
0018-9499 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2022.3149867, IEEE
Transactions on Nuclear Science

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 1

Hybrid Lockstep Technique for Soft Error
Mitigation

M. Peña-Fernández1, A. Serrano-Cases2, A. Lindoso3, S. Cuenca-Asensi2, L. Entrena3, Y. Morilla4, P.
Martı́n-Holgado4, and A. Martı́nez-Álvarez2

Abstract—This work presents the evaluation of a new dualcore
lockstep hybrid approach aimed to improve the fault tolerance in
microprocessors. Our approach takes advantage of modern mul-
ticore processor resources to combine a software-based lockstep
with a custom hardware observer. The first is used to duplicate
data and instruction flows; meanwhile, the second is in charge of
the control-flow monitoring. The proposal has been implemented
in a dualcore ARM microprocessor and validated with low energy
proton irradiation and emulated fault injection campaigns. The
results show an improvement of one order of magnitude in
the cross-section of the benchmarks tested, even considering the
worst-case scenario.

Index Terms—soft errors, proton irradiation, dualcore, lock-
step, multithreading, fault tolerance.

I. INTRODUCTION

Commercial processors are becoming a commodity for the
implementation of critical electronic systems in a multitude
of industrial domains: from traditional aerospace and military
sectors to emerging markets like high-performance computing,
autonomous vehicles or medical appliances. The superior flex-
ibility and performance offered by their advanced multicore
architectures make those devices a promising alternative to
other specifically designed circuits. Unfortunately, the pro-
gressive miniaturization of the electronic components jointly
with the high clock frequencies demanded by new applications
are making the cores more vulnerable to radiation-induced
faults. Therefore, providing some kind of fault tolerance to
the microprocessors, i.e., the ability to continue the operation
even in the presence of faults, is a key to enable these devices
for safety-critical applications.

This work is focused on the enhancement of processors
fault tolerance to soft errors, i.e., transient faults on memory
cells that eventually can lead to system failures. Traditionally
the protection of microprocessors is addressed by means of
spatial and/or temporal redundancy to detect and/or to correct

1M. Peña-Fernandez is with Arquimea ADS, 28918 Leganés, Spain (e-mail:
mpena@arquimea.com).

2A. Serrano-Cases and S. Cuenca-Asensi and A. Martı́nez-Álvarez(�)
are with the Computer Technology Department, University of Ali-
cante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain
(e-mail: aserrano@dtic.ua.es; sergio@dtic.ua.es; Corresponding author:
amartinez@dtic.ua.es).

3A. Lindoso and L. Entrena are with the Electronic Technology Depart-
ment, Universidad Carlos III de Madrid, Leganes, 28911 SPAIN (e-mail:
alindoso@ing.uc3m.es, entrena@ing.uc3m.es).

4Y. Morilla and Pedro Martin-Holgado are with the Centro Nacional de
Aceleradores (CNA), Centro Nacional de Aceleradores, CSIC, JA, Univer-
sidad de Seville, E-41092 Seville, Spain, SPAIN (e-mail: ymorilla@us.es,
pmartinholgado@us.es).

radiation induced faults. Depending on how they are imple-
mented, the techniques are usually categorized as hardware
or software based. Hardware techniques are those based on
the replication of processing by means of redundant hardware
blocks: registers, memories or even entire processing units.
Dual and Triple redundant Core lockstep (DCLS/TCLS) [1],
[2] replicate the whole processor and compare the system
output every clock-cycle to detect any mismatch during the
execution of the code. TCLS in addition, offers the ability to
recover the system using the third core state.

Generally, only output data are checked for errors [2],
[3]. However, control-flow errors may cause one of the pro-
cessors to lose synchronization and eventually hang or get
lost. Control-flow errors are not easy to detect as they may
not have an immediate observable effect in the computed
data. Moreover, it is common in dual cores that one of the
processors acts as primary and the other as secondary. In
such a case, the hang of the primary can lead to the crash
of the entire system. Software techniques are aimed to protect
the code execution on unreliable hardware, mostly commer-
cial off-the-shelf (COTS) devices. Similarly to the hardware
techniques, they introduce replication at different software
levels: programs, functions, loops, instructions, etc. . . Although
their implementations have a lower impact on development
costs when compared with hardware techniques, its application
presents relevant overheads, in terms of performance and
memory footprint, that should be taken into consideration.

Unlike related works, this proposal tries to reduce the impact
of the unavoidable unreliable software to achieve a reliable and
efficient computation. In fact, no operating system nor external
threading libraries are used at all. Our approach exploits
the multithreading capability of modern microprocessors by
means of multiple instances of the same program running in
parallel on separate cores and without any communication
between them, excluding a little piece of code for stall and
synchronization purposes.

Usually, mitigation techniques are conceived assuming that
memory chips are protected with some kind of EDAC (Er-
ror Detection and Correction) mechanism. In our case, no
assumptions are made and the proposal includes procedures
to mitigate softerrors even for non-protected memories. In
addition, errors that affect the control flow in any core can
be detected by a custom hardware observer (IP observer)
connected to the trace subsystem. This IP core decodes on-the-
fly the program traces and checks the obtained information.

Our hybrid and multithreaded DCLS lockstep based ap-
proach has shown improvements in error mitigation, even for

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 24,2022 at 13:15:17 UTC from IEEE Xplore. Restrictions apply.

0018-9499 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2022.3149867, IEEE
Transactions on Nuclear Science

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 2

applications with high resilience to radiation. The technique
has been validated with low energy proton irradiation and
tested by means of emulated injection campaigns.

The paper is organized as follows. Section II introduces the
software and hardware mechanism combined in our proposal.
Section II makes a review of works related to multhreading
and lockstep mitigation techniques. Section III describes the
fault injection campaigns performed and the previous results
analysis to estimate the contribution of the technique to the
system reliability. Section IV reports the radiation experiments
and their results. finally, Section V summarizes the conclusions
of this work.

II. RELATED WORKS

The emergence of multicore processors has enabled the
execution of multiple copies of the same instruction flow on
separated execution units. The technique known as Redundant
Muti-Threading (RMT) along with the concept of Sphere of
replication was proposed in [4] for detection and recovery of
soft errors. Basically, the SoR defines the set of resources,
hardware or software, which are replicated. This way, the
values entering the SoR must be replicated, and the values
leaving the SoR must be checked to assure their integrity.
Initial RMT approaches included the processor pipeline and
the register file in the SoR boundaries, relaying the correctness
of the execution on helper structures such as Store buffers,
Load and Branch queues, not present on real processors [5],
[6]. Those proposals were tested on simulators with promising
results but never evaluated on real devices.

Other approaches deal with soft errors considering their
effect on the software running on the system. They address
the problem from either the compiler, operating system or
application level. Most of them make the assumption that
memories are protected by an error detection mechanism.
In [7] and [8] a custom compiler transforms the application
code into two communicating threads: the leading thread
performs all the load/store operations and sends the data to
the trailing thread which replicates the ALU operations and
compare the results. The SoR only includes computations;
therefore they suffer from the vulnerable input replication and
output comparison processes. Another approach [9] suggests
to duplicate the memory read/write operation values to solve
this problem, however it increases the synchronization and
performance overheads up to 5x given the low granularity of
the memory operations.

Other authors [10] propose specific Operating System ser-
vices to support RMT execution providing error detection and
recovery. In that work, the OS service replicates transparently
the execution of applications at binary level by creating redun-
dant threads in separate address spaces. Some studies propose
the use of standard libraries such as OpenMP and Pthreads
[11] to generate redundancy programmatically. Furthermore,
authors in [12] and [13] propose the use of custom API
(Application Programming Interfaces) and language direc-
tives to allow the programmer to define redundant threads
and selectively decide the code regions and variables to be
protected. Also, software tools like Trikaya [14] have been

proposed to automatically transform the source and produce
a DMR version with rollback re-execution. All those high-
level approaches suffer from two main problems. The first is
the performance overhead produced by the additional software
layers. The second is the increment in the susceptibility to
errors, due to the complexity introduced by the software stack
and the Operating System itself. That is expressed by a higher
number of both, silent data corruption events and Operating
System crashes as pointed in [15].

There are a lower number of approaches based on hardware
redundancy as they usually apply architectural modifications
to real devices or include custom modules in programmable
SoCs. In [16] authors add a hardware module to a standard
implementation of lockstep mechanism over two PowerPC
processors hardwired on a FPGA. The module reduces the
checkpoint overhead by comparing only the modified ad-
dresses and values. A different approach is presented in [17]
where two FPGA based boards are used to implement a
rollback recovery method to protect periodic tasks running on
two LEON processors. Softcore processors are also employed
in [18]. In this case, Microblaze processors are configured in
DMR to detect errors in the application outputs, meanwhile a
TMR Picoblaze continuously reads the configuration memory
looking for errors. Finally, the work [2] implements a roll-
back/recovery mechanism using the programmable resources
of an FPGA. The application is manually divided into several
blocks delimited by verification points and it is executed
simultaneously in both cores of an ARM cortex-A9 processor.
Every time a verification point is reached, the context and
data are saved in a dual-port private memory and compared
to detect some mismatch by a custom hardware.

In our approach A Single Program Multiple Data (SPMD)
scheme has been adopted for bare metal applications (without
OS) which renders a reduced number of race conditions and
lower control overhead compared to traditional solutions. This
technique is combined with a custom IP that leverages the
information provided by the on-chip debugging facilities to
detect on-the-fly any control flow error. It results in an efficient
implementation with a very low area usage.

Among all the reviewed works, only a few were tested
in accelerated radiation experiments [2], [11], [14]. A more
comprehensive surveys about Multithreading and Lockstep
based mitigation techniques can be found in the respective
surveys [19] and [20].

III. HYBRID LOCKSTEP APPROACH

Our approach combines hardware and software techniques
that exploit common resources available in modern micropro-
cessors. It is intended to be directly applied to them with
minimum additions. Figure 1 shows the architecture resources
that supports the proposal. Two redundant threads run si-
multaneously in two separate cores of a multicore processor
sharing the on-chip memory to store a single copy of the code
and private copies of the data. A software infrastructure was
developed to endow the dual core system with the ability
of running redundant threads on bare metal. It is composed
of three elements. First, a modified Board Support Package

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 24,2022 at 13:15:17 UTC from IEEE Xplore. Restrictions apply.

0018-9499 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2022.3149867, IEEE
Transactions on Nuclear Science

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 3

code

data0 data2

Core0

PTM0

th0

Core1

PTM1

th1

Checker0 Checker1

Trace decoder

Data

ERROR

Control-flow

ERROR

Custom

IP

Multicore

SoC
Memory

spinlock

data1

int

vars

Fig. 1. Architecture overview.

(BSP) able to boot up the processor in SPMD mode. Second, a
memory map and the associated linker scripts to build separate
memory sections for each core. Finally, a thread support
library that includes the synchronization and communication
mechanisms, and the implementation of different macros and
pre-processing directives to define the region of the code to
be protected and the context that has to be restored in case of
error.

The synchronization mechanism follows the spinlock
method by means of exclusive load/store on shared variables
(locks). Also, shared variables jointly with interrupts are
used to implement a minimal communication to notify events
between threads.

The on-chip trace modules, called PTM (Program Trace
Macrocells), are used to extract execution information, one for
each core. The trace information, containing program counter
(PC) values related to the executed application of each core,
is sent to a custom IP implemented in the programmable
logic of the SoC, which is in charge of the decodification
and monitorization of the cores activity.

On one hand, the software part of the technique is able
to detect soft errors affecting the data during the computa-
tion. The detection of an error triggers a rollback recovery
mechanism and can additionally be notified externally for
further actions. The hardware IP, on the other hand, reports
any anomalous behavior of the instruction flows. Using that
information, specific recovery actions may be implemented.

A. Software implemented data protection

Taking advantage of the parallel computing that multiple
cores can offer to improve data protection, the multithreaded
mitigation technique called Duplication With Comparison and
Re-Execution (DWC-R), first presented in [21], is also pro-
posed and demonstrated under radiation here. This technique

is based on the concept of Sphere-of-Replication (SoR) [22],
which boundaries define the region of the code whose compu-
tation must be under protection. Within the SoR the instruction
flow and the involved variables are replicated using lightweight
threads. The verification of the correctness of data is only
needed when an instruction sends the data outside the SoR.
In any other case, the replicated threads progress in parallel
working on their own data replica.

The implementation of the aforementioned technique re-
quires some instrumentation of the source code (C or C++).
This is undertaken by means of custom C++ macros and pre-
processing directives, which are used to annotate what data
variables belong to the SoR and thus, must be under protection;
and the source code region (containing all read/write accesses
to the SoR) where the mitigation will take place. The user
just have to manually include the primitives in the original
code and the compiler automatically produces the multithread
version of the executable. The annotation of each data resource
distinguishes the functional context of each variable, which
means that those variables belonging to the .rodata (read-only
data), .bss (uninitialized variables) and .data (initialized vari-
ables) data sections are indicated and processed conveniently.

Figure 2 shows an example of code instrumented with our
technique. SoR boundaries are defined by the SYNC macro. It
is also used to declare the context restoration and validation
points by means of the variables that cross the SoR limits.
All variables within the SoR (e.g. fooVar) are duplicated in
its own core address space. Additional variables involved in
the critical computation region (e.g. global variables) need
to be explicitly replicated using the XHARD macro, which
is overloaded depending on the memory section where the
variables will be allocated. Each thread accesses to its copy
using a pointer created and initialized with the PTR and
THREAD_REPLICA_VAR primitives respectively.

Threads operation and synchronization can be seen in Fig.
3. In order to achieve detection and recovery capability, the
SoR is triplicated by means of the replication of each data
section. Two copies of each data section (.bss0, .bss1, .data0,
.data1, .rodata0 and .rodata1) are automatically generated
when spawning the two threads (primary and shadow). The
corresponding addresses for each data section are automati-
cally managed by a custom linker script. In addition, DWC-
R allocates a third copy of data sections (.bss2, .data2 and
.rodata2) to allow the restoration of the SoR variables in case
of error.

When the program starts, two bare-metal threads (primary
and shadow) are spawned in parallel using both indepen-
dent shared memory processing units (Core0 and Core1) to
replicate the full program computation. In case the program
enters a protected region the threads are synchronized using
a spinlock barrier, then the context is automatically updated
by the primary thread (SoR-input checkpoint), which notifies
to the shadow to start the computation of the critical region.
Next a new synchronization is needed to guarantee that both
threads have finished the computation before the SoR output
checkpoint is reached. At this point, SoR computed variables
are compared by the primary thread. In case of mismatch,
both threads go back to the first checkpoint and performs

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 24,2022 at 13:15:17 UTC from IEEE Xplore. Restrictions apply.

0018-9499 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2022.3149867, IEEE
Transactions on Nuclear Science

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 4

// Processing directives definition
#include "MultiThreadingHardening.h"

// XHARD: replaces the classical definition
// of variables by 3 copies allocated in
// the X section:
// -> BSS : Not initialized data
// -> DATA : Initialized data
// -> RODATA: Read only memory
//
// - char fooGlobalVar;
XHARD(char, fooGlobalVar)

// PTR: creates a pointer to each var copy
// The pointer has to be set by each core
#define fooGlobalVar PTR(fooGlobalVar)

void foo(int autoVar){
int entryVar;
int exitVar;
...
// SYNC: defines the SoR entry point
// and the context creation/restoration
// point by means of the entry vars
SYNC(entryVar, ...)

// THREAD_REPLICA_VAR: sets the pointer
// to fooGlobalVar copy. Each core
// selects the copy using its coreID
THREAD_REPLICA_VAR(char, fooGlobalVar)

...
/// Start of critical computation
...
int fooVar = 4;
fooGlobalVar = 3 << fooVar;
exitVar = fooGlobalVar * entryVar;
...
/// End of critical computation

// SYNC: defines the SoR exit point
// and the context validation by means
// of exit vars
SYNC(exitVar)

// Non critical computation
...

}

Fig. 2. Snippet of C/C++ code instrumentation.

a context restoration (using the third copy) to re-execute
the protected section. Conversely, the program continues the
normal execution flow. It is worth mentioning that the minimal
needed code instrumentation (green boxes) does not interfere
with the original program flow.

B. Hardware implemented control-flow protection

To provide control-flow protection, we leverage the in-
formation available at the trace interface of the processor.
The trace interface is a very common resource in modern
microprocessors, enabling debug and profiling tasks during ap-
plication development. However, the trace interface is usually
left unused once the application is released, so it can be reused
for other purposes. The trace interface is, by design, capable
of providing relevant information about processor execution

.text (shared)

shadow

thread

memory

structure

wakeup

.data0/.bss0/.rodata0 .data1/.bss1/.rodata1

primary

thread

.data2/.bss2/.rodata2

non critical
computation

non critical
computation

do{ do{

sleep
context create/restore

& notify

critical
computation

critical
computation

sleep
check &
notify wakeup

&
error

} while(error) } while(error)

spinlock sync barrier

spinlock sync barrier

non critical
computation

non critical
computation

Fig. 3. Duplication With Comparison and Re-Execution (DWC-R) with 2
threads. Code program (.text memory section) is shared among both threads,
while .data, .bss and .rodata memory sections are distributed.

without disturbing it, in a non-intrusive manner and with low
latency. In a multicore system, the trace interface is typically
shared between all cores, and it can be effectively used to
gather execution information of all of them.

A custom observer IP core has been developed based on the
trace interface specification and implemented in VHDL [23].
The IP can receive raw data packets from the trace interface,
decode them and use that information to check the correctness
of the execution flow of one or more processors in the system.
The decoding and checking processes are performed online
along with processor execution and the latency of the IP
is less than 30 clock cycles to determine whether an error
has occurred. The time that the trace takes to output the
information about execution is also known to be low [24] so
the overall detection latency can be as low as 500ns in a typical
implementation.

The Program Trace Macrocells (PTM0 and PTM1) available
at the trace subsystem of the SoC processing system have been
configured to export trace information related to the program
counter (PC) value of each core during execution. The amount
of information exported by the PTM modules is not exhaustive,
since it is compressed to optimize the bandwidth of the trace
interface. However, it is enough to infer the execution flow of
each core, as it includes information about all the branches
taken by each processor. In the absence of branch information
in the trace, sequential execution is assumed. The observer
IP leverages trace information to gather the Program Counter
(PC) value of both processors in the system and continuously
check that value against a set of allowed ranges configured

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 24,2022 at 13:15:17 UTC from IEEE Xplore. Restrictions apply.

0018-9499 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2022.3149867, IEEE
Transactions on Nuclear Science

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 5

by the user, where the application code is stored. If at any
moment any of the processors present a PC value outside
the allowed ranges, then the processor control flow is wrong
and the application is about to fail, so the IP sets a signal to
trigger a system reset with much lower latency than a common
watchdog. In addition, the PC value is used to perform an
additional check by the use of a PC-based watchdog. For
the PC-based watchdog, the IP is continuously looking for
a specific user-configurable PC value in the trace information.
If the configured PC value does not appear in a configurable
time because of a possible hang condition, the IP sets a signal
indicating it. The PC-based watchdog has the advantage over
a traditional watchdog that it is not relying at all in the
application to reload it, but it will be reloaded using the trace
information every time the application reaches a particular
point in execution, which can be commonly set as the first
instruction of the main application loop.

IV. SOFT ERROR MITIGATION ANALYSIS

To assess our hybrid approach two fault injection campaigns
were carried out. The first campaign was designed to observe
the impact of the software-based part of the technique (Multi-
threading DWC-R) applied at different levels of granularity.
The second was conceived to estimate the overall contribution
of the complete hybrid technique to the applications reliability.

The matrix multiplication code of the project BEEBS
[25], was selected as benchmark to operate on 20×20 32-
bit integer matrices. The structure of the code, basically
three nested loops, allowed to analyze the trade-offs between
the granularity of the protection and the reliability obtained.
The index of the first loop (the outer loop) runs through
the rows of the first matrix. Defining here the boundaries
of the SoR means a unique point of checking but a large
amount of data to be verified (the whole matrix). The second
index runs through the columns of the second matrix (inner
loop). This boundary defines multiple checkpoints to verify
the correctness of each resultant row. Finally, the innermost
loop computes the multiplication of one row and one column
to obtain the corresponding element of the result matrix.
At this point every element must be checked increasing the
number of synchronizations between threads but significantly
reducing the amount of data to be verified. The output matrix
is initialized to zero on each run, and a golden matrix is used
to verify correctness. The output initialization ensures that the
whole computation is performed and committed to memory,
detecting possible masked errors due to intermediate cached
calculations.

A. Simulated fault injection campaign

In the multithreading DWC-R analysis, we employed an
instruction accurate simulator, WindRiver Simics [26], con-
figured to inject bit-flips in the register files and memory
sections of a ARM Cortex-A9 dual-core processor. Besides
the unprotected version of the code (Original), four hardened
versions were built to run on the dual-core: StackH, DatH-
Outer, DatH-Inner and DatH-Acc. In the StackH version
the matrix multiplication is protected using two threads, one

per processor core, and triplicating the automatic variables.
This benchmark performs the same computation as the code
without protection, except for the inner-loop checks performed
to the automatic variables. These checks aim to verify that
the computation is being performed with the same data, and
are achieved by checking the indexes that control the loops.
Once each value from the output matrix has been calculated,
the result is verified with the other thread output before
committing the result to memory and exiting the SoR.

Finally, in the Dat-x versions, the SoR is extended from
the calculation of each element of the resulting matrix (DatH-
Acc) to the data residing on memory, resulting in the triplica-
tion of all involved matrices (DatH-Outer). In this case, the
verification is carried out once each core has calculated the
output matrix, resulting in a coarse grain check. At this point,
only two copies of the output matrix are completed. Therefore,
to complete the data triplication, the calculated matrices are
compared and saved into the third copy if no errors are found.
Otherwise, the matrices are restored to the initial state to restart
the calculus from an error-free state.

The fault injector was configured to perform 1800 injections
per core at the register file (100 · 18 registers), 800 injections
per memory section and core (200 injections per data replica
at .rodata, .data, .bss and .stack sections) and 200 injection
at .text section per core. Thus, 5200 injections of faults have
been injected at the single-core original version and 10400 at
multithreaded DWC-R versions. Faults were labeled as unACE
(unnecessary for Architectural Correct Execution) when an
injection is made, and they do not affect the result of the
program’s output, SDC (Silent Data Corruption) when the
result is not correct but the program ends, and HANG if it
does not end or exceeds a time limit. The programs have
been evaluated having as a reference a faultless (ground truth)
execution of themselves and adding a recovery time equal to
the faultless execution duration. If this temporal restriction is
exceeded, the program is considered that does not meet the
valid requirements and the fault is labeled as HANG.

Raw event rates (SDC and HANG) from simulated fault
injection campaign are shown in Figure 4. Results demonstrate
that the unprotected version presents a high rate of SDC, above
30%, and a very low of percentage of HANG. These results are
in accordance with the data intensive nature of the algorithm.
This way, the successive muti-threading versions clearly de-
creases the SDC occurrence depending on the amount of data
protected and the granularity of the checkpoints. The StackH
version only protects the automatic variables (the indexes of
the loops), so it gets a modest improvement of 2× but at the
cost of increasing the HANG rate up to 8×. The DatH-Acc
version protects every result individually, therefore it offers
the best SDC rate (0.8%) improving the baseline rate by 38×.
However, it involves a high number of checkpoints and threads
synchronization which makes the code more prone to control
flow errors. As a consequence the HANG rate is still increased
by 5.7×. The DatH-Outer version presents the most balanced
results, due to the low control overhead, with a very reduced
SDC percentage (1%, i.e. improvement of 29.7×) and the
lower HANG rate at the same time (1.8%). In terms of unACE
faults it reaches up to 96.1%.

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 24,2022 at 13:15:17 UTC from IEEE Xplore. Restrictions apply.

0018-9499 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2022.3149867, IEEE
Transactions on Nuclear Science

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Original StackH DatH_Acc DatH_Inner DatH_Outer

Er
ro

r
ra

te

SDC Hang

Fig. 4. Error rates for multithreading DCW-R technique.

B. Emulated fault injection campaign

The analysis of the proposed technique (data and control
flow protection) was complemented with one additional fault
injection campaign over those versions showing the most
uneven behavior, i.e. StackH and DatH-Outer. The faults were
emulated on a Zybo Board [27] connected to an external host
(single-board computer) which was in charge of generating
random seeds for injection and retrieving test results. In the
event of any error during fault emulation, the external host
power cycled the Zybo board. The campaigns were focused
on the injection on the register file and are triggered randomly
inside the processor itself by software emulated upsets [28]
using timer interrupts. Upon each timer interrupt, the current
state of the register file is saved on the processor stack before
attending the interrupt service routine. Inside the routine, the
software randomly introduces a bit-flip in a random bit of a
random register of the saved stack state and returns. When the
content of the stack is restored into the processor registers, the
injected fault becomes effective. Only one fault is injected per
benchmark execution, following a single error model, and in
the case that re-execution is needed, no additional faults are
injected.

The results obtained with this emulated fault injection
campaign are shown in the Table I. In addition to the recovery
capability exposed by the multithread part of the technique,
the control-flow protection is able to identify conditions that
would lead the dual-core system to lose synchronization and
get stuck, such as the triggering of an non-managed exception.
The observer IP can detect that events, which commonly
cannot be corrected, with low latency to trigger a system
reset, thus increasing overall availability of the system. A new
category, named Potential Hang Detected (PotHDetected), is
used to classify those events. In addition, the label Corrected
was assigned to cases where data errors where detected and
recovered. Columns of Table I show the number (N) and its
relative percentage (%) of TotalEvents (total amount of faults
that were able to be labeled), HANGs, PotHDetected, SDC
and Corrected events for the Original, StackH and DataH-
Outer versions of the software. In addition, a third column (%
TotalInj) indicates the percentage of the labeled faults taking
into account the total number of emulated faults.

The campaigns were run up to get a significant number
of events (about one hundred). As expected, the Original
benchmark presents the lower reliability in terms of SDC and,
in this case no HANGs were produced. Similar to simulated
campaigns StackH version improves the SDC and presents an
important number of Corrected events even higher than DatH-
Outer benchmark. Some specific register are exclusively used
to access the stack (were the automatic variables are stored),
and the majority of the faults are detected and corrected by
the technique. On the contrary, DatH-Outer uses massively
the memory to operate with the data which may explain the
difference in terms of corrected errors, since the register file
is the only target of the faults injected in this campaign. In
summary, the hardware implemented control-flow protection
provides an important reduction in the error rate associated to
HANG events, without interfering the recovery capability of
the data protection.

TABLE I
EMULATED INJECTION RESULTS

Original StackH DatH-Outer

N % % TotInj N % % TotInj N % % TotInj

TotalEvents 101 100 2.70 817 100 0.94 122 100 0.45

HANG 0 0 0.00 0 - - 0 - -

PotHDetected - - - 42 5.14 0.05 100 81.97 0.36

SDC 101 100 2.70 59 7.22 0.07 3 2.46 0.01

Corrected - - - 716 87.64 0.82 19 15.57 0.07

TABLE II
TIME OVERHEADS AND RELATIVE IMPROVEMENT OF THE MWTF METRIC

Original StackH DatH-Outer

Execution Time 613,526 1,808,117 1,544,784

Relative Execution Time 1× 2.9× 2.5×

Relative MWTF 1× 13.5× 97.7×

Finally, in order to estimate the overall reliability improve-
ment of our hybrid approach, the Mean Work To Failure metric
is provided. MWTF takes into account not only the fault
coverage but also the period of time that the code is exposed
to faults. Table II show the execution time of each benchmark
and the relative MWTF, taking the original unprotected code
as baseline. The protected codes present time overheads of
2.9× and 2.5× for StackH and DatH-Outer respectively. In
the case of protecting the stack, the technique produces a large
number of checking points and threads synchronization, which
is the main cause of the shown overhead. On the contrary, the
coarser granularity protection of DatH-Outer reduces notably
the number of checkpoints, but introduces a large number of
memory accesses to verify and restore the matrices which
explains the excess in the execution time. Even though the
performance penalty incurred by our proposal, the gain in
MWTF is remarkable being of one order of magnitude when
only the stack is hardened and reaching up to 97.7× when all
data are triplicated.

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 24,2022 at 13:15:17 UTC from IEEE Xplore. Restrictions apply.

0018-9499 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2022.3149867, IEEE
Transactions on Nuclear Science

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 7

V. RADIATION EXPERIMENTS

The Original and DatH-Outer benchmarks have been tested
in the external beamline of the 18/9 Ion Beam Applications
compact cyclotron located at Centro Nacional de Aceleradores
(CNA) in Seville, Spain. The device under test (DUT) was a
Xilinx Zynq-7010 SoC (System on a chip) [29] that integrates
a hard-core dual-core ARM Cortex-A9 processor [30] along
with programmable logic, interconnections and peripherals.
The DUT was mounted on a commercial board (Zybo) [27]
and irradiated in open air with 15.2 MeV protons. The energy
of the protons in the active area of the silicon is about 10MeV,
which is considered enough to produce single event effects on
the 28nm technology device with no thinning [31].

The DUT configuration is stored in an SD card, which
is inserted in the receptacle of the board. Upon power on,
the DUT loads the code from the SD card to On-Chip-
Memory (OCM) using a two-stage bootloader to initialize the
programmable logic and boot the application. Because we use
OCM for the benchmarks, we used a two-stage bootloader
scheme. It is important to mention that all the benchmarks are
executed using only OCM memory, which is inside the SoC,
so all computing hardware including the memory is irradiated.

The external observer IP has been implemented in the
programmable logic of the device and connected to the
trace interface over the Extended Multiplexed Input Output
(EMIO) interface available on Zynq device. The IP leverages
the information produced by the Program Trace Macrocell
(PTM) of each core, which provides relevant PC values during
execution. The processors are running at nominal 650MHz
clock frequency.

An external host, placed outside the beam and connected to
the DUT through a serial communication interface, was used to
control the experiment. The benchmarks provide a periodical
message if no error is present and the code is instrumented
to provide different codes depending on the observed error.
In the case of any error, the host performs a power cycle to
restart the DUT.

We distinguish the following error categories:

• Exception error. The processor execution flow has been
abruptly interrupted by an unexpected exception, proba-
bly caused by a forbidden memory access. If not handled,
this type of errors would become timeout errors.

• Timeout error. The processor has become unresponsive.
• Communication error. The serial communication with the

processor has become corrupted, thus making impossible
to identify further errors.

• Silent Data Corruption (SDC). The benchmark execution
has finished with errors in the result matrix.

To test our technique under the worst-case scenario, all
program memory sections (.rodata, .data, .bss and .text) were
statically linked within the executable, loaded to the OCM, and
therefore exposed to the beam. This way, the boundaries of the
SoR were extended up to the on-chip-memory. To do this it
was necessary to insert routines to verify and restore the three
copies of the input data. Also included in the .rodata section
were three copies of the golden results as well as routines to

periodically refresh their values to avoid the accumulation of
errors between successive runs of the benchmark.

The results obtained from the irradiation campaign are
presented in Figure 5. It shows the cross-section of the
aforementioned error classification, and the cross-section of all
observed errors (Total Errors) for the benchmarks tested under
radiation. Note that even the algorithm without protection
(Original), which represents our starting point, presents high
resilience to radiation (a low cross-section). However, our
technique is able to improve the cross-section and, therefore,
the vulnerability to soft errors.

Events Errors Exception Timeout SDC
10−12

10−11

10−10

σ
(c
m

2
)

Original DatH-Outer

Fig. 5. Cross-section (cm2) and 95% confidence intervals for DatH-Outer
and unprotected Original benchmarks.

As expected, the cross-section of the Original benchmark
throws the worst results in terms of Total Errors and SDC.
Note that our technique is able to detect the Exception and
Timeout events before they become errors, so they are not
accounted in the Total Errors category for the DatH-Outer
experiment. It results in 4.29e-11 cm2 cross-section for the
unprotected benchmark and 3.31e-12 cm2 for the DatH-Outer,
showing an improvement of one order of magnitude. It is
worth noting that our proposal was tested under the worst-
case scenario, thus presumably further improvements would
be obtained using EDAC protected memories.

Remarkably, most errors are tagged as SDC due to the
different matrices’ corruption (input, calculated, and golden).
It is remarkable that this protection can reduce the propagation
of erroneous outcomes (SDC). More precisely, during the
irradiation campaign, the technique was able to correct up to
144 errors, which is a good demonstration of the mitigation
capabilities of the proposed technique.

Regarding the timeout errors, results show that the harden-
ing approaches are more prone to hang the platform, what can
be caused by one of the threads missing synchronization. In
such a case, the system can enter an abnormal waiting state
where both cores are waiting for each other to finish and can-
not synchronize. Although undesirable, it can be considered
less critical than SDC, since this situation may be detected
with common processor mechanisms (e.g. watchdog).

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 24,2022 at 13:15:17 UTC from IEEE Xplore. Restrictions apply.

0018-9499 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2022.3149867, IEEE
Transactions on Nuclear Science

IEEE TRANSACTIONS ON NUCLEAR SCIENCE 8

VI. CONCLUSION

We have presented a new hybrid soft error mitigation
technique for multicore processors based on multithreaded
lockstep and a custom hardware IP that uses the trace port of
the microprocessor to observe the control-flow. The technique
has been validated with low energy proton irradiation and
tested by means of emulated injection campaigns. Both cam-
paigns show insights of reliability improvements. In one hand,
fault injection campaigns have demonstrated the detection and
recovery capabilities of the proposed approach. On the other
hand, the irradiation campaign has validated the reliability
improvements observed in the analysis of the fault injection
results. Therefore, error mitigation is improved by using our
hybrid multithreaded lockstep based approach for soft error
mitigation.

ACKNOWLEDGEMENT

This work has been supported in part by the Spanish
Ministry of Science and Innovation under the projects
PID2019-106455GB-C22, PID2019-106455GB-C21;
and by the Community of Madrid under grant
IND2017/TIC-7776.

REFERENCES

[1] X. Iturbe, B. Venu, E. Ozer, and S. Das, “A triple core lock-step
(TCLS) ARM R© cortex R©-r5 processor for safety-critical and ultra-
reliable applications,” in 2016 46th Annual IEEE/IFIP Int. Conference
on Dependable Systems and Networks Workshop (DSN-W). IEEE, Jun.
2016, pp. 246–249.

[2] A. B. de Oliveira, G. S. Rodrigues, F. L. Kastensmidt, N. Added, E. L. A.
Macchione, V. A. P. Aguiar, N. H. Medina, and M. A. G. Silveira,
“Lockstep dual-core ARM a9: Implementation and resilience analysis
under heavy ion-induced soft errors,” IEEE Transactions on Nuclear
Science, vol. 65, no. 8, pp. 1783–1790, Aug. 2018.

[3] F. Abate, L. Sterpone, and M. Violante, “A new mitigation approach
for soft errors in embedded processors,” IEEE Transactions on Nuclear
Science, vol. 55, no. 4, pp. 2063–2069, Aug. 2008.

[4] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” SIGARCH Comput. Archit. News, vol. 28,
no. 2, p. 25–36, may 2000.

[5] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe, “Reunion:
Complexity-effective multicore redundancy,” in 2006 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’06),
2006, pp. 223–234.

[6] J. F. Martinez, E. Ipek, C. LaFrieda, and R. Manohar, “Utilizing
dynamically coupled cores to form a resilient chip multiprocessor,”
in 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’07). Los Alamitos, CA, USA: IEEE
Computer Society, jun 2007, pp. 317–326.

[7] K. Mitropoulou, V. Porpodas, and T. M. Jones, “Comet: Communication-
optimised multi-threaded error-detection technique,” in 2016 Interna-
tional Conference on Compliers, Architectures, and Sythesis of Embed-
ded Systems (CASES), 2016, pp. 2.3.1–2.3.10.

[8] Y. Zhang, J. W. Lee, N. P. Johnson, and D. I. August, “Daft: Decoupled
acyclic fault tolerance,” in 2010 19th International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2010, pp.
87–97.

[9] H. So, M. Didehban, Y. Ko, A. Shrivastava, and K. Lee, “Expert:
Effective and flexible error protection by redundant multithreading,” in
2018 Design, Automation Test in Europe Conference Exhibition (DATE),
2018, pp. 533–538.

[10] B. Döbel and H. Härtig, “Can we put concurrency back into redundant
multithreading?” in Proceedings of the 14th International Conference
on Embedded Software, ser. EMSOFT ’14, Art. no. 19. Association
for Computing Machinery, 2014.

[11] G. Rodrigues, F. Rosa, A. de Oliveira, F. L. Kastensmidt, L. Ost, and
R. Reis, “Analyzing the impact of fault tolerance methods in ARM
processors under soft errors running linux and parallelization APIs,”
IEEE Transactions on Nuclear Science, vol. 64, no. 8, pp. 2196–2203,
2017.

[12] D. P. e. a. Hukerikar S., Teranishi K., “Redthreads: An interface for
application-level fault detection/correction through adaptive redundant
multithreading,” International Journal of Parallel Programming, vol. 46,
p. 225–251, 2018.

[13] Y.-S. Chen and P.-S. Chen, “A software-based redundant execution
programming model for transient fault detection and correction,” in
2016 45th International Conference on Parallel Processing Workshops
(ICPPW), 2016, pp. 66–71.

[14] H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp, and G. Duran, “Software
resilience and the effectiveness of software mitigation in microcon-
trollers,” IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp.
2532–2538, Dec. 2015.

[15] J. S. Monson, M. Wirthlin, and B. Hutchings, “Fault injection results
of linux operating on an FPGA embedded platform,” in 2010 Int.
Conference on Reconfigurable Computing and FPGAs. IEEE, Dec.
2010, pp. 37–42.

[16] F. Abate, L. Sterpone, C. A. Lisboa, L. Carro, and M. Violante, “New
techniques for improving the performance of the lockstep architecture
for sees mitigation in fpga embedded processors,” IEEE Transactions
on Nuclear Science, vol. 56, no. 4, pp. 1992–2000, Aug. 2009.

[17] M. Violante, C. Meinhardt, R. Reis, and M. Sonza Reorda, “A low-cost
solution for deploying processor cores in harsh environments,” IEEE
Transactions on Industrial Electronics, vol. 58, no. 7, pp. 2617–2626,
2011.

[18] H.-M. Pham, S. Pillement, and S. J. Piestrak, “Low-overhead fault-
tolerance technique for a dynamically reconfigurable softcore processor,”
IEEE Transactions on Computers, vol. 62, no. 6, pp. 1179–1192, 2013.

[19] I. Oz and S. Arslan, “A survey on multithreading alternatives for soft
error fault tolerance,” ACM Comput. Surv., vol. 52, no. 2, art. no. 47,
pp. 1–38, mar 2019.

[20] E. W. Wächter, S. Kasap, X. Zhai, S. Ehsan, and K. McDonald-
Maier, “Survey of lockstep based mitigation techniques for soft errors
in embedded systems,” in 2019 11th Computer Science and Electronic
Engineering (CEEC), 2019, pp. 124–127.

[21] A. Serrano-Cases, F. Restrepo-Calle, S. Cuenca-Asensi, and
A. Martı́nez-Álvarez, “Multi-threaded mitigation of radiation-induced
soft errors in bare-metal embedded systems,” Journal of Electronic
Testing, vol. 36, pp. 47–57, Dec. 2019.

[22] G. Reis, J. Chang, N.Vachharajani, R. Rangan, and D. August, “Swift:
Software implemented fault tolerance,” in Proc. Int. Symposium on Code
Generation and Optimization, 2005, pp. 243–254.

[23] M. Peña-Fernandez, A. Lindoso, L. Entrena, and M. Garcia-Valderas,
“The use of microprocessor trace infrastructures for radiation-induced
fault diagnosis,” IEEE Transactions on Nuclear Science, vol. 67, no. 1,
pp. 126–134, Jan. 2020.

[24] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, Y. Mo-
rilla, and P. Martı́n-Holgado, “Online error detection through trace
infrastructure in ARM microprocessors,” IEEE Transactions on Nuclear
Science, vol. 66, no. 7, pp. 1457–1464, July 2019.

[25] J. Pallister, S. J. Hollis, and J. Bennett, “BEEBS: Open Bench-
marks for Energy Measurements on Embedded Platforms,” CoRR, vol.
abs/1308.5174, 2013.

[26] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” Computer, vol. 35, no. 2, pp. 50–58, 2002.

[27] Zybo Reference Manual, Pullman, WA, USA, 2014.
[28] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcı́a-Valderas,

S. Philippe, Y. Morilla, and P. Martin-Holgado, “Ptm-based hybrid
error-detection architecture for arm microprocessors,” Microelectronics
Reliability, vol. 88, pp. 925–930, 2018.

[29] Zynq-7000 All Programmable SoC: Technical Reference Manual, San
Jose, CA, USA, 2016.

[30] Cortex-A9 Technical Reference Manual r4p1, Cambridge, U.K., 2012.
[31] A. Lindoso, M. Garcı́a-Valderas, L. Entrena, Y. Morilla, and P. Martı́n-

Holgado, “Evaluation of the suitability of neon simd microprocessor
extensions under proton irradiation,” IEEE Transactions on Nuclear
Science, vol. 65, no. 8, pp. 1835–1842, Aug. 2018.

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 24,2022 at 13:15:17 UTC from IEEE Xplore. Restrictions apply.

