez/manufacturing_language
https://github.com/mazamorahdez/manufacturing_language

4 Mauricio-Andrés Zamora-Hernández et al.

1. product: establishes the ID code or name for the product

to be registered in the assembly instructions.

2. setup: the initial positions where parts, components, and

tools are placed within the working area. In addition,

the location of the existing components (assemblies and

sub-assemblies) is indicated; as well as the amount of

components and sub-assemblies that will be generated

during the manufacturing process. In this same section of

the code, the dominant hand for the operator is defined, so

that the system will configure the instructions according to

the individual characteristics of each user.

As it can be seen, the quantities of each complement as bolts,

screws and such items are defined in the setup. This allows the

automatic inspection system to let the operator know whenever

he is consuming the totality of the available elements.

Listing 1. Operation parameters
<set> := assembly < i d e n t i f i e r > [to−c r ea t e] [in <

coordinate >:<o f f s e t >:<unit >] ;

<set> := hand <x−pos i t i on >;

<set> := bin <part> [in <coordinate >:<o f f s e t >:<unit >] ;

<set> := too l <too l> [in <coordinate >:<o f f s e t >:<unit >] ;

<set> := acce s so ry <accessory> [in <coordinate >:<o f f s e t

>:<unit >] ;

In the language grammar the section “Setup” can be found.

This section starts with the command setup-begin and proceeds

with <sets >setup-end. Where the sets can take any of the

following options:

• assembly: establishes the location of an assembly or sub-

assembly that will be used during the manufacturing

process. In case to create is indicated, it means that the

assembly will be created from the union of two or more

assemblies during the execution. Hence, the corresponding

blocks for these assemblies are defined in the system.

• hand: indicates to the system the operator’s dominant

hand, thus adjusting the dominant and non-dominant hand

instructions according to each individual.

• bin: defines the location of the container and its content, so

that when the instructions are established the system knows

where it should take from or where to place the assembly

supplies such as components.

• accessory: some tools use accessories as drill bits for

example. This indicates the location of these elements to

the system, so that when shown in the instructions it can

be verified if the correct accessories were used, by checking

the location where the operator took the required element.

Assembly actions

In this subsection, the instructions that allow the description of

the assembly sequence are introduce. Each instruction within

this segment of code is called a step.

Each step instruction is classified into two possible types:

those that define a single operation (which we will call

Individual steps) and the instructions that define sets of steps

that we call Step blocks. These are detailed in the following

points.

Individual steps

At this point, the instructions that allow the definition of

individual actions are detailed. Within this type of actions,

there are three categories, which are defined below:

• hand: these operations are related to movements or actions

performed with the hands, and are the most basic actions

that can be performed by the operator along the process.

See an example in listing 2.

Listing 2. Hand operations.
<step> := <hand−act ion >:(<part>|<too l >) with <handused

>

[in assembly #<i d e n t i f i e r >] ;

<step> := <hand−act ion >:<handused> [in <coordinate >:<

o f f s e t >:<unit >] ;

<step> := <hand−act ion >: assembly #<i d e n t i f i e r > with

(assembly #<i d e n t i f i e r > | <handused>) ;

<step> := move : assembly #<i d e n t i f i e r >

with <handused> from <coordinate >:<o f f s e t >

to <coordinate >:<o f f s e t >:<unit >;

<handused> := hand | hand−nondominant | hand−any |
hand−both

<hand−act ion> := put | hold | take | gr ip | r e l e a s e

| push | sp in | turn | j o i n | move

• tool: these instructions are related to the use of tools only

or in conjunction with their respective accessories, as can

be seen in the listing 3: there is an example of the actions

defined for each one of the tools listed in listing 6.

Listing 3. Tool operations.
<step> := <substep> [in <coordinate >:<o f f s e t >:<unit >] ;

<substep> := <hammer−act ion >:<hammer> | <wrench−act ion

>:<wrench>

| <screwdr iver−act ion >:<screwdr iver> | <p l i e r s −act ion

>:<p l i e r s >

| <d r i l l e r −act ion >:<d r i l l e r > with <accessory> | <clamp

−act ion >:clamp

| <ratchet−act ion >: r a t che t with (socket | none)

| <screwdr iver−act ion >: nu t d r i v e r

Fig. 1. Real images for training tools and actions

• move: these operations are intended to define offsets of

the assemblies in the working area from a source location

to a destination. This has been inroduced to simplify the

combination of the take, move and put hand-actions in

single instructions. See examples in listing 4.

Listing 4. Movements operations.
<step> := move : assembly #<i d e n t i f i e r > with <handused>

from <coordinate >:<o f f s e t >

to <coordinate >:<o f f s e t >:<unit >;

5

Steps blocks

These blocks of steps are sequences made up with instructions

of the assembly-action type required to complete a specific part

of the global assembly. See examples in listing 5.

These are the available steps blocks types:

• make-assembly: this is one of the most relevant blocks of the

language, since it allows to describe the concept of assembly

(or sub-assembly), which defines milestones during the

process. This permits the construction of complex elements

from the union of other more basic ones. A relevant property

of this block is that it defines named units, which can be

invoked to be part of another assembly.

• repetition: there are sets of steps (including blocks), which

are required to be executed several times. In these cases,

the set of steps to be repeated and the number of times

that they must be executed are defined.

• any-order : a basic premise of the language is that

statements are executed in the order established unless it

is stated otherwise. To do this, the any-order block is used,

which tells the system that the instructions within this block

can be executed in any order.

• parallel: it is used when it is required to execute instructions

simultaneosly, either because there are more than one

operator interacting in the working area, or to describe a

coordinate action that involve the use of both hands.

The parallel block is useful when the operator performs

more than one action at the same time. For example, when

the operator holds a nut with a wrench and install a screw

with the screwdriver by simultaneously turning both hands in

different directions. This block of parallel actions was designed

to consider when more than one operator are contributing to

an assembly. It allows to specify the actions for the operators

involved (although this case is less common than the previously

detailed use).

Listing 5. Steps blocks
<make−assembly> := assembly−s t a r t #<i d e n t i f i e r >:<steps>

assembly−end ;

<r ep e t i t i on > := repeat :< steps> un t i l <d i g i t s > t imes ;

<in−any−order> := any−order−begin <steps> any−order−end ;

<pa r a l l e l > := pa r a l l e l −begin : <steps> pa r a l l e l −end ;

Parameterization

The key elements in the definition of the language with general

purpose characteristics are those described below:

• hand-action: it defines all possible actions that can be

performed with the hands, and represent the base of

the steps required to build the assembly. Some of these

were taken from the Therbligs. Others were incorporated

according to real assemblies needs.

• tool: it defines the list of available tools to perform

transformations or work on the elements in the assembly

process. Basic and common families are created by studying

manual assembly operators in several industries. However,

the flexibility principle of the language guarantees the

possibility to incorporate more tools, mainly due to the

wide range of products and industries, and the constant

development of new equipment. You can see the basic list

of tools in listing 6.

• tool-action: these are the actions that can be performed on,

or through, the tools. Since not all tools share the same

range of actions, this element allows the association to be

made. Like tools, this section can be updated to represent

the actions of new tools coming to market. The system

has the capability to extend the actions, but a basic set

is defined that can be seen in listing 6.

• substep: the actions of a tool are matched with the

respective family of tools.

• complement: the parts are the simplest and most common

elements used in assemblies. These can be extended and

modified like the rest of the elements. The system already

incorporates a basic list that contains: screws, nuts,

washers, among others.

• part: pieces that are used to build the product through

actions that usually involve tools and complements in

order to join them. These parts can be seen as the basic

components of sub-assemblies that make up a more complex

part when put together.

Listing 6. Tools and their actions
<too l> := <hammer> | <wrench> | <screwdr iver>

| <p l i e r s > | <d r i l l e r > | ra t che t | clamp

| nut d r i v e r

<hammer> := hammer bal l pein | hammer claw

<wrench> := wrench adjustab le | wrench a l l en |
wrench combination

<screwdr iver> := s c r ewd r i v e r e l e c t r i c |
s c r ewd r i v e r p h i l l i p s | s c r ewd r i v e r s l o t t e d

<p l i e r s > := p l i e r s d i a g o n a l | p l i e r s l i n eman |
p l i e r s l o c k i n g | p l i e r s l o n g n o s e

<d r i l l e r > := d r i l l g u n | d r i l l s c r ew

<hammer−act ion> := na i l | hammer out | h i t

<wrench−act ion> := pu l l | t i gh t | locknut

<screwdr iver−act ion> := screw

<p l i e r s −act ion> := loosen | cut | hold | t i ghten

<d r i l l e r −act ion> := d r i l l i n g

<clamp−act ion> := loosen | t i ghten

<ratchet−act ion> := turn

• accessory: it is defined as a complement for a particular

tool. Similar to tool-actions, they are specific to each tool,

so their relationship must also be established. In this case,

it is done with a substep. Some examples of accessories are:

drill bits and nut hubs, among others.

• coordinate: it allows placing an ordered pair to locate the

elements on the table, where the centroid of the work table

is assumed as the point (0,0). It is based on the assumption

that the visual control camera is located over the working

bench, which makes it possible to interpret the workspace

as a plane.

• offset: set the coordinate origin, define the offset, which is

set as the length of each of the sides of a square, where the

centroid of the square is the coordinate indicated.

• unit: the measurement units with which the offset and

coordinates work.

The symbols and basic elements that are part of the

parametrization of the language are shown in listing 7.

Listing 7. Language symbols
<o f f s e t > := <d i g i t s >

<unit> := mm | cm | mm

<coordinate> := <s ign><d i g i t s >,<s ign><d i g i t s >

<s ign> := <void> | <pos i t i v e> | <negat ive>

<void> := ’ ’

<pos i t i v e> := +

<negat ive> := −
<pos i t i on> := <x−pos i t i on> | <y−pos i t i on> | <y−pos i t i on

>−<x−pos i t i on>

<x−pos i t i on> := r i g th | l e f t

<y−pos i t i on> := upper | lower

< i d e n t i f i e r > := <char> | <char><word> | #bytes#

<word> := <alpha><word>

<alpha> := <char> | <d ig i t> | <void>

<char> := a | b | . . . | z | A | B | . . . | Z | | − | & | ’

’ | . | , | @

<d i g i t s > := <d ig i t> | <d ig i t><d i g i t s >

<d ig i t> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

6 Mauricio-Andrés Zamora-Hernández et al.

Finally, the complete MDL+grammar is summarized in

listing 8.

Listing 8. Language grammar
<S> := <assemble>

<assemble> := assemble−begin <product> <setup> s t a r t <

steps> end assemble−end

<product> := <word>;

<setup> := setup−begin <se t s> setup−end

<se t s> := <set> | <set><se t s>

<set> := assembly #<i d e n t i f i e r > [to−c r ea t e] [in <

coordinate >:<o f f s e t >:<unit >] ;

<set> := hand <x−pos i t i on >;

<set> := bin <part> [in <coordinate >:<o f f s e t >:<unit >] ;

<set> := too l <too l> [in <coordinate >:<o f f s e t >:<unit >] ;

<set> := acce s so ry <accessory> [in <coordinate >:<o f f s e t

>:<unit >] ;

<o f f s e t > := <d i g i t s >

<unit> := mm | cm | mm

<steps> := <step> | <step><steps>

<step> := <make−assembly>

<step> := <hand−act ion >:(<part>|<too l >) with <handused>

[in assembly #<i d e n t i f i e r >] ;

<step> := <hand−act ion >:<handused> [in <coordinate >:<

o f f s e t >:<unit >]

[in assembly #<i d e n t i f i e r >] ;

<step> := <hand−act ion >: assembly #<i d e n t i f i e r > with

(assembly #<i d e n t i f i e r > | <handused>) ;

<step> := move : assembly #<i d e n t i f i e r > with <handused>

from <coordinate >:<o f f s e t >

to <coordinate >:<o f f s e t >:<unit >;

<step> := <substep> [in <coordinate >:<o f f s e t >:<unit >]

[in assembly #<i d e n t i f i e r >] ;

<step> := <r ep e t i t i on >

<step> := <any−order>

<step> := <pa r a l l e l >

<substep> := <hammer−act ion >:<hammer> | <wrench−act ion >:<

wrench>

| <screwdr iver−act ion >:<screwdr iver> | <p l i e r s −act ion >:<

p l i e r s >

| <d r i l l e r −act ion >:<d r i l l e r > with <accessory> | <clamp−
act ion >:clamp

| <ratchet−act ion >: r a t che t with (socket | none) | <

screwdr iver−act ion >: nu t d r i v e r

<handused> := hand | hand−nondominant | hand−any | hand−
both

<hand−act ion> := put | hold | take | gr ip | r e l e a s e

| push | sp in | turn | j o i n |move

<part> := bo l t | gears | nut | screw | washer

<accessory> := d r i l l b i t | socket | none

<make−assembly> := assembly−s t a r t #<i d e n t i f i e r >:<steps>

assembly−end ;

<r ep e t i t i on > := repeat :< steps> un t i l <d i g i t s > t imes ;

<pa r a l l e l > := pa r a l l e l −begin : <steps> pa r a l l e l −end ;

<in−any−order> := any−order−begin <steps> any−order−end ;

<too l> := <hammer> | <wrench> | <screwdr iver>

| <p l i e r s > | <d r i l l e r > | ra t che t | clamp

| nut d r i v e r

<hammer> := hammer bal l pein | hammer claw

<wrench> := wrench adjustab le | wrench a l l en |
wrench combination

<screwdr iver> := s c r ewd r i v e r e l e c t r i c

| s c r ewd r i v e r p h i l l i p s | s c r ewd r i v e r s l o t t e d

<p l i e r s > := p l i e r s d i a g o n a l | p l i e r s l i n eman |
p l i e r s l o c k i n g | p l i e r s l o n g n o s e

<d r i l l e r > := d r i l l g u n | d r i l l s c r ew

<hammer−act ion> := na i l | hammer out | h i t

<wrench−act ion> := pu l l | t i gh t | locknut

<screwdr iver−act ion> := screw

<p l i e r s −act ion> := loosen | cut | hold | t i ghten

<d r i l l e r −act ion> := d r i l l i n g

<clamp−act ion> := loosen | t i ghten

<ratchet−act ion> := turn

<coordinate> := <s ign><d i g i t s >,<s ign><d i g i t s >

<s ign> := <void> | <pos i t i v e> | <negat ive>

<void> := ’ ’

<pos i t i v e> := +

<negat ive> := −
<pos i t i on> := <x−pos i t i on> | <y−pos i t i on> | <y−pos i t i on

>−<x−pos i t i on>

<x−pos i t i on> := r i g th | l e f t

<y−pos i t i on> := upper | lower

< i d e n t i f i e r > := <char> | <char><word> | #bytes#

<word> := <alpha><word>

<alpha> := <char> | <d ig i t> | <void>

<char> := a | b | . . . | z | A | B | . . . | Z | | − | & | ’

’ | . | , | @

<d i g i t s > := <d ig i t> | <d ig i t><d i g i t s >

<d ig i t> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Experimentation

The validation of the MDL+ is twofold: firstly, validating

the efficiency and applicability of the language in the

manufacturing cells. Second, validating the capacity of the

MDL+ to describe actions.

Language validation

An experiment was designed oo carry out the language

validation with a group of companies, whose production is

developed in manufacturing cells. Each company provided at

least one representative. This experimented worker participated

in an interview that aimed to identify how to represent the

instructions during the assembly process, and the tools that

they normally use to perform these tasks.

For the design of the experiment, several phases were

established aimed to specify a language that was conceptually

equivalent to the regular instructions used by each one of the

factories. The first phase of the experiment is detailed below:

1. Identify examples of production sequences used by the

company to generate the step list required for each

of the assemblies. During the research, the different

ways of documenting processes and product assemblies of

each company were collected. After that, an equivalent

codification of the instructions that describe the process

was generated using the Manufacturing Description

Language.

2. In order to evaluate the equivalence between the original

format used by the involved factories and the description

of the process made using the Manufacturing Description

Language, a comparison was developed and graded by

each of the interviewed workers. Together with the

collaborators selected, the new version of the instructions

of their respective process was reviewed to determine

its level of accuracy. It was possible to determine that

aproximately 97 % of the instructions were succesfully

converted, meanwhile, the remaining 3 % corresponded to

very particular elements of each industry or process. To

solve this point, a particular extension of the language was

generated in order to complete the sequence. It is important

to indicate that this was a consideration that was taken as

a requirement when designing the language: its flexibility,

offering an oportunity for the user to incorporate new tools

and actions, meeting better the needs of each particular

process.

3. To conclude this phase, a test was made by taking a group

of operators and giving them a brief introduction on the

use of language. Then, they were given a set of instructions

to be executed on the workstations according to the new

language.

The last stage in the validation was designed to determine if

factors such as the learning curve in the assembly of products

and previous knowledge of process documentation standards

affect the results. In order to do so, a group of Industrial

Engineering students volunteers from the University of Costa

Rica carry out the validation. Since the Industrial Engineering

degree is offered in three locations. The experiment was

replicated under the same conditions for each of them. As

requirements for this experiment, they had to be students of

the first three semesters without experience in manufacturing

companies. The number of men and women was balanced.

Specfically, there was a participation of 24 to 28 students per

7

location, 12 to 13 for each gender, having a total of 8 to 9

students per semester (see Table 1).

Table 1. Distribution of experiment participants

Location Semester Women Men

1

1 4 5

2 4 4

3 5 4

Total 13 13

2

1 5 4

2 5 5

3 5 4

Total 15 13

3

1 4 4

2 4 4

3 4 4

Total 12 12

The assembly process of a skateboard was selected because

its simplicity but it requires handling different tools and

complements. The whole process was described in two different

manners: first, by using traditional product description

techniques; and second, by using the language proposed in this

research.

The participants were randomly divided into two groups

to alternate the execution of the sequences. Team 1 first

assembled the skateboard using traditional techniques. They

were derived from those acquired in the previous validation

stages (involving representatives from different companies), and

later on, assembled the product using the proposed language.

Team 2 executed both alternatives in the opposite order, to

mitigate the order effect.

Table 2. Run time of experiments

Experiment Loc.
Team 1 Team 2

Convent. Proposal Convent. Proposal

Experiment 1

1

00:04:59 00:03:56 00:05:11 00:04:30

Experiment 2 00:10:35 00:09:45 00:08:27 00:06:59

Experiment 3 00:07:06 00:05:53 00:09:14 00:07:55

Total 00:22:40 00:19:34 00:22:52 00:19:24

Experiment 1

2

00:04:34 00:04:01 00:04:36 00:03:59

Experiment 2 00:08:32 00:07:35 00:09:06 00:07:44

Experiment 3 00:08:21 00:07:35 00:08:46 00:08:02

Total 00:21:27 00:19:11 00:22:28 00:19:45

Experiment 1

3

00:04:44 00:03:41 00:04:19 00:03:18

Experiment 2 00:08:35 00:07:32 00:09:30 00:08:42

Experiment 3 00:09:36 00:08:46 00:08:26 00:07:33

Total 00:22:55 00:19:59 00:22:15 00:19:33

For the execution of the experiment, the following steps were

followed:

1. All participants were trained to ensure that there were no

variations in the understanding of the language, minimizing

the variation caused by this factor.

2. The experiment was carried out in two consecutive

classrooms with the same levels of environmental conditions

(temperature, humidity, noise, lighting, etc.).

3. The individuals participating were separated so that they

could not get more information of the assembly before it

was their turn to proceed.

The experiments produced the results that can be observed

in Table 2. In each experiment, on both teams, there was a

reduction in execution time when using MDL + with respect

to the traditional description of actions. Doing a comparative

analysis of the results in percentage terms there is an average

reduction of 12,74 % showing that MDL+ was easier to

understand and apply.

Table 3. Percentage reduction in execution time

Experiment Loc.
Team 1 Team 2

Time red. % red. Time red. % red.

Experiment 1

1

00:01:03 21,07% 00:00:41 13,18%

Experiment 2 00:00:50 7,87% 00:01:28 17,36%

Experiment 3 00:01:13 17,14% 00:01:19 14,26%

Total 00:03:06 13,68% 00:03:28 15,16%

Experiment 1

2

00:00:33 12,04% 00:00:37 13,41%

Experiment 2 00:00:57 11,13% 00:01:22 15,02%

Experiment 3 00:00:46 9,18% 00:00:44 8,37%

Total 00:02:16 10,57% 00:02:43 12,09%

Experiment 1

3

00:01:03 22,18% 00:01:01 23,55%

Experiment 2 00:01:03 12,23% 00:00:48 8,42%

Experiment 3 00:00:50 8,68% 00:00:53 10,47%

Total 00:02:56 12,80% 00:02:42 12,13%

These results has been considered promsing in this phase of

the experimentation and it is able to validate the improvements

with respect to traditional techniques. The participants also

offered feedback that will be used for improvements in future

versions.

Description validation

In the second, and last phase of the validation experiment,

the language was used to describe an entire assembly process.

The research team recorded several videos and generated the

complete code of the instructions to reproduce the assembly

process .

The team carried out the following steps in order to generate

these datasets:

1. The time duration should not to exceed five minutes,

including at least three different actions and two different

tools.

2. The playback speed of the video was reduced in a 50 %, in

order to guarantee a better understanding of each action

and movement.

3. For each action, the playback was paused to write the action

displayed in the code. If required, object´s coordinates

were written down. Distances were measured converting the

distance from pixels to centimeters.

4. To reduce the size of the generated example, repetitive

sequences were simplified by reducing the sequences that

appeared several times, although in the real practice the

step-block repetition can be used for such cases.

Basic rules for specifying assemblies

In order to make it clearer using a human-like language, we

recommend employ a kind of pseudocode (similar instructions

8 Mauricio-Andrés Zamora-Hernández et al.

than the ones used in MDL+ language but in natural language

format) to be able to describe the general actions and then

proceed with the language translation.

To explain how to express the assembly of a product in

this pseudocode and their proper conversion in MDL+, sample

code segments taken from the examples are explained in the

Listings 9, 10 and 11. Additionally, the complementary images

that illustrate each Listing are presented. They can be seen in

Figures 2, 3 and 4.

Fig. 2. Images for assembly of a skateboard truck

Assembly of a skateboard truck

The assembly process of skateboard wheels (truck) is described

in Listing 9 and Figure 2. First, using a simplify version with

pseudocode and MDL+ involved instructions, and next by the

MDL+ language with the full listing. As it can be seen, this

process involves wrenches and screwdriver-type tools, and also

alternates the use of both hands.

1. The washer is taken to place it on the wheels.

// Frame #1

take : washer with hand;

2. The washer is pressed into the wheel.

// Frame #2

put : washer with hand in 0,0 : 1 : cm;

push : washer with hand in assembly #1;

3. Assemblies are joined together.

// Frame #3

take : assembly #1 with hand-nondominant;

hold : assembly #1 with hand-nondominant;

4. Take the hammer and hit the subassembly.

// Frame #4

take : hammer claw with hand;

hit : hammer claw in 0,0 : 4 : cm;

5. With the hammer, hit the assembly and turn it later.

// Frame #5

hit : hammer claw in 0,0 : 4 : cm;

turn : assembly #1 with hand-nondominant;

6. The hammer is released and assembly is complete.

// Frame #6

release : hammer claw with hand in 0,0 : 4 : cm;

end

Listing 9. Assembly of a trucker
assemble−begin

skateboard ;

setup−begin

hand r i gh t ;

bin washer in −5,20 : 3 : cm;

bin screws in −5,25 : 3 : cm;

bin nut ;

t oo l s c r ewd r i v e r p h i l l i p s in −30 ,35 : 3 : cm;

t oo l wrench adjustab le in 30 ,35 : 3 : cm;

t oo l wrench combination in 33 ,35 : 3 : cm;

t oo l wrench combination in 36 ,35 : 3 : cm;

t oo l hammer claw in −33 ,35 : 3 : cm;

assembly #1 in −10,−35 : 7 cm;

assembly #2 in −30,−32 : 2 : cm;

assembly #3 in −10,−10 : 2 : cm;

setup−end

s t a r t

// Frame #1

take : washer with hand ;

move : assembly #1 with hand−nondominant

from −10,−10 : 3 to 0 ,0 : 4 : cm;

hold : assembly #1 with hand−nondominant ;

// Frame #2

put : washer with hand in 0 ,0 : 1 : cm;

push : washer with hand in assembly #1;

r e l e a s e : assembly #1 with hand−nondominant ;

// Frame #3

take : assembly #1 with hand−nondominant ;

hold : assembly #1 with hand−nondominant ;

// Frame #4

take : hammer claw with hand ;

h i t : hammer claw in 0 ,0 : 4 : cm;

sp in : assembly #1 with hand−nondominant ;

// Frame #5

h i t : hammer claw in 0 ,0 : 4 : cm;

turn : assembly #1 with hand−nondominant ;

// Frame #6

r e l e a s e : hammer claw with hand in 0 ,0 : 4 : cm;

end

assemble−end

Assembly for skateboard

In this example, the description of a process that involves

sub-assemblies, a screwdriver, pliers-type tools and the

simultaneous use of both hands is described through the

language (see Listing 10 and Figure 3).

1. The workplace is configured to start

// See Frame 01

hand right;

assembly #truck;

assembly #deck;

tool hammer claw;

tool clamp;

tool pliers diagonal;

tool pliers long nose;

tool screwdriver slotted;

tool screwdriver slotted;

tool screwdriver phillips;

tool wrench combination;

tool wrench combination;

tool wrench adjustable;

bin bolt;

bin nut;

setup-end

2. The truck and the deck are taken to place it on the work

table to start the assembly.

// See Frame 02

parallel-begin:

take:assembly #truck with hand-nondominant;

take:assembly #deck with hand;

parallel-end;

move:assembly #deck with hand to 10:0:cm;

9

3. The bolts and nuts of the trucker are placed on the deck

with the hands.

// See Frame 03

take:nut with hand-nondominant;

take:screwdriver slotted with hand;

parallel-begin:

locknut:wrench combination with hand-nondominant in assembly #truck;

screw:screwdriver slotted with hand in assembly #deck;

parallel-end;

4. The deck is turned over to continue the assembly.

// See Frame 04

spin:assembly #deck with any-hand;

5. The bolts and nuts of the trucks are placed on the deck

with the hands.

// See Frame 05

put:nut with any-hand in assembly #deck;

take:bolt with hand-nondominant;

put:bolt with hand-nondominant in assembly #deck;

6. Assembly is completed.

end

Listing 10. Assembly for skateboard
assemble−begin

skateboard assembly ;

setup−begin

// S e e Frame 01

hand r i gh t ;

assembly #truck ;

assembly #deck ;

t oo l hammer claw ;

t oo l clamp ;

t oo l p l i e r s d i a g o n a l ;

t o o l p l i e r s l o n g n o s e ;

t oo l s c r ewd r i v e r s l o t t e d ;

t oo l s c r ewd r i v e r s l o t t e d ;

t oo l s c r ewd r i v e r p h i l l i p s ;

t o o l wrench combination ;

t oo l wrench combination ;

t oo l wrench adjustab le ;

bin bo l t ;

bin nut ;

setup−end

s t a r t

// S e e Frame 02

pa r a l l e l −begin :

take : assembly #truck with hand−nondominant ;

take : assembly #deck with hand ;

p a r a l l e l −end ;

move : assembly #deck with hand to 1 0 : 0 : cm;

take : nut with hand ;

j o i n : assembly #truck with assembly #deck ;

p a r a l l e l −begin :

take : nut with hand−nondominant ;

take : bo l t with hand ;

put : bo l t with hand in assembly #deck ;

put : nut with hand−nondominant in assembly #deck ;

take : s c r ewd r i v e r s l o t t e d with hand ;

take : wrench combination with hand−nondominant ;

locknut : wrench combination with hand−nondominant in

assembly #truck ;

screw : s c r ewd r i v e r s l o t t e d with hand in assembly #deck ;

p a r a l l e l −end ;

// S e e Frame 03

take : nut with hand−nondominant ;

take : s c r ewd r i v e r s l o t t e d with hand ;

p a r a l l e l −begin :

locknut : wrench combination with hand−nondominant in

assembly #truck ;

screw : s c r ewd r i v e r s l o t t e d with hand in assembly #deck ;

p a r a l l e l −end ;

// S e e Frame 04

sp in : assembly #deck with any−hand ;

take : nut with hand−nondominant ;

put : nut with hand−nondominant in assembly #deck ;

take : bo l t with hand−nondominant ;

put : nut with hand−nondominant in assembly #deck ;

take : s c r ewd r i v e r s l o t t e d with hand−nondominant ;

take : nut with hand−nondominant ;

// S e e Frame 05

put : nut with any−hand in assembly #deck ;

take : bo l t with hand−nondominant ;

put : bo l t with hand−nondominant in assembly #deck ;

take : s c r ewd r i v e r s l o t t e d with hand ;

// S e e Frame 06

end

assemble−end

Fig. 3. Images from video of Assembly for skateboard

Assembly with parallel execution

This example was selected because it includes some sections

blocks of instructions that can be executed in parallel. It has

different sub-assemblies and parts to be assembled, the operator

tends to perform actions in parallel, so it is necessary to reflect

these capabilities in the language. See Listing 11 and Figure 4.

1. Take the wheels with both hands.

// See Frame 01

parallel-begin:

take:assembly #wheel1 with hand-nondominant;

take:assembly #wheel2 with hand;

parallel-end

2. Assembling the truck with both hands

// See Frame 02

move:assembly #truck with hand to 0:5:cm;

join:assembly #truck with assembly #wheel1;

hold:assembly #truck with hand-nondominant;

3. Put the bolt and nut on the truck

// See Frame 03

hold:wrench combination with hand;

take:washer with hand; put:washer with hand in assembly #truck; tight:wrench combination

in assembly #truck; take:nut with hand; put:nut with hand in assembly

#truck;

4. Screw the base plate with the screw and nut on the truck.

// See Frame 04

tight:wrench combination in assembly #truck;

move:assembly #truck with hand to 0:5:cm;

take:bolt with hand;

take:assembly #base plate with hand-nondominant;

5. Assemble the screw, washer, nut and base plate on the

trucker using the pliers.

// See Frame 05

join:bolt with assembly #base plate;

take:washer with hand;

put:washer with hand in assembly #base plate;

10 Mauricio-Andrés Zamora-Hernández et al.

hold:pliers long nose with hand;

hold:pliers long nose in assembly #base plate;

take:assembly #base plate with hand-both;

join:assembly #truck with assembly #base plate;

6. Place the nut to tighten it with the pliers on the truck.

//See Frame 06

put:nut with hand in assembly #truck;

hold:pliers long nose with hand;

hold:pliers long nose in assembly #base plate;

move:assembly #base plate with hand to 0:0:cm;

Listing 11. Assembly with parallel execution
assemble−begin

example03 ;

setup−begin

hand r i gh t ;

assembly #truck in 55: −28:cm;

assembly #wheel1 in 14 : 6 0 : cm;

assembly #wheel2 in 14 : 4 5 : cm;

assembly #bas e p l a t e in 0 : 5 : cm;

t oo l hammer claw ;

t oo l clamp ;

t oo l p l i e r s d i a g o n a l ;

t o o l p l i e r s l o n g n o s e ;

t oo l s c r ewd r i v e r s l o t t e d ;

t oo l s c r ewd r i v e r s l o t t e d ;

t oo l s c r ewd r i v e r p h i l l i p s ;

t o o l wrench combination ;

t oo l wrench combination ;

t oo l wrench adjustab le ;

bin bo l t in −50:−30:cm;

bin washer in −32:−6:cm

bin bo l t in −30:30:cm;

setup−end

s t a r t

// S e e Frame 01

pa r a l l e l −begin :

take : assembly #wheel1 with hand−nondominant ;

take : assembly #wheel2 with hand ;

p a r a l l e l −end

// S e e Frame 02

move : assembly #truck with hand to 0 : 5 : cm;

j o i n : assembly #truck with assembly #wheel1 ;

hold : assembly #truck with hand−nondominant ;

// S e e Frame 03

hold : wrench combination with hand ;

take : washer with hand ;

put : washer with hand in assembly #truck ;

t i gh t : wrench combination in assembly #truck ;

take : nut with hand ;

put : nut with hand in assembly #truck ;

// S e e Frame 04

t i gh t : wrench combination in assembly #truck ;

move : assembly #truck with hand to 0 : 5 : cm;

take : bo l t with hand ;

take : assembly #bas e p l a t e with hand−nondominant ;

// S e e Frame 05

j o i n : bo l t with assembly #bas e p l a t e ;

take : washer with hand ;

put : washer with hand in assembly #bas e p l a t e ;

hold : p l i e r s l o n g n o s e with hand ;

hold : p l i e r s l o n g n o s e in assembly #bas e p l a t e ;

take : assembly #bas e p l a t e with hand−both ;

j o i n : assembly #truck with assembly #bas e p l a t e ;

// S e e Frame 06

put : nut with hand in assembly #truck ;

hold : p l i e r s l o n g n o s e with hand ;

hold : p l i e r s l o n g n o s e in assembly #bas e p l a t e ;

move : assembly #bas e p l a t e with hand to 0 : 0 : cm;

end assemble−end

Conclusions

This paper proposes the extension MDL+ of our language for

the description of the activities of manufacturing operations

MDL [Zamora-Hernández et al., 2021]. To the best of our

knowledge, it is the first structured language since IBM’s 1986

proposal that can be used to describe manufacturing processes

and guide product quality control through manufacturing

supervision. Specifically, this language is part of a computer

vision control system that allows determining the quality level

of a product, and defines the steps of how it was built according

Fig. 4. Images for assembly with parallel execution

to the specifications of production in each organization. The

language also allows transforming different process description

systems in industries and works as a suggestion system for

operators to minimize errors, creating a ”poka yoke” system

for assemblies. Moreover, we extended the features of MDL

including extension to represent parallel task developed in a

coordinate way by different operators or with a single operator

but using both hands. On the other hand, it introduces

new quantative experimentation with different actions and

evaluating the advantages of using the language with operators

manufacturing evaluation tests.

As future lines of research, it is proposed to use this language

in conjunction with video analysis systems to formalize the

instructions carried out and verify if the instructions described

in the proposed language are satisfied. In addition, it is very

useful in the area of job design for job measurement and

standard time calculation, along with Operations Engineering

to calculate production capacity. The system can promote

occupational safety by signaling to the operator that there are

items that should not be present.

Competing interests

There are NO Competing Interest.

Author contributions statement

All the authors contributed in the design of the language equaly.

M-A.Z conceived and conducted the experiments with operators

and analyzed the results. J-A.C.C; A.V.G & J-A.C.V recorded

the assembly actions experiments and codify them with the

language. M-A.Z, J.G & J.A analysed the experiments results,

wrote and reviewed the manuscript.

Acknowledgments

This work has been funded by the Spanish Government

PID2019-104818RB-I00 grant for the MoDeaAS project and

TIN2017-89069-R grant, supported with Feder funds. This work

11

has also been supported by University of Alicante grant for PhD

studies UAFPU2019-13.

References

Å. Fast-Berglund, T. Fässberg, F. Hellman, A. Davidsson,

and J. Stahre. Relations between complexity, quality and

cognitive automation in mixed-model assembly. Journal

of Manufacturing Systems, 32(3):449–455, 2013. ISSN

02786125.

D. Ferguson. Therbligs: The Keys to Simplifying Work, 2000.

URL http://web.mit.edu/allanmc/www/Therblgs.pdf.

M. P. Groover. Work Systems and the Methods, Measurement,

and Management of Work. Pearson Education, Inc., 2007.

ISBN 0-13-140650-7.

M. Hedelind and M. Jackson. How to improve the

use of industrial robots in lean manufacturing systems.

Journal of Manufacturing Technology Management, 22

(7):891–905, sep 2011. ISSN 1741-038X. doi: 10.1108/

17410381111160951. URL http://www.emeraldinsight.com/

doi/abs/10.1108/17410381111160951.

A. Hornung, M. Bennewitz, and H. Strasdat. Efficient vision-

based navigation. Autonomous Robots, 29(2):137–149, 2010.

ISSN 09295593. doi: 10.1007/s10514-010-9190-3.

G. Kanawaty. Introducción al estudio del Trabajo.

EDITORIAL LIMUSA DE C.V., 11 edition, 2008. ISBN

978-968-18-5628-1.

R. Krishna, K. Hata, F. Ren, L. Fei-Fei, and J. C. Niebles.

Dense-Captioning Events in Videos. Proceedings of the

IEEE International Conference on Computer Vision, 2017-

Octob:706–715, 2017. ISSN 15505499. doi: 10.1109/ICCV.

2017.83.

R. C. Luo, Y. T. Hsu, Y. C. Wen, and H. J. Ye. Visual

image caption generation for service robotics and industrial

applications. Proceedings - 2019 IEEE International

Conference on Industrial Cyber Physical Systems, ICPS

2019, pages 827–832, 2019. doi: 10.1109/ICPHYS.2019.

8780171.

S. Makris, P. Karagiannis, S. Koukas, and A. S.

Matthaiakis. Augmented reality system for operator support

in human???robot collaborative assembly. CIRP Annals

- Manufacturing Technology, 65(1):61–64, 2016. ISSN

17260604. doi: 10.1016/j.cirp.2016.04.038. URL http://dx.

doi.org/10.1016/j.cirp.2016.04.038.

M. Mancini, H. Karaoguz, E. Ricci, P. Jensfelt, and B. Caputo.

Kitting in the Wild through Online Domain Adaptation.

IEEE International Conference on Intelligent Robots and

Systems, pages 1103–1109, 2018. ISSN 21530866. doi:

10.1109/IROS.2018.8593862.

L. R. Nackman, M. A. Lavin, R. Highsmith Taylor, W. C.

Dietrich, and D. D. Grossman. AML/X: a programming

language for design and manufacturing. ACM ’86:

Proceedings of 1986 ACM Fall joint computer conference,

1986. doi: 10.5555/324493.324560. URL https://dl.acm.org/

doi/10.5555/324493.324560.

A. Nguyen, T.-T. Do, I. Reid, D. G. Caldwell, and N. G.

Tsagarakis. V2cnet: A deep learning framework to translate

videos to commands for robotic manipulation, 2019.

J. Starke, K. Chatzilygeroudis, A. Billard, and T. Asfour.

On Force Synergies in Human Grasping Behavior. IEEE-

RAS International Conference on Humanoid Robots, 2019-

October:72–78, 2019. ISSN 21640580. doi: 10.1109/

Humanoids43949.2019.9035047.

Universidad Politécnica deValencia. Therbligs, 2018. URL

http://evaluador.doe.upv.es/wiki/index.php/Therbligs.

L. Wang, B. Schmidt, and A. Y. C. Nee. Vision-guided

active collision avoidance for human-robot collaborations.

Manufacturing Letters, 1(1):5–8, 2013. ISSN 22138463.

X. Wang, W. Chen, J. Wu, Y. F. Wang, and W. Y. Wang.

Video Captioning via Hierarchical Reinforcement Learning.

Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pages 4213–

4222, 2018. ISSN 10636919. doi: 10.1109/CVPR.2018.

00443.

Y. Yang, Y. Li, C. Fermüller, and Y. Aloimonos. Robot learning

manipulation action plans by ”watching” unconstrained

videos from the World Wide Web. Proceedings of the

National Conference on Artificial Intelligence, 5:3686–3692,

2015.

T. Yao, Y. Pan, Y. Li, Z. Qiu, and T. Mei. Boosting

Image Captioning with Attributes. Proceedings of the IEEE

International Conference on Computer Vision, 2017-Octob:

4904–4912, 2017. ISSN 15505499. doi: 10.1109/ICCV.2017.

524.

M.-A. Zamora-Hernández, J. A. C. Ceciliano, A. V. Granados,

J. A. C. Vargas, J. Garcia-Rodriguez, and J. Azoŕın-López.

Manufacturing description language for process control in

industry 4.0. In Á. Herrero, C. Cambra, D. Urda, J. Sedano,

H. Quintián, and E. Corchado, editors, 15th International

Conference on Soft Computing Models in Industrial and

Environmental Applications (SOCO 2020), pages 790–799,

Cham, 2021. Springer International Publishing. ISBN

978-3-030-57802-2.

Mauricio Andrés Zamora Hernández.
received his Ph.D. degree, with specialization
in Automatics and robotics, from the
University of Alicante (Spain). He
is currently Professor at School of
Industrial Engineering of the University
of Costa Rica. His research areas of
interest include: computer vision, machine
learning, pattern recognition, robotics,

human - computer interaction, manufacturing, software
arquitecture.

Jose Andrez Chaves Ceciliano. is
a Bachelor of Industrial Engineering
student at the University of Costa Rica
(UCR). He received his title of medium
technician in Electrotechnical at Heredia
Professional Technical College in 2014.
His main research interests include deep
learning in robotic, virtual reality, value
chain logistics, quality engineering and

operations engineering.

Alonso Villalobos Granados. is
a Bachelor of Industrial Engineering
student at the University of Costa Rica
(UCR), that also has been working as a
researcher for the Industrial Engineering
School (EII) since 2019, who also happens
to be an avid outdoorsman. His main
research interests go along the line of
deep learning, computer vision, human

behavior recognition, industrial process automation and supply
chain management.

http://web.mit.edu/allanmc/www/Therblgs.pdf
http://www.emeraldinsight.com/doi/abs/10.1108/17410381111160951
http://www.emeraldinsight.com/doi/abs/10.1108/17410381111160951
http://dx.doi.org/10.1016/j.cirp.2016.04.038
http://dx.doi.org/10.1016/j.cirp.2016.04.038
https://dl.acm.org/doi/10.5555/324493.324560
https://dl.acm.org/doi/10.5555/324493.324560
http://evaluador.doe.upv.es/wiki/index.php/Therbligs

12 Mauricio-Andrés Zamora-Hernández et al.

John Alejandro Castro Vargas. is
a PhD student at the Department of
Computer Technology (DTIC), University
of Alicante. He received his MSc
(Automation and Robotics) and BSc
(Computer Science) from the same ins-
titution in 2017 and 2016 respectively.
His main research interests include human
behavior recognition with deep learning,

virtual reality and parallel computing on GPUs.

Jose Garcia-Rodriguez received his
Ph.D. degree, with specialization in
Computer Vision and Neural Networks,
from the University of Alicante (Spain).
He is currently Full Professor at the
Department of Computer Technology of
the University of Alicante. His research
areas of interest include: computer vision,
machine learning, pattern recognition,

robotics, man-machine interfaces, ambient intelligence, and
parallel and multicore architectures.

Jorge Azorin-Lopez received his
Ph.D. degree in Computer Science at
the University of Alicante (Spain) in
2007. Since 2001, he has been a faculty
member of the Department of Computer
Technology at the same university, where
he is currently an Associate Professor.
His current research interests include
3D computer vision, computational

intelligence, human activity analysis, and visual inspection.

	Introduction
	Description of Actions in Industry
	Manufacturing Description Language
	Operation parameters
	Assembly actions
	Individual steps
	Steps blocks
	Parameterization

	Experimentation
	Language validation
	Description validation
	Basic rules for specifying assemblies
	Assembly of a skateboard truck
	Assembly for skateboard
	Assembly with parallel execution

	Conclusions
	Competing interests
	Author contributions statement
	Acknowledgments

