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Abstract
We present a new kind of Lagrangian duality theory for set-valued convex optimiza-
tion problems whose objective and constraint maps are defined between preordered
normed spaces. The theory is accomplished by introducing a new set-valued Lagrange
multiplier theorem and a dual program with variables that are pointed closed convex
processes. The pointed nature assumed for the processes is essential for the derivation
of the main results presented in this research. We also develop a strong duality the-
orem that guarantees the existence of dual solutions, which are closely related to the
sensitivity of the primal program. It allows extending the common methods used in
the study of scalar programs to the set-valued vector case.

Keywords Lagrange multiplier · set-valued convex optimization · process · duality ·
sensitivity
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1 Introduction

Set-valued optimization is an expanding branch in applied mathematics that has
attracted a great deal of attention in the last decades [1, 12, 13, 22, 23]. This topic
tackles optimization problems where the objective and/or the constraint maps are set-
valued ones acting between abstract spaces. Set-valued optimization problems have
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been analysed according to different concepts of solution. Such optimal solutions have
usually been defined by means of vector, set, or lattice approaches .

In the vector approach, the first to be developed, the concept of solution is based
on the standard notion of Pareto minimal point and its many variants. This approach
has been widely developed in the convex case, and the corresponding literature is
extensive. We refer the reader to [3, 12, 13, 20] and the references therein.

However, solution concepts based on vector approaches are sometimes improper.
In order to avoid this drawback, it is sometimes convenient to work with order relation
for sets. The solution concept based on set approaches is based on a set order relation.
This is obtained by extending the original preordered image vector space to its power
set. This approach was introduced by Kuroiwa, see [14–18]. Important contributions
were made later, see for example [8–11].

Finally, in lattice approaches, the concept of solution is based on a lattice structure
on the power set of the image space. The corresponding infimum and supremum are
sets related to the sets of weak optimal points. This view is useful for applications
of set-valued approaches in the theory of vector optimization, especially in duality
theory. We refer the reader to [19] for a comprehensive discussion and [7] for some
subsequent extensions.

In this paper, we deal with the solution concept based on a vector approach. From
this perspective, we establish a new Lagrange multiplier theorem. Then, we introduce
a new kind of Lagrangian duality scheme for set-valued optimization programs whose
objective and constraint maps are convex and defined between preordered normed
spaces. We prove that the sensitivity of the primal program is closely related to the set
of dual solutions. Although such solutions are usually continuous linear operators, the
dual variables considered in this paper are pointed closed convex processes. The use
of processes as dual variables is not entirely new in set-valued analysis. For instance,
we find dual variables that are closed convex processes in [5–7, 19]. The processes
in this work are also pointed. This property seems to improve the adaptability of the
variables to the structure of convex set-valued vector problems. On the other hand,
the arguments in this manuscript are direct and broadly geometric. Roughly speaking,
we extend the methods used in the study of scalar programs in [21,Chapter 8] to the
study of set-valued vector programs. In this way, our work includes the scalar case as
a particular one. Finally, some results in our earlier paper [2] have been enhanced by
those obtained in this work.

Thepaper is organized as follows. InSect. 2,we state somepreliminary terminology.
In Sect. 3, we introduce the parametric constrained set-optimization problem (P(z))
to be analysed in the paper. Then, we state a new Lagrange multiplier theorem for
(P(0)). Such a result, Theorem 3.1, is stated in terms of nondominated points instead
of minimal points. Hence, we do not force the primal program to reach its optimal
points. In Sect. 4, we define a dual program. Theorem 4.1 guarantees the existence
of a dual solution even if we do not assume the existence of a minimal solution in
the primal program. Section 5 is devoted to the study of the sensitivity of the primal
program. The formulas for sensitivity in Theorems 5.1 and 5.2 are expressed in terms
of the Lagrange process introduced in [2]. In Remark 5.3, we note that the sensitivity of
the program is closely related to the solutions of the dual program. Finally, in Section
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6, we present conclusions that summarize this work, and we pose some open problems
for further research.

2 Preliminaries and Notation

Let Y and Z be normed spaces with topological duals Y ∗ and Z∗. We denote by cl(A),
int(A), bd(A), co(A), and cone(A) the closure, interior, boundary, convex hull, and
cone hull of a set A ⊂ Y , respectively. Sometimes, the parentheses will be omitted.
We will consider the sum of two subsets in Y in the usual way adopting the convention
A + ∅ = ∅ + A = ∅, for every subset A ⊂ Y . A non-empty subset K ⊂ Y is called
a cone if αK ⊂ K , for all α ∈ R+, with R+ the set of nonnegative real numbers.
A cone K ⊂ Y is said to be pointed (resp. solid, proper) if K ∩ (−K ) = {0} (resp.
int(K ) �= ∅, {0} �= K �= Y ). Given a set-valued map F : Z ⇒ Y we may identify,
in a natural way, F with its graph which is the set defined by Graph(F) := {(z, y) ∈
Z × Y : y ∈ F(z)}. The domain of F is defined by Dom(F) := {z ∈ Z : F(z) �= ∅}
and the image of F is defined by Im(F) := ∪z∈Dom(F)F(z). The image by F of
the set A ⊂ Dom(F) is F(A) := ∪a∈AF(a). A set-valued map F is said to be
a process if Graph(F) is a cone. A process F is said to be convex (resp. closed,
pointed) if Graph(F) is convex (resp. closed, pointed). We will denote by P(Z ,Y )

the set of all closed convex processes F from Z into Y such that Dom(F) = Z .
Let Y+ ⊂ Y be a convex cone and pick arbitrary y1, y2 ∈ Y , we write y1 ≤ y2 if
and only if y2 − y1 ∈ Y+. Then, “≤” defines a reflexive and transitive relation (a
preorder) on Y and the cone Y+ is called the ordering cone on Y . A set-valued map
F : C ⇒ Ydefined on a non-empty convex subset C ⊂ Z , is said to be Y+-convex if
its epigraph, Epi(F) := {(z, y) ∈ Z × Y : y ∈ F(z) + Y+}, is convex. We say that a
point y0 ∈ Y is nondominated by the set A ⊂ Y , if A ∩ (y0 − Y+) ⊂ y0 + Y+. We
say that a point y0 ∈ Y is a minimal point of a set A ⊂ Y , written y0 ∈ Min(A), if
y0 ∈ A and y0 is nondominated by A.If Y+ is pointed, then y0 ∈ Min(A) if and only
if A∩ (y0 − Y+) = {y0}. Let us note that in the real line with the usual order minimal
points become minima, and any nondominated point belonging to the closure of a set
becomes its infimum. Analogously, we say that y0 ∈ A is a maximal point of a set
A ⊂ Y , written y0 ∈Max(A), if A∩ (y0 +Y+) ⊂ y0 −Y+. If Y+ is pointed, then y0 ∈
Max(A) if and only if A ∩ (y0 + Y+) = {y0}. If the ordering cone Y+ is solid, then
we can introduce the following relation. For arbitrary y1, y2 ∈ Y we write y1 < y2 if
and only if y2 − y1 ∈ int(Y+). We say that a point y0 ∈ A is a weak minimal (resp.
weak maximal) point of a set A ⊂ Y , written y0 ∈ WMin(A) (resp. y0 ∈ WMax(A)),
if A ∩ (y0 − int(Y+)) = ∅ (resp. A ∩ (y0 + int(Y+)) = ∅ ).

3 Problem Formulation and Set-Valued LagrangeMultipliers

Webegin this section by establishing the set-valued vector constrained problem (P(z))
which will be analysed throughout this paper. We next introduce the notion of non-
dominated point of (P(z)). Then we introduce the notion of Lagrange multiplier of
(P(0)) associated with a nondominated point, and we show that such Lagrange mul-
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tipliers always exist. We associate with each nondominated point y0 of (P(0)), a
non-empty set Γy0 of pointed closed convex processes. The main result of the section,
Theorem 3.1, assures that every element in Γy0 is a Lagrange multiplier of (P(0)).

Here and subsequently we consider X , Y , and Z normed spaces. We assume that Y
and Z are preordered normed spaces and that each corresponding ordering cone, Y+
and Z+, is proper and solid. LetΩ ⊂ X be a convex set. Let us be given the set-valued
maps F : Ω ⇒ Y and G : Ω ⇒ Z where F is Y+-convex and G is Z+-convex. These
maps determine the following parametric set-optimization problem:

Min F(x) such that x ∈ Ω, G(x) ∩ (z − Z+) �= ∅. (P(z))

We adopt the following notations: for every z ∈ Z , we have S(z) := {x ∈ Ω : G(x)∩
(z − Z+) �= ∅}, V (z) := F(S(z)), (V + Y+)(z) := V (z) + Y+, and M(z) :=
Min(V (z)). With these notations, we obtain in addition four set-valued maps: S :
Z ⇒ X , V : Z ⇒ Y , V + Y+ : Z ⇒ Y , and M : Z ⇒ Y . In the terminology
of scalar optimization, the map M is called the marginal function. In our setting, we
will refer to M as the set-valued marginal map. An important question in connection
with parametric optimization is the study of the derivative of such a map. Section 5 is
devoted to such a topic (sensitivity).

Definition 3.1 Let z ∈ Z and consider the corresponding program (P(z)).

(i) A pair (xz, yz) ∈ S(z)×V (z) is called aminimizer of (P(z)) if yz ∈ F(xz)∩M(z).
Then, yz is said to be a minimal point of (P(z)).

(ii) A point yz ∈ Y is called a nondominated point of (P(z)), written yz ∈ ND(P(z)),
if yz ∈ cl(V (z)) and yz is nondominated by the set V (z).

Remark 3.1 The notion of nondominated point is less restrictive than that of minimal
point because a nondominated point is not required to be achieved at a feasible solution.
This fact is significant because the optima of the problem can be chosen among the
corresponding nondominated points.

The constraint in (P(z)) can be rewritten as, z ∈ G(x) + Z+, which leads us to the
next notion.

Definition 3.2 Let y0 ∈ ND(P(0)). A closed convex processΔ : Z ⇒ Y is said to be
a Lagrange multiplier of (P(0)) at y0, if y0 is a nondominated point of the program

Min F(x) + Δ(G(x) + Z+) such that x ∈ Ω. (P[Δ])

In other words, if y0 ∈ cl(∪x∈Ω(F(x)+Δ(G(x)+ Z+))) and y0 is nondominated by
the set ∪x∈Ω(F(x) + Δ(G(x) + Z+)).

Definition 3.3 Let y0 ∈ ND(P(0)). We define

SY+(y0) := {
(z∗, y∗) ∈ Z∗ × Y ∗ : 〈z∗, z′〉 + 〈y∗, y′〉 ≤ 〈y∗, y0〉 ≤ 〈z∗, z〉 + 〈y∗, y〉,

∀(z′, y′) ∈ (−Z+) × (y0 − Y+),∀(z, y) ∈ Graph(V + Y+)
}
,

and S ′
Y+(y0) := SY+(y0) \ {(0, 0)} .
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Remark 3.2 The set SY+(y0) is a convex cone and contains at least a nonzero element.
That is a consequence of Eidelheit’s separation theorem (see e.g. [21,Theorem 1.1.3, p.
133]), which can be applied because int((−Z+)× (y0 −Y+)) �= ∅, the set Graph(V +
Y+) is convex, and (0, y0) ∈ bd(Graph(V+Y+)). To check the convexity ofGraph(V+
Y+), we consider the set-valuedmaps (G, F) : Ω ⇒ Z×Y and ((G, F)+(Z+×Y+)) :
Ω ⇒ Z × Y defined, respectively, by (G, F)(x) := (G(x), F(x)) and ((G, F) +
(Z+ × Y+))(x) := (G(x) + Z+, F(x) + Y+), ∀x ∈ Ω . Then, such a convexity
follows directly from the (Z+ × Y+)-convexity of the set-valued map (G, F) and the
equality Graph(V + Y+) = Im((G, F) + (Z+ × Y+)). The choice y0 ∈ ND(P(0))
implies (0, y0) ∈ bd(Graph(V + Y+)). Indeed, if (0, y0) ∈ int(Graph(V + Y+)), then
there would exist y+ ∈ Y+ \ {0} such that (0, y0 − y+) ∈ Graph(V + Y+). As a
consequence, we would have x ∈ Ω and y ∈ F(x) such that G(x) ∩ (−Z+) �= ∅ and
y ≤ y0 − y+ < y0. That contradicts y0 ∈ ND(P(0)).

From now on and throughout the whole paper, we assume the usual Slater constraint
qualification. It will appear in the statements of the main results in the paper guaran-
teeing that y∗ �= 0 for every (z∗, y∗) ∈ S ′

Y+(y0).

Assumption 3.1 (Slater constraint qualification) There exists x1 ∈ Ω for which
G(x1) ∩ (−int(Z+)) �= ∅.

In what follows, we will make use of the set-valued maps introduced by Hamel in
[5]. For every (z∗, y∗) ∈ Z∗ × Y ∗ \ {(0, 0)}, the set-valued map S(z∗,y∗) : Z ⇒ Y is
defined by S(z∗,y∗)(z) := {y ∈ Y : 〈z∗, z〉 + 〈y∗, y〉 ≤ 0} , ∀z ∈ Z .

Definition 3.4 Let y0 ∈ ND(P(0)) and (z∗, y∗) ∈ S ′
Y+(y0). We define

(i) The set of processes associated with (z∗, y∗) by

Λ(z∗,y∗) := {Δ ∈ P(Z ,Y ) : Graph(Δ) \ {(0, 0)} ⊆ int(Graph(−S(z∗,y∗)))}.

(ii) The set of processes associated with y0 by

Γy0 :=
⋃

(z∗,y∗)∈S ′
Y+ (y0)

Λ(z∗,y∗) ⊂ P(Z ,Y ). (1)

Lemma 3.3 states that assumption 3.1 implies Γy0 �= ∅. Then, we are guaranteed that
such a set is non-empty for every nondominated point of (P(0)).

Lemma 3.1 Let y0 ∈ ND(P(0)) and Δ ∈ Γy0 . Then, Δ is a closed, convex, and
pointed process.

Proof Let us fix Δ ∈ Γy0 . We will check that Graph(Δ) is a pointed cone. Indeed,
for Δ ∈ Γy0 there exists (z∗, y∗) ∈ S ′

Y+(y0) such that Graph(Δ) \ {(0, 0)} ⊆
int(Graph(−S(z∗,y∗))) = {(z, y) ∈ Z × Y : − z∗(z) + y∗(y) > 0}. Now, assume
that (z, y) ∈ Graph(Δ) ∩ (−Graph(Δ)). If (z, y) �= (0, 0), then −z∗(z) + y∗(y) > 0
and −z∗(−z) + y∗(−y) = z∗(z) − y∗(y) > 0, a contradiction. Thus, (z, y) = (0, 0).
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Lemma 3.2 Let X be a normed space, B ⊂ X the closed unit ball, T ∈ X∗, and
x0 ∈ X. If T (x0) > 0, then there exits ε > 0 such that cl(cone(x0 + δB)) \ {0} ⊂
{x ∈ X : T (x) > 0}, for every 0 < δ ≤ ε.

Proof Let ε > 0 be such that T (x0 + u) > 0, ∀u ∈ εB, and 0 /∈ x0 + εB. Clearly,
we have that cone(x0 + εB) \ {0} ⊂ {x ∈ X : T (x) > 0}. We will check that
cl(cone(x0 + εB)) = cone(x0 + εB). Conversely, suppose that there exists x ∈
cl(cone(x0+εB))\cone(x0+εB). Then, 0 �= x = limn λn(x0+un), for some sequence
(λn)n of positive real numbers and some sequence (un)n ⊂ εB. The condition 0 /∈
x0 + εB assures that the sequence (λn)n is bounded. Otherwise, we would have
(maybe for some subsequence) that 0 = limn

x
λn

= limn(x0 + un), a contradiction.
So, it is not restrictive to assume that limn λn = λ ≥ 0. If λ > 0, then x

λ
− x0 =

limn
x
λn

− x0 = limn un ∈ εB. As a consequence, there exists u ∈ εB such that
x = λ(x0 + u) ∈ cone(x0 + εB), a contradiction. Therefore, limn λn = 0. Since B is
bounded, it follows that x = limn λn(x0 + un) = 0. Again a contradiction. The same
reasoning applies to the case 0 < δ ≤ ε.

Lemma 3.3 Let y0 ∈ ND(P(0)) and assume that there exists x1 ∈ Ω for which
G(x1) ∩ (−int(Z+)) �= ∅. Then, Λ(z∗,y∗) �= ∅,∀(z∗, y∗) ∈ S ′

Y+(y0).

Proof Let us fix (z∗, y∗) ∈ S ′
Y+(y0). The Slater constraint qualification and the

equality int(Graph(−S(z∗,y∗))) = {(z, y) ∈ Z × Y : 〈−z∗, z〉 + 〈y∗, y〉 > 0} imply
that (0, y+) ∈ int(Graph(−S(z∗,y∗))), ∀y+ ∈ int(Y+). Indeed, since the elements of
SY+(y0) take non-negative values on Z+ ×Y+, it follows that y∗(y+) ≥ 0, ∀y+ ∈ Y+.
Now, the Slater constraint qualification guarantees that y∗(y+) > 0, ∀y+ ∈ int(Y+).

Next, we define a process Δ ∈ P(Z ,Y ) such that Graph(Δ) \ {(0, 0)} ⊆
int(Graph(−S(z∗,y∗))). We fix y+ ∈ int(Y+) and take ε > 0 from Lemma 3.2 cor-
responding to T = (−z∗, y∗) ∈ (Z × Y )∗ and (0, y+) ∈ Z × Y . Let B the closed
unit ball of Z × Y and 0 < δ ≤ ε such that (0, y+) + δB ⊆ int(Graph(−S(z∗,y∗)))
and (0, 0) /∈ (0, y+) + δB. Define the closed cone K := cl(cone((0, y+) + δB)) ⊂
Z × Y and the closed process Δ ∈ P(Z ,Y ) as Graph(Δ):=K . Let us check that
Dom(Δ) = Z . Fix any z ∈ Z . As 0 belongs to interior of the canonical projection
of δB on Z , there exists some n such that z/n belongs to such a projection. Then,
there exists y ∈ Y such that (z/n, y) ∈ δB. Hence, (0, ny+) + (z, ny) ∈ K , which
yields n(y + y+) ∈ Δ(z). To finish, we note that adapting the proof of Lemma 3.2 for
T = (−z∗, y∗) ∈ (Z × Y )∗, we have that K \ {(0, 0)} ⊂ int(Graph(−S(z∗,y∗))).

According to the natural order in R, the infimum of a lower bounded set of real
numbers can be seen as a nondominated point of its closure. So, our next result contains
the classical scalar theorem [21,Theorem 1, p. 217] as a particular case.

Theorem 3.1 Let y0 ∈ ND(P(0)) and Δ ∈ Γy0 . Assume that there exists x1 ∈ Ω for
which G(x1) ∩ (−int(Z+)) �= ∅. Then, Δ is a Lagrange multiplier of (P(0)) at y0,
i.e. y0 is a nondominated point of the program

Min F(x) + Δ(G(x) + Z+) such that x ∈ Ω. (P[Δ])
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Furthermore, if y0 is a minimal point of (P(0)), that is, if y0 ∈ F(x0) for a feasible
solution x0, then y0 is a minimal point of (P[Δ]) also achieved at x0 and

Δ(G(x0) + Z+) ∩ (−Y+) ⊆ (−Y+) ∩ Y+. (2)

Proof Let us prove that Δ ∈ Γy0 is a Lagrange multiplier of (P(0)) at y0. We first
check that y0 ∈ cl(∪x∈Ω(F(x) + Δ(G(x) + Z+))). Let B ⊂ Y be an arbitrary ball
centred at the origin. Since (y0 + B) ∩ V (0) �= ∅, we can choose u ∈ B, x0 ∈ Ω

such that G(x0) ∩ (−Z+) �= ∅, and y1 ∈ F(x0) such that y0 + u = y1. Now, since
G(x0)∩ (−Z+) �= ∅ is equivalent to 0 ∈ G(x0)+ Z+, we have that y0+u = y1+0 ∈
(y0+B)∩(F(x0)+Δ(G(x0)+ Z+)). Next, we will check that y0 is nondominated by
the set∪x∈Ω(F(x)+Δ(G(x)+Z+)). On the contrary, suppose that there exist x̄ ∈ Ω ,
ȳ1 ∈ F(x̄), and ȳ2 ∈ Δ(z̄1+ z̄2) such that z̄1 ∈ G(x̄), z̄2 ∈ Z+, and ȳ1+ ȳ2 ∈ y0−Y+.
Fix (z∗, y∗) ∈ S ′

Y+(y0) such that Δ ∈ Λ(z∗,y∗). Then, 〈−z∗, z̄1 + z̄2〉 + 〈y∗, ȳ2〉 > 0
because (z̄1 + z̄2, ȳ2) ∈ Graph(Δ) \ {(0, 0)} ⊂ int(Graph(−S(z∗,y∗))). On the other
hand, since z̄1 ∈ G(x̄) ⊂ G(x̄) + Z+, we have G(x̄) ∩ (z̄1 − Z+) �= ∅. Hence,
(z̄1, ȳ1) ∈ Graph(V ). Analogously, since z̄1+z̄2 ∈ G(x̄)+Z+, we have (z̄1+z̄2, ȳ1) ∈
Graph(V ) ⊂ Graph(V + Y+). As a consequence, by definition of SY+(y0), we have
〈y∗, y0〉 ≤ 〈z∗, z̄1 + z̄2〉+〈y∗, ȳ1〉. Therefore, if we define ŷ := ȳ1 + ȳ2 − y0 ∈ −Y+,
then we obtain 〈y∗, ŷ〉 = 〈z∗, (z̄1 + z̄2)− (z̄1 + z̄2)〉+ 〈y∗, ȳ1 + ȳ2 − y0〉 = 〈z∗, z̄1 +
z̄2〉+〈y∗, ȳ1〉−〈y∗, y0〉+〈−z∗, z̄1+ z̄2〉+〈y∗, ȳ2〉 > 0. But ŷ ∈ −Y+ and y∗ ≥ 0 on
Y+, a contradiction. Hence, y0 is a nondominated point of (P[Δ]) andΔ is a Lagrange
multiplier of (P(0)) at y0.

To check the second sentence in the statement, we assume that y0 is a minimal point
of (P(0)) and y0 ∈ F(x0) for some x0 ∈ Ω such that G(x0) ∩ (−Z+) �= ∅. As we
proved above, the process Δ is a Lagrange multiplier of (P(0)) at y0. Furthermore,
y0 = y0 + 0 ∈ F(x0) + Δ(G(x0) + Z+), and so, y0 is a minimal point of (P[Δ])
achieved at x0.

Let us finish showing (2). Let u ∈ Δ(G(x0) + Z+) ∩ (−Y+). Since y0
is a minimal point of (P[Δ]) achieved at x0, we have that y0 ∈ F(x0) and
(F(x0) + Δ(G(x0) + Z+)) ∩ (y0 − Y+) ⊆ {y0} + Y+. Thus y0 + u ∈ {y0} + Y+
and u ∈ (−Y+) ∩ Y+.

Remark 3.3 In the proof of inclusion (2), we only assume that Δ is a Lagrange mul-
tiplier. Therefore, such an inclusion still holds if we consider Lagrange multipliers of
(P(0)) at y0 which do not belong to Γy0 .

Next, we adapt Example 4.4 in [2] to our current set-valued context to check that
the proper inclusion Graph(Δ) \ {(0, 0)} ⊆ int(Graph(−S(z∗,y∗))) from Definition
3.4 becomes decisive to detect the optimal point in (P[Δ]). The inclusion is directly
related to the property that Δ is pointed. Let us note that additional requirement is
assumed neither on the optimal point (such as some type of proper efficiency) nor on
the ordering cone.

Example 3.1 Let X = Y = R
2, Y+ = {

(x1, x2) ∈ R
2 : x1 ≥ 0, x2 ≥ 0

}
, Z = R,

Z+ = R+, Ω = {
(x1, x2) ∈ R

2 : x2 > 0
} ∪ {(0, 0)}, F(x1, x2) = {(x1, x2)} , and

G(x1, x2) = {x2 − 1}.
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Then, y0 = (0, 0) is a minimal point of (P(0)). Indeed, for z ≥ −1 we have
S(z) = {

(x1, x2) ∈ R
2 : 0 < x2 ≤ 1 + z

}∪{(0, 0)}, and for z < −1, we have S(z) =
∅. Besides V (z) = F(S(z)) = S(z), ∀z ∈ R. Define the set A := {(x1, x2) ∈
R
2 : 0 ≤ x1, 0 ≤ x2} ∪ {(x1, x2) ∈ R

2 : x1 < 0 < x2}. For z ≥ −1 we have
(V + Y+)(z) = V (z) + Y+ = A, and for z < −1, we have (V + Y+)(z) = ∅.
Therefore, for z ≥ −1, we have Min({F(x) : x ∈ Ω, z ∈ G(x) + Z+}) = {(0, 0)},
and for z < −1, we have Min({F(x) : x ∈ Ω, z ∈ G(x) + Z+}) = ∅.

Now, consider the particular program (P(0)) and (0, y0) = (0, (0, 0)). Then,
Graph(V + Y+) = [−1,∞) × A ⊂ R

3, SY+(0, 0) = {(0, 0, λ) : λ > 0}, and
−S(z∗,y∗)(z) = R+, ∀(z∗, y∗) ∈ SY+(0, 0). We take Δ(0,0) ∈ P(R,R2) such that
Graph(Δ(0,0)) = {(z, (y1, y2))) : |y2| ≥ max{|z|, |y1|}} . Then, for x2 ≤ 1, we have
Δ(0,0)(G(x1, x2) + Z+) = Δ(0,0)(x2 − 1 + R+) = {

(x ′
1, x

′
2) ∈ R

2 : x ′
2 ≥ |x ′

1|
}
,

and for x2 > 1 we have Δ(0,0)(G(x1, x2) + Z+) = Δ(0,0)(x2 − 1 + R+) ={
(x ′

1, x
′
2) ∈ R

2 : x ′
2 ≥ |x ′

1| , x ′
2 ≥ x2 − 1

}
.

Clearly,
⋃

x∈Ω (F(x) + Δ(G(x) + Z+)) = A. Hence, y0 = (0, 0) is a minimal
point of (P[Δ(0,0)]). Note that −S(z∗,y∗) does not fit as a Lagrange multiplier for
any (z∗, y∗) ∈ SY+(0, 0) because

⋃
x∈Ω(F(x) − S(z∗,y∗)(G(x) + Z+)) = R × R+.

Therefore, y0 = (0, 0) does not become a minimal point of (P[−S(z∗,y∗)]).

4 Duality

This section is devoted to the study of a dual problem for the program (P(0)). We
develop a geometric duality approach analogous to the scalar case approach. In our
setting, we make the pointed closed convex processes play the same role as the linear
continuous operators play in the scalar case. Optimal points of the dual problem are
weak maximal points. This is an interesting feature from a practical point of view
because weak maximal points can be obtained via linear scalarizations.

We define the auxiliary set-valued map Ψ : P(Z ,Y ) ⇒ Y and the dual set-valued
map Φ : P(Z ,Y ) ⇒ Y , respectively, by Ψ (Δ) := ⋃

x∈Ω(F(x) + Δ(G(x) + Z+))

and Φ(Δ) := {y ∈ cl(Ψ (Δ)) : y − Y+ ∩ Ψ (Δ) ⊆ y + Y+}, ∀Δ ∈ P(Z ,Y ). Then,
the image of a process Δ by the dual map is the set of points in the border of Ψ (Δ)

which are nondominated by Ψ (Δ). Theorem 3.1 above states that if ND(P(0)) �= ∅,
then Φ(Δ) �= ∅ for every Δ ∈ Γy0 . The dual problem of (P(0)) is defined by

WMax Φ(Δ) such that Δ ∈ P(Z ,Y ). (D(0))

Definition 4.1 Consider the program (D(0)). A pair (Δ0, y0) ∈ P(Z ,Y ) ×
Φ(P(Z ,Y )) verifying that y0 ∈ Φ(Δ0) is said to be a weak maximizer of (D(0)) if
there is no (Δ′, y′) ∈ P(Z ,Y )×Φ(P(Z ,Y )) with y′ ∈ Φ(Δ′) and such that y0 < y′.
Then, y0 is said to be a weak maximal point of (D(0)), written y0 ∈ WMax(D(0)).

The first sentence in the following result is on weak duality. However, the second one
is on strong duality (based on Theorem 3.1).

Theorem 4.1 Let y0 ∈ ND(P(0)). The following statements hold.
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(i) There is no y1 ∈ ∪Δ∈P(Z ,Y )Φ(Δ) such that y0 < y1. In particular, there is no
y1 ∈ WMax(D(0)) such that y0 < y1.

(ii) Assume that there exists x1 ∈ Ω for which G(x1) ∩ (−int(Z+)) �= ∅. Then, there
exists Δ0 ∈ Γy0 ⊂ P(Z ,Y ) such that y0 ∈ Φ(Δ0), that is, y0 is a nondominated
point of the program (P[Δ0]). Furthermore, if y0 ∈ F(x0) for a feasible solution
x0, then the nondominated point of (P[Δ0]) is also achieved at x0, and we have
Δ(G(x0) + Y+) ∩ (−Y+) ⊆ Y+ ∩ (−Y+).

Proof (i) Let us fix Δ ∈ P(Z ,Y ) and y1 ∈ Φ(Δ). Then, y1 ∈ cl(Ψ (Δ)) and y1
is nondominated by Ψ (Δ). On the other hand, since y0 ∈ ND(P(0)), we have that
y0 ∈ cl(V (0)). Assume that y0 < y1, or equivalently, that y0 ∈ y1− int(Y+). Then, we
can pick some y′

0 ∈ (y1 − int(Y+))∩V (0). Since y′
0 ∈ V (0), there exists x ′

0 ∈ Ω such
that y′

0 ∈ F(x ′
0) and 0 ∈ G(x ′

0)+Z+. Then, y′
0 = y′

0+0 ∈ F(x ′
0)+Δ(G(x ′

0)+Z+) ⊂
Ψ (Δ). But y′

0 < y1, a contradiction. The second part of (i) is immediate. Sentence
(i i) is a consequence of Theorem 3.1.

Example 4.1 In Example 3.1, we have ND(P(0)) = (−∞, 0] × {0}. Then for every
y0 = (x0, 0) ∈ ND(P(0)), we have S′

Y+(y0) = {(0, 0, λ) ∈ R
3 : λ > 0}. There-

fore Graph(−S(z∗,y∗))(z) = R
2 × R+, for every (z∗, y∗) ∈ S′

Y+(y0) and z ∈ Z .
Consequently, for every Δ ∈ Γy0 , we have the inclusion Graph(Δ) \ {(0, 0, 0)} ⊆
R
2 × (R+) \ {0}. This yields Ψ (Δ) = ⋃

x∈Ω {F(x) + Δ(G(x) + Z+)} = A, for
every Δ ∈ Γy0 . Therefore, every nondominated point of (P(0)) is a nondominated
point of (P[Δ]). In this case, both sets of nondominated points coincide.

5 Sensitivity Analysis

In this section, we analyse the sensitivity of (P(0)) by means of the contingent deriva-
tive. In our analysis, the concept of Lagrange process plays a crucial role. But we do
not use its original definition given in [2,Definition 3.7]. Instead of that, we introduce it
by employing the concept of adjoint process. The adjoint of a process was introduced
in [24], and it is also known as the transpose of a process [1,Definition 2.5.1].

From now on, we assume that the ordering cone Y+ on the preordered normed space
Y is pointed. Then, the preorder on Y induced by Y+ becomes an order.

Definition 5.1 Let P : Z ⇒ Y be a process and Q : Y ∗ ⇒ Z∗ a convex process.

(i) The adjoint of P is the process P� : Y ∗ ⇒ Z∗ defined by P�(y∗) :=
{z∗ ∈ Z∗ : 〈z∗, z〉 ≤ 〈y∗, y〉,∀z ∈ Z , y ∈ P(z)}, ∀y∗ ∈ Y ∗.

(ii) The adjoint of Q is the process Q� : Z ⇒ Y defined by Q�(z) := {y ∈ Y :
〈z∗, z〉 ≤ 〈y∗, y〉, ∀y∗ ∈ Y ∗, z∗ ∈ Q(y∗)}, ∀z ∈ Z .

It is clear that the processes P� and Q� above are convex and closed.

Remark 5.1 The adjoint of a process is closely related to the set-valued maps S(z∗,y∗)
introduced in Section 3. Indeed, given a convex process Q : Y ∗ ⇒ Z∗ and z ∈ Z ,
we have Q�(z) = {y ∈ Y : 〈z∗, z〉 + 〈y∗,−y〉 ≤ 0, ∀y∗ ∈ Y ∗, z∗ ∈ Q(y∗)}. Now,
taking into account that−S(z∗,y∗)(z) = {y ∈ Y : 〈z∗, z〉 + 〈y∗,−y〉 ≤ 0} ,we get that
Q�(z) = ⋂

(y∗,z∗)∈Graph(Q)(−S(z∗,y∗)(z)).
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Let us fix a point y0 ∈ ND(P(0)). We define the process SY+(y0) : Y ∗ ⇒ Z∗ by
the following abuse of notation. For every y∗ ∈ Y ∗, the image SY+(y0)(y∗) is the set
of z∗ ∈ Z∗ such that (z∗, y∗) belongs to the set SY+(y0) in Definition 3.3. In this way,
we use the same symbol SY+(y0) for this process and the set in Definition 3.3. The
adjoint that process appears in the following definition.

Definition 5.2 Let y0 ∈ ND(P(0)). We define the Lagrange process of (P(0)) at y0
as the closed convex process Ly0 : Z ⇒ Y such that

Graph(Ly0) := SY+(y0)
� =

⋂

(z∗,y∗)∈SY+ (y0)

(−S(z∗,y∗)(z)). (3)

Remark 5.2 In general, a Lagrange process is not necessarily a Lagrange multiplier
for the same program (see [2,Example 4.4]). On the other hand, any condition (a)–(d)
in the statement of Theorem 5.2 assure that the Lagrange process considered there
becomes a Lagrange multiplier.

Next, we state some terminology on tangent cones and set-valued derivatives (see
[1] for further details).

Definition 5.3 Let Y be a normed space, A ⊂ Y a non-empty set, y ∈ cl(A), and d
the metric given by the norm on Y . The contingent cone to A relative at y, TA (y), is

the cone defined by TA (y) :=
{
v ∈ Y : lim inf

h→0+
d(A,y+hv)

h = 0

}
.

Next, we introduce the contingent derivative. Its usual symbol is D, and it has not to
be confused with that used to denote the dual problem introduced in Section 4.

Definition 5.4 Let F : Z ⇒ Y be a set-valued map and (z0, y0) ∈ Graph(F). The
contingent derivative of F at (z0, y0) is the set-valued map DF(z0, y0) : Z ⇒ Y
defined by Graph(DF(z0, y0)) := TGraph(F)(z0, y0).

Next, our first result on sensitivity. The polar cone of a set will be used in the
corresponding proof. The negative polar cone of a set A1 ⊆ Y (resp. A2 ⊆ Y ∗) is
defined as A−

1 := {y∗ ∈ Y ∗ : 〈y∗, y〉 ≤ 0, ∀y ∈ A1} (resp. as A−
2 := {y ∈ Y :

〈y∗, y〉 ≤ 0, ∀y∗ ∈ A2}). Their corresponding positive polar cones are defined as
A+
1 := −A−

1 ⊂ Y ∗ and A+
2 := −A−

2 ⊂ Y . Clearly (A−
1 )− = (A+

1 )+. Note that polar
cones of sets in Y ∗ are sets in Y (not in Y ∗∗).

Theorem 5.1 Let y0 be a minimal point of (P(0)) and Ly0 the Lagrange process of
(P(0)) at y0. Assume that there exists x1 ∈ Ω for which G(x1) ∩ (−int(Z+)) �= ∅.
Then, Ly0(−z) = D(V + Y+)(0, y0)(z), ∀z ∈ Z.

Proof Let us denote by L−
y0 the process from Z to Y defined by L−

y0(z) := Ly0(−z),
∀z ∈ Z . Now, by (3), we have Graph(L−

y0 )= {(−z, y) ∈ Z × Y : y ∈ Ly0(z)} =
{(−z, y) ∈ Z × Y : 〈z∗, z〉 + 〈y∗,−y〉 ≤ 0,∀(z∗, y∗) ∈ SY+(y0)} = {(z, y) ∈
Z × Y : 〈z∗, z〉 + 〈y∗, y〉 ≥ 0,∀(z∗, y∗) ∈ SY+(y0)} = SY+(y0)+. By [2,Lemma 3.3
(iv)]), we get SY+(y0) = (Graph(V + Y+) − (0, y0))+. Now, using bipolar theorem,
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we have Graph(L−
y0) = (Graph(V + Y+) − (0, y0))++ = cl(cone(Graph(V + Y+) −

(0, y0))). On the other hand, the set Graph(V + Y+) is convex. Then, [1,Proposition
4.2.1]) applies to provide cl(cone(Graph(V +Y+)−(0, y0))) = TGraph(V+Y+)(0, y0).

Consequently, Graph(L−
y0) coincides with TGraph(V+Y+)(0, y0), which directly yields

that Ly0(−z) = D(V + Y+)(0, y0)(z), for every z ∈ Z .

Next, we introduce a derivative proposed by Shi in [25]. We will use it to prove the
following lemma.

Definition 5.5 Let F : Z ⇒ Y be a set-valued map and (z0, y0) ∈ Graph(F). The
S-derivative of F at (z0, y0) is the set-valuedmap DSF(z0, y0) : Z ⇒ Y defined in the
following way: for any direction z ∈ Z , the point y belongs to DSF(z0, y0)(z) if and
only if there exist two sequences {hn}∞n=1 ⊂ R+\{0} and {(zn, yn)}∞n=1 ⊂ Z ×Y , such
that the sequence {(zn, yn)}∞n=1 converges to (z, y), the sequence {hnzn}∞n=1 converges
to 0, and y0 + hn yn ∈ F(z0 + hnzn), ∀n ∈ N.

Fixed y0 ∈ (V + Y+)(0), it is straightforward to check that

Graph(DS(V + Y+)(0, y0)) ⊆ cl(cone(Graph(V + Y+) − (0, y0))). (4)

In what follows, we denote by SY the unit sphere in Y . Let us recall that themarginal
set-valued map M : Z ⇒ Y is defined by M(z) := Min(V (z)), ∀z ∈ Z .

Lemma 5.1 Let y0 be a minimal point of (P(0)) and Ly0 the Lagrange process of
(P(0)) at y0. Assume that the set Y+ ∩ SY is compact and that Ly0 is a Lagrange
multiplier of (P(0))at y0. Then,Min DV (0, y0)(z) = Min D(V+Y+)(0, y0)(z), ∀z ∈
Z.

Proof We will show the equality DSV (0, y0)(0) ∩ (−Y+) = {0}.
Then, [13,Theorem 13.1.1] applies to the set-valued maps V and V + Y+, provid-
ing the desired equality.

First, we check the equality Ly0(0) ∩ (−Y+) = {0}. Let us fix an arbitrary x0 ∈ Ω

such that G(x0) ∩ (−Z+) �= ∅ and y0 ∈ F(x0). The equality Ly0(G(x0)) ∩ (−Y+) =
{0} is a consequence of (2), Remark 3.3, and Y+ ∩ (−Y+) = {0}. Now, pick −v ∈
Ly0(0) ∩ (−Y+) and −z+ ∈ G(x0) ∩ (−Z+). Then, (0,−v) ∈ Graph(Ly0 ). Now,
by [2,Lemma 4.1 (i)], we obtain (−z+, 0) ∈ Graph(Ly0 ). Since Graph(Ly0 ) is a
convex cone, we have (0,−v) + (−z+, 0) = (−z+,−v) ∈ Graph(Ly0), that is,
−v ∈ Ly0(−z+) ⊆ Ly0(G(x0)). Then, the condition v �= 0 contradicts the equality
Ly0(G(x0)) ∩ (−Y+) = {0}. Hence, Ly0(0) ∩ (−Y+) = {0}.

Next, we check the inclusion DSV (0, y0)(0) ⊆ Ly0(0). Let us consider again
the set-valued map L−

y0 defined by L−
y0(z) := Ly0(−z), ∀z ∈ Z . We will prove the

more general inclusion Graph(DSV (0, y0)) ⊆ Graph(L−
y0). We remind the formula

Graph(L−
y0) = cl(cone(Graph(V +Y+)−(0, y0))) proved in the proof of Theorem 5.1.

By (4), we have Graph(DS(V +Y+)(0, y0)) ⊆ Graph(L−
y0). Then, since Graph(V ) ⊂

Graph(V +Y+), we get that Graph(DSV (0, y0)) ⊂ Graph(DS(V +Y+)(0, y0). Thus,
we have Graph(DSV (0, y0)) ⊆ Graph(L−

y0).
Finally, combining DSV (0, y0)(0) ⊆ Ly0(0) andLy0(0)∩(−Y+) = {0}, we obtain

DSV (0, y0)(0) ∩ (−Y+) = {0}.
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Properly efficient points were introduced for twomain reasons: to eliminate anoma-
lous optimal solutions and to propose some scalar problems whose solutions provide
most of the efficient points. Next, we recall some notions regarding proper efficiency.
We say that a point ȳ ∈ A is a positive properly efficient point of a set A ⊂ Y ,
written ȳ ∈ Pos(A), if there exists f ∈ Y ∗ such that f (y) > 0, ∀y ∈ Y+ \ {0}, and
f (ȳ) ≤ f (y), ∀y ∈ A. We say that a point ȳ ∈ A is a Henig global properly efficient
point of a set A ⊂ Y , written ȳ ∈ GHe(A), if there exists a pointed cone K such that
Y+ \ {0} ⊂ int(K) and (A− ȳ)∩ (−int(K)) = ∅. We say that a point ȳ ∈ A is a Henig
properly efficient point of a set A ⊂ Y , written ȳ ∈ He(A), if for some base Θ of Y+
there is ε > 0 such that cl(cone(A− ȳ))∩ (−cl(cone(Θ + εBY ))) = {0}. We say that
a point ȳ ∈ A is a super-efficient point of a set A ⊂ Y , written ȳ ∈ SE(A), if there is a
scalar ρ > 0 such that cl(cone(A− ȳ)) ∩ (BY − Y+) ⊂ ρBY . Regarding the program
(P(z)), we say that a pair (xz, yz) ∈ S(z)×V (z)with yz ∈ F(xz) is a positive properly
(resp. Hening global properly, Hening properly, super-efficient) minimizer of (P(z))
if yz ∈ Pos(V (z)) (resp. yz ∈ GHe(V (z)), yz ∈ He(V (z)), yz ∈ SE(V (z))). Then, yz
is said to be a positive properly (resp. Hening global properly, Hening properly, super-
efficient) minimal point of (P(z)). By [4,Proposition 21.4], we have the inclusions
Pos(V (z)) ⊂ GHe(V (z)), SE(V (z)) ⊂ GHe(V (z)), and SE(V (z)) ⊂ He(V (z)).

In the statement of the following result, we assume domination property which is
usually required in sensitivity analysis. We say that the set-valued map V : Z ⇒ Y
is Y+-dominated by the set-valued map M : Z ⇒ Y near 0 ∈ Z if there exists a
neighbourhood V0 of 0 such that V (z) ⊆ M(z) + Y+, for every z ∈ V0 ⊂ Z .

Theorem 5.2 Let y0 ∈ V (0) be a minimal point of (P(0)) and Ly0 be the Lagrange
process of (P(0)) at y0. Assume the following: there exists x1 ∈ Ω for which G(x1)∩
(−int(Z+)) �= ∅, the set Y+ ∩ SY is compact, and V is Y+-dominated by M near 0.
If any of the following conditions holds true: (a) Graph(Ly0) has a bounded base, (b)
Y+ \ {0} is open, (c) y0 ∈ GHe(V (0)), or (d) y0 ∈ He(V (0)), then we have

Min DM(0, y0)(z) = MinLy0(−z), ∀z ∈ Z . (5)

Proof Assume that at least one of conditions (a)–(d) holds true. By [2,Theorem 1.1],
Ly0 is a Lagrange multiplier of (P(0)) at y0. Now, let us pick an arbitrary z ∈ Z .
From Theorem 5.1, we have the equality MinLy0(−z) = Min D(V + Y+)(0, y0)(z).
By Lemma 5.1, the last set equals Min DV (0, y0)(z). Now, [13,Theorem 13.1.4 (i i)]
gives Min DV (0, y0)(z) = Min DM(0, y0)(z), yielding the equality MinLy0(−z) =
Min DM(0, y0)(z).

Remark 5.3 The sensitivity of the program (P(0)) is closely related to the solutions of
the dual program (D(0)). Indeed, equality (5) expresses the first-order sensitivity of
(P(0)) at y0 in terms of the Lagrange process Ly0 . Besides, (1), (3), and the equality

Graph(−S(z∗,y∗)) = cl
(
∪Δ∈Λ(z∗,y∗)

Graph(Δ)
)
show the strong dependence of the

Lagrange process Ly0 on the set Γy0 of solutions of the dual problem (D(0)).

Next, we see how our approach contains the conventional scalar case.
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Remark 5.4 Let us take Y = R and Y+ = R+; and assume that F and G in (P(z))
are single-valued maps. Then, (P(0)) becomes a conventional scalar convex program
and M becomes the marginal function. If we suppose M Fréchet differentiable, then
M ′(0; z) = DM(0, y0)(z), where M ′(0; ·) stands for the Fréchet differential of M at
0. On the other hand, Ly0(z) = �0(z) + R+ for every z ∈ Z ; where �0 stands for the
“classical" scalar Lagrange multiplier of (P(0)). Theorem 5.2 yields the following
chain of equalities M ′(0, z) = MinM ′(0, z) = MinDM(0, y0)(z) = MinLy0(−z) =
Min(�0(−z) + R+) = �0(−z) = −�0(z), for every z ∈ Z . Those recover a well-
known relationship between the sensitivity of a program and its Lagrange multiplier
(see for instance [21,Section 8.5, p. 221]).

The property of boundedness of the unit ball is essential in the proof of Lemma
3.2. However, the subsequent proposition states the following. For any weak neigh-
bourhood of the origin W , the set cl(cone(x0 + W )) ∩ KerT contains a subspace of
finite codimension; in contraposition to the inclusion cl(cone(x0 + δB)) \ {0} ⊂ {x ∈
X : T (x) > 0}, which we find in the statement of Lemma 3.2. This fact does not allow
us to extend our argument in the proof of Lemma 3.2 to locally convex spaces.

Proposition 5.1 Let X be a normed space, T ∈ X∗, and x0 ∈ X such that T (x0) > 0.
Fix n ≥ 1, ε > 0, Ti ∈ X∗, ∀i ∈ {1, . . . , n}, and consider W = ∩n

i=1{x ∈ X : Ti (x) ≤
ε} such that {x ∈ X : T (x) ≤ 0}∩(x0+W ) = ∅. Then, cl(cone(x0+W )) = ∩n

i=1{x ∈
X : Ti (x) ≤ 0}∪ cone(x0 +W ). As a consequence, the set, cl(cone(x0 +W ))∩KerT ,
contains a subspace of finite codimension.

Proof We choose y ∈ cl(cone(x0+W )), y �= 0, and y /∈ cone(x0+W ).We will check
that y ∈ ∩n

i=1{x ∈ X : Ti (x) ≤ 0}. Then, y = limα λα(x0+wα) for somenets (λα)α ⊂
R++ and (wα)α ⊂ W . As in the proof of Lemma 3.2, the conditions 0 /∈ x0 + W and
y /∈ cone(x0 + W ) assure that limα λα = 0. Then, y = limα λαwα . Thus, ‖ y ‖=
limα λα ‖ wα ‖, which yields limα ‖ wα ‖= +∞. Therefore, it is not restrictive to
assume that ‖ wα ‖> 0 for everyα.We have the equality y/ ‖ y ‖= limα wα/ ‖ wα ‖.
Now, fix any i ∈ {1, . . . , n}. Then, Ti (y/ ‖ y ‖) = limα Ti (wα/ ‖ wα ‖) ≤ limα ε/ ‖
wα ‖= 0. As i was arbitrarily taken, we have y ∈ ∩n

i=1{x ∈ X : Ti (x) ≤ 0}. For
the reverse inclusion, we consider some y ∈ ∩n

i=1{x ∈ X : Ti (x) ≤ 0} and fix
i ∈ {1, . . . , n}. For any m ≥ 1, we have Ti (x0 + my) ≤ Ti (x0) < Ti (x0) + ε. Then,
x0 + my ∈ x0 + W , for every m ≥ 1. Now, the equality y = limm(1/m)(x0 + my)
yields y ∈ cl(cone(x0 + W )). Finally, since the space ∩n

i=1KerTi ∩ KerT has finite
codimension and it is contained in cl(cone(x0 + W )) ∩ KerT , the proof is over.

6 Conclusions

In this work, we provide a new set-valued extension of the classical Lagrange multi-
plier theorem for a constrained convex set-valued optimization problem. In previous
approaches, the Lagrange multipliers were usually linear continuous operators, but
in this manuscript, the Lagrange multipliers are pointed closed convex processes. We
set a dual program whose dual variables are also pointed closed convex processes.
The property of being pointed is essential for the main results in the paper. We prove
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that the Lagrange multipliers are solutions of the dual program. We check that the
sensitivity of the problem is closely related to the set of solutions of the dual program.
The arguments followed in this work are based on geometric principles and similar to
those used in the scalar case.

We present some issues for further research. Since each minimal point of the primal
program has associated many Lagrangian multipliers, it is of interest to determine
which may be the most appropriate. So, we can pose a first question: how does the
graphof aLagrangianmultiplierΔ influence the program (P[Δ]) and its corresponding
solutions? On the other hand, pointed closed convex processes in set-valued analysis
can be interpreted as the natural analogues to sublinear functions in the scalar case.
That leads us to the second question: is it possible to extend the approach developed in
this work to non-convex settings? Finally, Proposition 5.1 shows that our arguments
do not allow us to generalize Lemma 3.2 to locally convex spaces. That motivates our
last question: can Lemma 3.2 be avoided so that we can extend the results of Sections
3 and 4 to locally convex spaces?
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