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Abstract

This paper tests whether barely obtaining a pass score in at least one of
two midterm tests has an effect on subsequent achievement in a Math course.
To estimate the effect, we created a novel dataset by linking administrative
and survey data on students at a medium size Spanish University and used
a regression discontinuity design in which the cutoff is 5, i.e. the pass score
in the national grading system. Although obtaining a score just equal to
or barely greater than 5 in midterm tests has no immediate consequence for
students, it may have a psychological effect by acting as a (de)motivating
signal to study and pass the course, with the sign of the effect being unclear
ex-ante. We find that obtaining a pass score in at least one midterm has a
positive effect on the final exam score. The result seems to be explained by
students’ study strategy, i.e. the ability to obtain a value in the final exam
score that when averaged along with the midterm tests scores leads to an
overall passing score in the course. Overall, our results suggest that partly
unexplored psychological mechanisms may help us deepen our understanding
of the determinants of achievement in higher education.
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1 Introduction

Innate ability is perhaps one of the most important factors influencing educational 

choices and success in the labour market. However, recent research has shown that 

even among students with very similar predetermined characteristics and, hence, 

similar ability, those obtaining a score just above the pass cutoff in at least one high 

school final test has a higher probability of attending college than those just below 

in the UK (Machin et al., 2020) and in the US (Papay et al., 2010). Less is known, 

instead, about the mechanisms driving students’ behaviour and how they react to a 

positive achievement signal. Although it has been hypothesized that psychological 

factors may play a relevant role in these settings (see for a review Koch et al., 2015; 

Lavecchia et al., 2016), quantifying them and estimating the clean effect of passing a 

test on subsequent achievement requires a context in which, first, one or more tests 

are taken over time and, second, at least one of them is low stake.

In this paper, we take advantage of the assessment structure of the first Math 

course in Business Economics and in Economics degrees at the University of Alicante 

in Spain, with two low stakes midterm tests followed by a final exam, to quantify 

the empirical relevance of a psychological effect in achievement. Midterm tests and 

exams are graded on a continuous scale from 0 to 10, and 5 is the pass score, as well 

as in all courses in all Spanish universities and traditionally in compulsory educa-

tion. However, scoring 5.1 rather than 4.9 in the midterm tests has a quantitative 

irrelevant effect on the probability of passing the Math course since one can take the 

final exam, regardless of having passed the midterm tests. To test whether barely 

obtaining a pass score in at least one of two midterm tests leads to an increase in the 

final exam score, we created a novel dataset by linking administrative and survey 

data on three cohorts of first-year students in the academic years 2016 to 2019. We 

estimate the effect by way of a regression discontinuity design (RDD) in which the 

running variable is the greatest score in the midterm tests and the pass score, i.e. 

5, is the cutoff. Importantly, thanks to the surveys we conducted during the course 

we obtained detailed information on students’ socio-demographics and found that 

they are similar on both sides of the cutoff, i.e. balanced, thus offering support to 

the validity of our design.
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The most important reason for studying Math achievement in a higher education

setting is the widely documented positive relationship between Math achievement,

success in a university degree, and in the labour market (Levine and Zimmerman,

1995; Rose and Betts, 2004; Joensen and Nielsen, 2009). Since a Math gender gap

has been documented in several studies (see for a review Niederle and Vesterlund,

2010), we have also tested whether gender differences in behavioural responses to

signals in the tests could shed light on the reasons underlying such gap.

The behavioural mechanism behind the effect of barely obtaining a pass score in

one or more midterm tests is interpreted as being of a mainly psychological nature

for two reasons. Firstly, there is no direct consequence for obtaining a score barely

greater than or equal to 5 rather than barely smaller than 5, since all students

take the same final exam independently of the midterm score. Secondly, although

a slightly greater score in the midterm has a negligible effect on the probability of

passing the course, those students obtaining a score barely greater than or equal

to 5 in the midterm are more likely, in theory and based on anecdotal evidence

on students’ reactions, to give a positive interpretation to their score and think

that they will do better than others in subsequent assessment in the course. The

empirical evidence of such a left-digit effect has been documented in related studies

in the education literature, finding that a score to the left of a cutoff in an exam

increases performance in the re-take exam (Olsen, 2013) and in surveys over school

quality a value of a proxy for quality to the left of a cutoff is more frequently

associated with lower perceived quality (Goodman et al., 2018). However, the net

effect is ambiguous, as it may increase for some students and decrease for others.

Kahneman et al. (2021) provides a general review of evidence that a little change,

partially due to a mistake, can influence decision-making.

In our setting, we find that the effect of barely scoring at or above 5 in at least one

of the midterms on students’ score in the final exam is positive and significant, with

the magnitude being approximately 0.25-0.30 standard deviations of the final exam

grade. The size of this effect is in line with the magnitude found in the literature for

other educational interventions, in particular those related to the effect of positive

feedbacks. Conversely, we find no gender difference: boys and girls react to the

signal in the same way. Additional results show that the psychological effect is most
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likely due to a better study strategy proxied by the difference in the score obtained

in the final exam and the student-specific minimum score needed to pass the course

given the midterms scores. Students seem to use information on the score in the

midterms to “calibrate” their study strategy in the final exam in order to maximise

the probability to pass the course. When we assess the validity of our research design,

we find that the distribution of the greatest midterm score and of predetermined

characteristics, such as gender and socio-demographics are balanced at the 5 cutoff

after dropping observations of students scoring in a small neighbourhood of the

cutoff. Our results are robust to adding controls, varying the RDD bandwidth or

using quadratic specifications.

Our paper contributes to the literature with a case study in education in which a

positive signal in midterm tests plays a predominantly psychological role by broad-

ening our knowledge on the behavioural underpinnings of students’ choices. It com-

plements related studies on the effect of modifying the information disclosed on

achievement or the assessment rules in higher education by way of field experiments

(Azmat et al., 2019; Chevalier et al., 2018), and contributes to the literature on left-

digit effect in the context of education. In addition, our paper speaks to studies on

the Math gender gap by suggesting that gender differences in processing information

on Math achievement are not relevant mechanisms to explain part of this gap.

The remainder of the paper is structured as follows. Section 2 reviews the related

literature. Section 3 presents the institutions and data. Section 4 describes the

research design and assesses its validity. Section 5 describes our results and, finally,

section 6 discusses them and concludes. Additional results are reported in the

Appendix.

2 Literature review

Our paper is related to studies which test the effect of barely passing end-of-

secondary school tests, i.e., high-stakes tests, on students’ decisions to attend post-

compulsory education as they have in common exploiting cutoff scores in the tests

with a regression discontinuity design. Papay et al. (2010) study whether barely

passing high school final tests in English or Math has an impact on the probabil-

ity of high school graduation for students in Massachusetts. They find that barely
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passing the Math test increases the probability of graduation, but only for poor 

students while barely passing the English test has no effect. In related studies in 

US the same authors find that barely passing one or more high school final tests 

increases the probability of attending college (Papay et al., 2011, 2014, 2015). A 

similar result is found for the UK. Students whose score in the high school final test 

in English is just above a relevant cutoff are more likely to attend the two years long 

post-compulsory education cycle which precedes university, called A-level, to enrol 

later on in a university degree and to obtain higher labour market returns (Machin 

et al., 2020). Overall, this evidence suggests that cutoff scores in high stakes exams 

may introduce a subtle but potentially important source of inequality, worthy to 

investigate further.

Azmat et al. (2019) is perhaps the only study which, alongside ours, tests the 

role of information on performance in tests on subsequent achievement in a univer-

sity degree setting. While we use information routinely disclosed to students after 

the midterms and look at the mainly psychological effect of scoring at least 5 in 

the low stakes setting of a midterm test, they study the effect of giving additional 

information only to some students on their relative performance on their grade point 

average (GPA) in the future. Thanks to a field experiment carried out at the Car-

los III University in Madrid over three years, they find that in the first two years 

information GPA and the number of exams passed are lower for treated students. 

Additional analysis shows that these results are driven by students underestimat-

ing their real position in the grade distribution. However, catch up is observed in 

year three when differences between treated and controls are small and no longer 

significant.

In a related work on college students, Chevalier et al. (2018) study the effect of 

incentivising online quizzes on study effort and on performance in the final exam of a 

first year introductory course taught in degrees in Social Science at a large college of 

the University of London. They find that making online quizzes count in the course 

assessment increases students’ effort in the quizzes and also their performance in the 

exam. Differently, in our setting midterm tests are compulsory and count for the 

final score in the course, which is advantageous because we are not forced to alter a 

course assessment rules over time to study our effect of interest. In addition, in our
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setting we focus our attention on students whose first midterm score is arbitrarily 

close to 5, with the advantage relative to Chevalier et al. (2018) of being able to 

assume away differences in ability, i.e., high internal validity, and the disadvantage 

that our results only apply to those students whose first midterm score is close to 5, 

i.e., low external validity. Our results are in line with Chevalier et al. (2018)’s since 

in both an intermediate assessment in a course has a positive impact on subsequent 

assessment in the course, although the two settings are not fully comparable.

In addition, our paper is related to a number of studies in social science ranging 

from Marketing to Economics that have documented the empirical relevance of the 

left-digit effect, i.e. a predominantly psychological effect inducing different decisions 

in people exposed to numbers whose integer part differs although only for a small 

difference in the decimal part. We believe our paper is closely related to two of them 

since they report evidence of a left-digit effect in the context of education. Goodman 

et al. (2018) study the effect of re-taking college entrance exams. Differently from 

our manuscript that focuses on first year college students, the authors look at stu-

dents aspiring to go to college. They estimate the effect by exploiting the empirical 

regularity of a higher percentage of re-takers among those whose score in the first 

attempt is barely smaller than multiples of 100 (relative to those whose first attempt 

score is barely greater than 100) and find that retaking leads to a higher score and to 

improved college enrollment outcomes. Olsen (2013) is a related although different 

study whose objective is testing whether subjective views over the performance of a 

school, measured as a grade average of pupils’ achievement, differ for schools scoring 

on a continuous scale barely to the left rather than to the right of an integer value. 

The main result is a more positive view of schools whose performance level is just to 

the right of an integer relative to just to the left. Although in different contexts, this 

study and our manuscript have in common a psychological effect of scoring barely to 

the right rather than to the left of a relevant integer number due to a few decimals. 

This left-digit effect belongs to the more general class of behavioral biases discussed 

by Kahneman et al. (2021). These authors provide compelling examples showing 

that many choices are altered by the presence of randomness.

Finally, while no study to the best of our knowledge has looked at gender differ-

ences in the effect of barely passing a test, several looked more broadly at gender
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differences in achievement in compulsory and post-compulsory education. A candi-

date mechanism put forward to explain higher Math performance for males has been 

competition. Niederle and Vesterlund (2010) survey the studies testing for the effect 

of competition on Math scores and find that gender differences tend to be explained 

by lower competitiveness for girls. In partial contrast, Bandiera et al. (2018) find no 

gender differences in a meta-study of experimental research on the effect of perfor-

mance pay. We contribute to these studies by looking at gender-specific responses to 

positive signal in the form of a tenuous informational shock about achievement as it 

is not clear-cut whether the (less) more competitive gender, i.e. (fe)males, responds 

more strongly to it.

3 Institutions and data

We estimate the effect of barely passing at least one midterm test thanks to a novel 

dataset which we created by linking administrative data on achievement and survey 

data with additional information on socio-economic characteristics for students in 

the first Math course in the degrees of Business Economics and in Economics at 

the University of Alicante over three academic years: 2016-17, 2017-18 and 2018-

19. Students in these degrees account for about 90% of all students in degrees 

offered by the School of Economics.Math is a compulsory course that students take 

in the first term which starts in September and ends in December, in the first 

year of the degree. The course content is calculus using one-variable functions. The 

course syllabus is divided into the following four blocks: introduction to one-variable 

functions, differentiation, integration and numeric sequences and, finally, elements 

of linear algebra and systems of linear equations. This is very similar to the syllabus 

of an introductory Math course for social science degrees held in universities all over 

the world. The course consists of four contact hours per week over 15 weeks, two 

of which are devoted to theory and two to tutorials consisting in solving exercises. 

Office hours are available for students on a weekly basis.

We believe that the Math course is well suited to test the effect of a positive 

signal in a midterm. First, the first midterms in the course are not just another 

midterm for the students, as they are one of the very first tests taken by students 

in the degree. Hence, students tend to pay considerable attention to achievement
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in these tests to update their beliefs over own ability and the necessary study effort 

to pass the Math course, as well as other courses. Second, a positive relationship 

between Math achievement, for example, at high school, and success in a university 

degree and in the labour market has been found in a number of empirical studies 

(Levine and Zimmerman, 1995; Rose and Betts, 2004; Joensen and Nielsen, 2009).

The course assessment consists of two midterm tests held during the course, T1 

and T2 hereafter, and the final exam (F ) that is held in January every year. The 

overall score (O) in the course is a weighted average of scores in the tests and in 

the final exam given by the following formula: O = 0.2T1 + 0.3T2 + 0.5F . T1 is held 

in week 5 or 6, i.e. typically in mid-October, while T2 is held in week 11 or 12, i.e. 

typically in the second half of November. The content of T1 is material from the first 

block in the syllabus, while that of T2 is material from the first three blocks. Finally, 

in the final exam, knowledge of material in all four blocks is assessed. Scores in all 

three assessments are reals in the interval 0-10. The grading system at the University 

of Alicante sets the pass cutoff at 5 and is the same as in all other universities in 

Spain. In addition, it attributes specific values to the following scores: those in the 

interval 7-8.99 are considered high pass and from 9 onwards very high pass. An 

important feature of the first Math course, that we chose as proof of concept to test 

the role of a positive signal in a midterm, is that the performance in the midterms 

has no consequence on subsequent assessment as all students take the same final 

exam.

Students are divided every year into teaching groups, with approximately 40 

students per group and the division in groups being the same for all first-year courses. 

Math instructors typically teach one or more groups, with the maximum in our 

dataset being 3 in the period we consider. Instructors set midterm tests following 

the same guidelines on the test material from the course coordinator although, since 

tests for different groups are held on different dates, they may differ in an attempt 

to avoid spillover effects from those groups who already took it to those who have 

not. The final exam is, instead, identical for all students as it is held simultaneously 

for all students. Instructors mark both the midterm tests and the final exam. Since 

our treatment of interest is whether students achieve a score greater than or equal 

to 5 in at least one of the two tests, i.e. T1 and T2, and they are marked by students’
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own instructors, we will carefully discuss in the next sections how the practice by 

instructors to grade with a 5 a high enough number of tests close to it, which leads 

to a “jump” at the cutoff in the test score distribution, may affect our results.

We obtained administrative data on students and kept only observations of stu-

dents who took the two tests a well as the final exam. This simplifies the analysis 

as otherwise we would have to face the tricky choice of whether to assign a zero 

score to those absent in a test or in the final exam. We also conducted surveys 

to obtain information on students’ socio-demographics. Students gave consent to 

link their administrative data on achievement with survey data when the survey 

questionnaires were administered. They could opt out of the survey, and if they 

did, we did not include data from these students in our dataset. Students opting 

out are about 10% and almost all of them did so because they were absent either in 

more than a midterm or in the final exam. Table 1 reports summary statistics of 

our main outcomes of interest and of students’ predetermined characteristics. This 

information is shown for the entire sample in column (1), and separately for those 

students not achieving the pass score 5 in at least one of the two tests, i.e. with the 

maximum score between T1 and T2 being smaller than 5 in column (2), and for those 

achieving it or exceeding it in column (3). Column (4) reports the p-value of the 

null hypothesis of no difference in the mean values in a given variable for the two 

sub-samples. Similarly, we report in column (5) the mean values for students not 

achieving the pass score in at least one test by at most one point score, i.e. whose 

maximum score between T1 and T2 is between 4 and 5, and in column (6) the mean 

value for those students achieving it by at most one point score, i.e. whose maximum 

score between T1 and T2 is between 5 and 6. The p-value of the null hypothesis of 

no difference in the mean of these two sub-samples is reported in column (7).1

The top panel in Table 1 shows in column (1) that out of all in our dataset, i.e. 

those who sit both tests and the final exam, 51% obtain a score greater than or 

equal to 5 in T1, 40% in T2 and 33% in the final exam (F). Only 39% of students 

pass the course as their overall score (0) is greater than or equal to 5. These shares 

as well as scores in midterm tests and in the final exam are higher for students with
1Table A.1 in the Appendix reports cross-tabulations of the number of students by whether 

their score in T1 ≥ 5 and T2 ≥ 5.
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Table 1: Summary statistics

(1) (2) (3) (4) (5) (6) (7)
All T̄ = max(T1, T2) p-value 4 ≤ T̄ < 5 5 ≤ T̄ ≤ 6 p-value

< 5 ≥ 5 (2)=(3) (7)=(8)
Scores in tests, final exam and overall score
Test 1 4.70 2.53 6.15 0.00 3.83 4.90 0.00
S.d. 2.39 1.40 1.72 0.93 0.75
T1 ≥ 5 0.51 0.00 0.85 0.00 0.00 0.75 0.00
Test 2 4.16 2.22 5.45 0.00 3.36 4.28 0.00
S.d. 2.38 1.36 2.02 1.17 0.37
T2 ≥ 5 0.40 0.00 0.67 0.00 0.00 0.52 0.00
Final (F) score 3.79 2.23 4.83 0.00 3.11 3.99 0.00
S.d. 2.40 1.73 2.22 1.88 0.10
F ≥ 5 0.33 0.07 0.51 0.00 0.18 0.37 0.00
Overall score (O) 4.24 2.63 5.32 0.00 3.38 4.31 0.00
S.d. 2.12 1.64 1.67 1.13 0.33
O ≥ 5 0.39 0.09 0.59 0.00 0.09 0.36 0.00
Control variables
Female 0.47 0.48 0.47 0.78 0.48 0.45 0.39
Foreigner 0.10 0.12 0.09 0.09 0.09 0.10 0.92
Bus. Adm. (BA) deg. 0.60 0.60 0.60 0.90 0.64 0.61 0.53
BA+Law deg. 0.09 0.14 0.07 0.00 0.06 0.07 0.40
BA+Tourism deg. 0.13 0.12 0.13 0.58 0.15 0.14 0.77
Economics degree 0.18 0.14 0.20 0.00 0.16 0.18 0.57
Dummy for Year 2018 0.35 0.33 0.36 0.25 0.27 0.33 0.14
Dummy for Year 2019 0.29 0.35 0.24 0.00 0.34 0.29 0.18
Repeater 0.14 0.15 0.13 0.18 0.12 0.18 0.07
N 1,873 750 1,123 233 444

at least one test score greater than or equal to 5, as shown by means column (3)

and by small p-values in column (4). We find similar differences when we look at

students whose greatest score between T1 and T2 is within one point score on either

side of the cutoff in columns (5)-(7), except for smaller magnitudes.

The bottom panel of Table 1 shows the control variables that we obtained thanks

to the surveys we conducted and we use in our empirical analysis. When we look

at students’ socio-demographics in column (1), we find that about 47% are females

and 10% are foreigners. When we look at students’ degrees, we find that 60% of

them are in the Business administration (BA) degree, while the remaining students

are somewhat evenly split between double degrees, i.e. BA and Law and BA and

Tourism, and the degree in Economics. In the full sample students in the BA and

Law and those who took the Math course in 2019 are under-represented in the group

with at least one of the two scores greater than or equal to a pass while Economics

students are over-represented, as suggested by low p-values in column (4) of the

difference between the means between columns (2) and (3). However, when we look
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at differences for the subgroup of students whose greatest score in the tests is within

one point score from the cutoff in columns (5)-(7), we find reassuringly that no

difference in predetermined characteristic is significant.

In the next section we assess whether the significant association between the

final exam score and the probability that the score in at least one of the two tests

is greater than 5 can also be interpreted causally. This is particularly important,

given the significant differences we observe in some predetermined characteristics in

our full data sample.

4 Research design

In this section we, first, describe the details of our research design and, second, we

discuss its validity and offer evidence in support of it.

4.1 Regression discontinuity design

We let T1 and T2 denote students’ scores in the first and second test that were held

during the Math course, with its support being reals in the interval 0-10. We also

define T ∗
1 = T1− 5 and T ∗

2 = T2− 5 by subtracting 5 from T1 and T2 to rescale them

in such a way that negative values of T ∗
j indicate that a student scored less than 5

in test j and vice versa for positive T ∗
j values. Also let Pj = I(T ∗

j ≥ 0) be a dummy

equal to 1 if the score in the test j is greater than or equal to 5. We denote it with the 

letter Pj to highlight the psychological component associated with scoring at least 

5 in test j. Since students take two tests, we define the variable T̄ ∗ = max(T1
∗, T2∗) 

to measure the greatest score in the two tests and P̄  = (T̄ ∗ ≥ 0) a dummy variable 

equal to 1 if the greatest score over the two tests, i.e. in at least one of the tests, 

is greater than or equal to 5. Finally, Y denotes subsequent achievement, i.e. the 

final exam.

Equation (1) shows that in a linear regression of Y , the dependent variable, on 

P̄ , our parameter of interest, α1, measures the difference in subsequent achieve-

ment between those students obtaining a score greater than or equal to 5 and those 

obtaining a score smaller than 5 in the first test.
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Y = α0 + α1P̄ + U1 (1)

However, estimates of α1 in equation (1) may be biased since P̄ is likely to be

correlated with unobservable variables we cannot control for. A typical example is

unobserved ability, which is likely to differ for students whose T1 and/or T2 scores are

substantially greater or smaller than 5. By using, instead, a regression discontinuity

design with as running variable the maximum score in the tests T̄ we identify the

psychological effect by comparing subsequent achievement only for students whose

score in at least one of the tests is equal to or barely greater than 5 and for those

whose maximum score in the tests is barely smaller than 5. The reason is that by

considering only students with at least one score arbitrarily close to the cutoff 5,

being on either side of the cutoff is roughly due to chance and hence students on

either side have very similar observed and unobserved characteristics, e.g., ability.

We estimate the psychological effect, which is captured by parameter β1 in equa-

tion (2) by using a flexible polynomial in T̄ ∗, the maximum score in the tests after

subtracting 5 from it, i.e., the running variable, and allowing the polynomial to be

different to the right and to the left of the cutoff. We use both linear and quadratic

approximations of the polynomial in T ∗. We also add as controls in the regressions

students’ predetermined characteristics, whose full list can be found in Table 1.

Y = β0 + β1P̄ + β2T̄
∗ + β3T̄

∗ × P̄ + β4T̄
∗2 + β5T̄

∗2 × P̄ + U2 (2)

In addition, we use different values of the midterm score bandwidth, i.e. how far 

away is a student’s T̄ ∗ score from 0, to only consider those students whose scores are 

very close to the cutoff score 5. The bandwidth choice implies a trade-off. With a 

large value, many observations are included, but students with scores much higher 

and much lower than the cutoff cannot be regarded as being similar. In contrast, 

with a small bandwidth value, only students whose T̄ ∗ score is very close to the 

cutoff are considered, thus leading to a smaller number of observations and a lower 

test power. We consider several choices for the bandwidth, although our starting 

point is the optimal bandwidth obtained with the method proposed by Imbens and
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Kalyanaraman (2012).2

4.2 Research design validity

In this subsection we assess the validity of the research design by quantifying whether

the distribution of students’ greatest score in the tests, i.e. the running variable T̄ ∗

in our RDD, and their predetermined characteristics are balanced at the cutoff 5.

Figure 1 shows in the top panel histograms of the running variable. The histogram 

on the left-hand side shows a jump in the frequency of students whose greatest score 

in the test is exactly 5 while the one on the right hand-side shows that, once we 

have removed observations only for these students from the dataset, the histogram 

is continuous at the cutoff. The histograms also show that frequencies tend to be 

higher at integer values other than 5, e.g. 6 and 7, which may suggest that some 

instructors may round up decimal scores to the closest integer.

The bottom panel in Figure 1 shows a kernel density plot of T̄ , along with 95%

confidence intervals reported as dashed lines (McCrary, 2008). The results show 

that once observations of students achieving 5 in at least one midterm are removed, 

a jump in the density is no longer observed in line with the histograms shown in 

the top panel. This suggests that the target of potential manipulation of scores by 

teachers is limited to students scoring slightly below or above 5, with the former 

seemingly being more frequently subject to rounding up to the closest integer.3

In order to deal with this evidence of manipulation around the cutoff 5, our esti-

mation results in the next section are based on the so-called “donut” RDD approach 

suggested by Barreca et al. (2011, 2016). This procedure consists in dropping not 

only observations just to the right of the cutoff but also on the left of it by creating 

a “donut hole” at the cutoff. This ensures that the observations which are dropped 

are not only those potentially manipulated, which are typically to the right of the 

cutoff in our setting, but also those that are just on the left. Those may have not

2Most of the existing methods start by noting that the choice of the bandwidth is analogous 
to choosing the polynomial order to approximate the polynomial in T ∗. The optimal bandwidth 
value is then derived by minimizing the mean square error when using local polynomial regression. 
In particular, Imbens and Kalyanaraman (2012) provide an algorithm to consistently estimate the 
unknown functionals on which the (infeasible) optimal bandwidth relies. This complex procedure 
is popular among practitioners since it is implemented in Stata and other statistical software.

3A histogram of T̄  reporting the number of observations per histogram bin can be found in 
Figure A.1 in the Appendix.
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Figure 1: Test score histograms
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been manipulated partly because of observable characteristics and partly because of 

unobservable ones, and this may contribute to bias RDD estimates.

We therefore assess whether students’ baseline characteristics are balanced at 

the cutoff 5 in the running variable, i.e. the maximum value between scores in

T1 and T2. Figure 2 shows plots of second order polynomials in T̄  of students’

baseline characteristics. The polynomials have been fitted separately to the left 

and to the right of the cutoff and after dropping observations for students whose 

greatest score is within a radius of 0.1 around the cutoff, what has been termed a 

“donut”. This ensures that students arbitrarily close to the cutoff on either side are 

excluded as potential manipulation shifts students in a small “donut” from one side 

of the cutoff to the other, thus leading to biased estimates. We do not observe in 

Figure 2 substantial jumps in any baseline characteristic or significant ones at the 

cutoff, as shown by overlapping confidence intervals reported as dashed lines. This 

offers evidence in support of the research design validity. Estimates of differences in 

individual baseline characteristics are reported in Table A.2 in the Appendix. They 

tend to be in line with the results in Figure 2, although they are significant for some
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Figure 2: Baseline characteristics balance at max(T1, T2) cutoff
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bandwidth values. Reassuringly, when we test whether differences in all baseline

characteristics are jointly zero, by way of a seemingly unrelated model with as many

outcomes as the number of baseline characteristics, large p-values of the joint test

in Table A.3 in the Appendix show that we do not reject the null hypothesis.4

4We have also carried out similar balancing tests using richer survey data but available only for 
2017/18 and 2018/19. These results, available upon request, show again no statistically significant 
difference in students’ characteristics, which now include High School majors and the ratio people 
per room; only gender and having a major in Arts or Humanities are among the few exception to 
this general result.
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5 Results

This section starts by reporting donut RDD estimates of the effect of barely passing

at least one midterm exam (section 5.1). Subsequently, we report results from

a sensitivity analysis showing the robustness of our main results to varying the

bandwidth (section 5.2).

5.1 Main results

We start reporting our main results by giving a graphical overview in Figure 3,

that reports RDD plots with on the vertical the final exam score standardized by

academic year, and on the horizontal axis the maximum midterm score in tests cen-

tered at 5. We standardized the final exam score to make our estimates comparable

to similar studies and discuss their relative size. Panel (a) shows a discontinuous

increase in the final exam score at the cutoff 5 for the maximum score, with the

psychological effect estimate obtained after dropping observations in a donut with

a 0.1 radius. Similar results are reported in panel (b), obtained after dropping

observations in a donut with a 0.2 radius.

Figure 3: RDD plots of the psychological effect on the final exam score standardized
by academic year
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The estimates reported in this section were obtained by using a donut RDD 

which is the most “conservative” in dealing with a higher frequency of students 

just to the left of the cutoff as they exclude from the dataset students in a small
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neighbourhood around it. Our preferred specification excludes from the dataset 

observations for students whose scores are in an interval of 0.2 both above and 

below such data heap, i.e. between 4.8 and 5.8. This ensures the continuity of 

the running variable and of baseline characteristics at the cutoff 5, as previously 

discussed in section 4.2. In addition, estimates using alternative values of the donut 

radius to assess the sensitivity of our main results show similar results and can be 

found in Table A.4 and A.5 in the Appendix.

Table 2 reports estimates of the effect of a positive signal in at least one midterm 

on the final exam score standardised by year. We report estimates obtained from 

a local linear regression in T̄ ∗ = max(T1
∗, T2∗) using the optimal bandwidth value 

(columns 1 and 2), which was obtained following the procedure in Imbens and 

Kalyanaraman (2012) previously discussed, as well as using a greater value, equal

to 1.5 times the optimal one (columns 3 and 4), and also from a second order poly-

nomial using all observations, i.e., bandwidth 5 (columns 5 and 6). All estimates

are reported from regressions without and with controls, whose coefficients are not

reported. Controls used in the regression include dummies to account for the follow-

ing socio-demographics: gender, foreign nationality, whether a student repeats the 

course and degree type, as reported in Table 1. Bandwidth values and information

about whether a regression was run with controls are reported at the bottom of the

table.

In Table 2, the psychological effect of barely passing at least one midterm is cap-

tured by the coefficient associated with the dummy P̄  = (T̄ ∗ ≥ 0). This estimated 

coefficient is positive across all the different specifications, and it implies a greater

final exam score by 0.25 to 0.30 standard deviations around the 5 cutoff. The size

of this effect is in line (although slightly larger) with the magnitude found in the

literature for other educational interventions, in particular those related to the effect

of positive feedbacks. 5 The corresponding 95% confidence intervals reassuringly

5We do not report estimates of the effect of scoring at least 5 in one of the tests on the probability 
of obtaining a score greater than or equal to 5 in the final exam as they are positive but small and 
not significant. In addition, we do not report estimates obtained using the score in the first test as 
running variable, using the following outcomes: the score in the second test, the final exam score 
or on the probability of obtaining a score greater than or equal to 5 in the final exam, as they are 
positive although small and not significant. Similarly, we do not report estimates from a larger 
dataset including students not sitting the final exam, as the psychological effect on the probability 
of sitting the final exam is not significant, neither when using as running variable the first test 
score nor the maximum score over the two tests. However, they are available upon request.
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Table 2: Effect of a positive signal in at least one midterm test on the final exam
score standardized by year (donut with a 0.2 radius)

(1) (2) (3) (4) (5) (6)

P̄ 0.263∗∗ 0.240∗∗ 0.214∗ 0.165∗ 0.475∗∗ 0.326∗∗

(0.118) (0.117) (0.112) (0.097) (0.182) (0.126)

T̄ ∗ 0.343∗∗∗ 0.351∗∗∗ 0.263∗∗∗ 0.290∗∗∗ 0.193 0.303∗∗∗

(0.051) (0.047) (0.072) (0.055) (0.170) (0.095)

T̄ ∗ × P̄ -0.277∗∗∗ -0.253∗∗∗ -0.075 -0.078 -0.315 -0.349∗∗

(0.097) (0.085) (0.084) (0.072) (0.199) (0.142)

T̄ ∗2 -0.007 0.010
(0.024) (0.015)

T̄ ∗2 × P̄ 0.097∗∗∗ 0.065∗∗

(0.035) (0.026)

Constant -0.011 0.173 -0.092 0.113 -0.150 0.106
(0.102) (0.129) (0.114) (0.148) (0.168) (0.151)

N 998 998 1,356 1,356 1,693 1,693
Controls No Yes No Yes No Yes
Bandwidth 2.22 2.22 3.33 3.33 5.00 5.00

Note: OLS estimates of the model specified in equation (2) with: final exam score standardised
by year; 0.2 donut radius (i.e., excluding students whose value of max(T1, T2) is within 0.2 point
scores from the cutoff 5); clustered standard errors at the class group and year level in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

contain only positive values for the optimal bandwidth value, the smallest value in 

columns (1) and (2) in Table 2 as for estimates obtained using the full bandwidth 

of 5 and a quadratic specification in columns (5) and (6). The zero is only included 

in confidence intervals for intermediate bandwidth values while in columns (3) and 

(4).Also reassuringly, we obtain similar results in Tables A.4 and A.5 in the Ap-

pendix when we exclude, first, observations for students with a least one test score 

equal to 5 and, second, when we exclude, following Barreca et al. (2011, 2016), ob-

servations in a neighbourhood (or “donut radius”) of 0.1 point scores around the 5 

cutoff. Overall, our estimates suggest that our hypothesis of a psychological effect 

on subsequent achievement is confirmed by the data, and it is robust to different 

specifications.

Subsequently, we move to assess whether the overall psychological effect exhibits 

heterogeneity by gender. Table 3 reports estimates using the specifications as in
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Table 3: Effect of a positive signal in at least one midterm, by gender (donut with
a 0.2 radius)

Final Exam Score standardised by year
(1) (2) (3) (4) (5) (6)

P̄ 0.184 0.148 0.174 0.078 0.421∗ 0.199
(0.162) (0.148) (0.153) (0.120) (0.224) (0.152)

T̄ ∗ 0.436∗∗∗ 0.431∗∗∗ 0.245∗∗∗ 0.289∗∗∗ 0.217 0.359∗∗∗

(0.075) (0.068) (0.083) (0.060) (0.189) (0.110)

T̄ ∗ × P̄ -0.434∗∗∗ -0.381∗∗∗ -0.043 -0.055 -0.359 -0.399∗∗

(0.137) (0.120) (0.102) (0.085) (0.243) (0.187)

T̄ ∗2 -0.003 0.019
(0.028) (0.018)

T̄ ∗2 × P̄ 0.101∗∗ 0.058∗

(0.041) (0.029)

Female (F) -0.149 -0.169 0.079 -0.027 0.003 -0.139
(0.178) (0.143) (0.140) (0.118) (0.181) (0.157)

F × P̄ 0.171 0.199 0.098 0.190 0.113 0.266
(0.238) (0.197) (0.210) (0.181) (0.266) (0.219)

F × T̄ ∗ -0.195 -0.165 0.026 -0.004 -0.043 -0.118
(0.122) (0.102) (0.063) (0.057) (0.149) (0.132)

F × T̄ ∗ × P̄ 0.324∗ 0.257∗ -0.060 -0.042 0.080 0.101
(0.170) (0.143) (0.094) (0.088) (0.224) (0.206)

F × T̄ ∗2 -0.006 -0.019
(0.028) (0.025)

F × T̄ ∗2 × P̄ -0.009 0.015
(0.048) (0.039)

Constant 0.061 0.238 -0.135 0.113 -0.150 0.163
(0.134) (0.155) (0.143) (0.164) (0.194) (0.170)

N 997 997 1,353 1,353 1,687 1,687
Controls 0 1 0 0 0 1
Bandwidth 2.22 2.22 3.33 3.33 5.00 5.00

Note: Clustered standard errors at the class group and year level in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 2, but the effect is here allowed to vary by gender. This is done by adding a 

dummy equal to 1 for females and by interacting all terms of the RDD polynomial
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with the female dummy. Hence, the psychological effect for boys is captured by the 

coefficient associated to the dummy P̄  while the difference for girls relative to boys 

is captured by the one associated to the interaction between these two dummies, 

F emale × P̄ . The table shows that point estimates of the psychological effect for 

boys are similar (or slightly lower) in magnitude to those obtained in the previous 

Table 2, although less precisely estimated. When we look at gender differences, we 

find that the difference in the psychological effect between girls and boys is positive, 

but not statistically significant. In other words, girls seem to react to a positive 

signal more positively than boys, but it cannot be excluded that they are both 

affected in the same manner.

5.2 Sensitivity analysis

In this section we report evidence from a sensitivity analysis whose objective is 

assessing the robustness of our main results of Table 2. We begin by assessing the 

sensitivity to using a large variety of bandwidth values different from the ones used 

in our preferred specification in Table 2, i.e. the optimal one, 1.5 times the optimal 

one and the full bandwidth of 5. Figure 4 shows how estimates of the effect of a 

positive signal in at least one midterm, measured along the vertical axis, vary when 

we vary the bandwidth, measured along the horizontal axis.

Figure 4 is divided into two columns and three rows, giving us six plots in 

total. Each one of these plots reports estimates from a regression of the positive 

signal effect, i.e., estimates of the parameter associated to the dummy P̄  in Table 

2 (thick continuous line) along with 95% confidence intervals (thick dashed lines). 

Estimates come from a linear polynomial specification in the running variable P̄  for 

a bandwidth up to 4; the optimal bandwidth is drawn using a vertical dashed line. In 

each case, we consider specifications without covariates and with covariates. Finally, 

we report separate specifications in different panels, depending on the observations 

dropped in the donut RDD specification: observations with a score of just 5 (top 

panel), with scores 0.1 points around 5 (central panel), and with scores 0.2 points 

around 5 (bottom panel).

Figure 4 shows that the positive and significant effect observed in our main results

is robust to using different bandwidths and both without and with controls. Only
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Figure 4: Sensitivity to bandwidth values used to estimate psychological effect on
final exam score standardised by year (linear specification)
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for small values of the bandwidth, confidence intervals are rather ample, so they are 

not significant at conventional levels. We believe that this is due to the low power 

to estimate our effect of interest because, first, for bandwidth values smaller than 

the optimal, we estimate an effect with few observations and, second, the loss of 

significance is mainly due to greater standard errors rather than to a decrease in the 

point estimate. As a matter of fact, the point estimates remain relatively unchanged
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across all the plots, and the confidence intervals mostly lie in the range of positive 

values. Estimates obtained using quadratic polynomial specifications are reported 

in Figure A.2 in the Appendix and show that a quadratic precisely estimates our 

effect of interest for relatively large bandwidths.6

Overall, the obtained effect size of 0.29 standard deviations is at the upper 

end of estimates on student’s performance of teacher experience (De Paola, 2009) 

or of feedback (Bandiera et al., 2015), but it is in line with the effect of most 

of the literature on randomized evaluation of education policies (Banerjee et al., 

2007), of class sizes (Angrist and Lavy, 1999) or of teacher quality (Rockoff, 2004). 

In particular, it is similar, although slightly higher, than the effects observed on 

positive feedbacks by Brade et al. (2018) and Azmat et al. (2019), and it confirms 

the findings of Azmat and Iriberri (2010) that showed that providing (relative)

feedback improved high school students’ grades by 5%.

5.3 Mechanisms

In this section, we explore potential channels that can explain our previous result,

i.e., a positive psychological effect of obtaining a pass score in at least one midterm on 

the final exam score. We propose study strategies as one of the possible behavioural

mechanism at play. We can expect that study effort increases or decreases as a result

of the psychological effect of barely passing at least one midterm test. We compute

the difference between actual score in the final exam and the score need to pass the

course; each student can easily compute this with information about her previous

performance. A positive difference can be regarded as an “objective” measure of 

effort exerted by the student, since she is doing more that what it is required to just

pass the course.

Since students take two midterms, they may jointly use information on the score

in the midterms to “calibrate” their study strategy in the final exam in order to

maximise the probability to pass the course. Since the overall score in the course is
6We have also replicated our previous estimates using the subsample from 2017 to 2019. These 

results, available upon request, are rather similar to those obtained in the larger sample. However, 
the 90% and 95% confidence interval are wider, which is not surprising since the sample size is 
about one third lower. As a consequence, we cannot reject here that the psychological effect is not 
statistically significant. Since the overall picture is similar, we are confident that this subsample 
can be used for further analysis exploiting the additional information that it contains.
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a weighted average of scores in two tests and in the final exam, i.e., O = 0.2T1 +

0.3T2+0.5F , once students know their scores in the midterm tests, they can compute

the final exam score value F ∗ that grants them a pass in the course. This is obtained

by setting the formula to compute the overall score in the course equal to 5, the pass

score, and substituting out for F ∗, i.e., F ∗ = (5− (0.2T1 + 0.3T2))2. We then create

as a proxy for student’s study strategy the difference between a student’s actual

final exam score F and the individual-specific pass cutoff F ∗, which is positive if a

student obtains a final exam score greater than the pass cutoff, zero if it is equal to

the pass cutoff value and negative if it is smaller.

Table 4: Effect of a positive signal in at least one test on targeting the final exam
pass score (donut with a 0.1 radius)

(1) (2) (3) (4) (5) (6)

P̄ 0.566∗ 0.547∗ 0.512 0.410 1.100∗∗ 0.831∗∗

(0.310) (0.293) (0.323) (0.264) (0.445) (0.336)

T̄ ∗ 1.773∗∗∗ 1.740∗∗∗ 1.504∗∗∗ 1.570∗∗∗ 1.532∗∗∗ 1.697∗∗∗

(0.161) (0.134) (0.206) (0.156) (0.397) (0.259)

T̄ ∗ × P̄ -0.763∗∗∗ -0.585∗∗∗ -0.182 -0.163 -1.152∗∗ -1.083∗∗∗

(0.252) (0.211) (0.242) (0.203) (0.492) (0.387)

(T̄ ∗)2 0.021 0.044
(0.057) (0.043)

(T̄ ∗)2 × P̄ 0.245∗∗∗ 0.178∗∗

(0.087) (0.072)

Constant -2.077∗∗∗ -1.716∗∗∗ -2.353∗∗∗ -1.735∗∗∗ -2.335∗∗∗ -1.700∗∗∗

(0.325) (0.523) (0.357) (0.577) (0.439) (0.569)
N 1,062 1,062 1,393 1,393 1,717 1,717
Controls No Yes No Yes No Yes
Bandwidth 2.29 2.29 3.43 3.43 5.00 5.00

Robust standard errors in parentheses: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Once we have built a measure of students’ ability to “calibrate” their study 

effort in the final exam F , we estimate the effect of a positive signal in at least 

one test on F − F ∗. Table 4 reports these estimates and shows that the effect on 

F − F ∗, captured by the coefficient associated with the dummy P̄  is positive and 

significant at conventional levels for most specifications. In addition, the confidence
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intervals again contain basically positive values in all the cases. In our preferred

specification in column (2), with covariates and optimal bandwidth, the effect is

significant at 10% and the 95% confidence interval is (−0.027, 1.121); and in column

(4) with a wider bandwidth (−0.107, 0.927). The upper confidence limit shows that

the psychological effect induces students to obtain scores in the final exam up to

one point score higher than the minimum final exam score necessary to pass the

course while the lower one is negative although it is very small, about a ninth of

the upper limit in absolute value. These results show that students affected by the

positive signal seem to use more precisely the information obtained in the form of

test scores in the preparation for the final exam and suggest study strategies as the

most relevant mechanism to interpret our main results of the psychological effect on

subsequent achievement. We have also checked whether this behavioural mechanism

operates differently according to gender. Results available upon requests show that

this mechanism is the same for boys and girls.

6 Conclusion

In this paper we tested, by using administrative and survey linked data on the first

Math course in all degrees offered by the School of Economics at the University of

Alicante, whether obtaining a score barely greater than or equal to 5 in at least one

of the two midterm tests has an impact on students’ subsequent achievement in the

course. We use 5 as the relevant cutoff since it is a pass score in the nationwide grad-

ing system. We identify the effect using a regression discontinuity design, because

obtaining a score barely greater or smaller than this cutoff is at least partially due

to randomness, and so students with scores on either side of the cutoff have similar

characteristics. We interpret the estimated effect as a mainly psychological one, as

although bearing no direct consequence for the overall achievement, those scoring

5 or slightly above are more likely to interpret it positively and potentially modify

their beliefs and subsequent study behaviour. Our results show that obtaining a

passing score in at least one midterm has overall a positive and significant effect

on subsequent achievement in the Math course, measured as the score in the final

exam. However, we find no differences in how boys and girls react to this signal.

Although the positive effect on final exam score for those barely scoring at or
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above 5 in at least one midterm exam can also be explained from teachers’ side, 

we propose study strategies as the main behavioural mechanism at play. Since the 

overall score in the course is a weighted average of midterm scores and the final exam, 

students can jointly use information on their two midterms score to compute the 

final exam score value that grants them a pass in the course. Our results show that 

students affected by the positive signal seem to use more precisely the information 

obtained to prepare the final exam: they can get up to one point score higher than 

the minimum final exam score required to pass the course. If the final exam score 

had been increased by teachers to benefit students who performed marginally better 

in the midterms, we feel that such increase would have been just enough to barely 

pass the overall course. Instead, our evidence suggest that students increased their 

effort, so their final score was well-above the required grade to pass. Again, this 

behavioural mechanism does not operate differently according to gender.

Our analysis may be enriched in a number of directions that we plan to pursue 

in future research. First, since the first Math course has a pass rate lower than 

50%, we believe that it would be important to test the effect of a positive signal 

in achievement not only in Math but also in other first-year courses as this may 

influence students’ overall achievement by the end of the first year and their decision 

to enroll in the second year in the degree, to change degree or to dropout. Second, 

we plan to obtain in the future data from a midterm test with multiple-choice 

questions which will enable us to test whether the effect differs in a setting in which 

there is no scope for score manipulation. Finally, it would be very informative 

to obtain data with enough variation in instructors’ gender, ideally from several 

universities in Spain and in other comparable countries, to quantify whether the 

psychological effect is at least partially explained not only by students’ gender but 

also by instructors’.
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Appendix

Figure A.1: max(T1, T2) histogram with frequencies by bin
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Figure A.2: Sensitivity to bandwidth values of psychological effect of tests on final
exam score (quadratic specification)
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Table A.1: Cross-tabulations of number of students by whether their score in T1 ≥ 5
and T2 ≥ 5

4 ≤ max(T1, T2) ≤ 6 Full sample
T1 < 5 T1 ≥ 5 T1 < 5 T1 ≥ 5

T2 < 5 233 110 750 173
T2 ≥ 5 214 120 369 581

Table A.2: Baseline characteristics balance at max(T1, T2) cutoff using different
bandwidths and a donut with a 0.1 radius

Female Foreigner

P̄ -0.034 -0.104∗ -0.036 0.022 0.017 0.025
(0.080) (0.061) (0.074) (0.049) (0.038) (0.047)

T̄ ∗ -0.005 0.034 -0.039 0.019 0.001 0.025
(0.055) (0.029) (0.053) (0.032) (0.018) (0.037)

T̄ ∗ × P̄ 0.005 0.004 0.082 -0.058 -0.020 -0.081∗

(0.072) (0.039) (0.072) (0.041) (0.023) (0.047)

(T̄ ∗)2 -0.011 0.009
(0.010) (0.008)

(T̄ ∗)2 × P̄ 0.004 0.003
(0.014) (0.010)

Constant 0.493∗∗∗ 0.529∗∗∗ 0.468∗∗∗ 0.114∗∗∗ 0.101∗∗∗ 0.112∗∗∗

(0.061) (0.046) (0.056) (0.036) (0.028) (0.036)
N 872 1,242 1,717 872 1,242 1,717
Bandwidth 1.95 2.92 5.00 1.95 2.92 5.00

Bus. admin (BA) degree BA+Law degree

P̄ -0.160∗∗ -0.060 -0.267∗∗∗ 0.028 0.056∗ 0.171∗∗∗

(0.078) (0.060) (0.073) (0.041) (0.033) (0.042)

T̄ ∗ -0.018 0.003 0.167∗∗∗ 0.027 -0.031∗ -0.154∗∗∗

(0.053) (0.029) (0.051) (0.025) (0.018) (0.034)

T̄ ∗ × P̄ 0.178∗∗∗ 0.022 -0.008 -0.064∗ 0.022 0.122∗∗∗

(0.069) (0.038) (0.069) (0.034) (0.023) (0.042)

(T̄ ∗)2 0.032∗∗∗ -0.019∗∗∗

(0.010) (0.006)

(T̄ ∗)2 × P̄ -0.071∗∗∗ 0.025∗∗∗

(0.014) (0.008)

Constant 0.615∗∗∗ 0.630∗∗∗ 0.753∗∗∗ 0.078∗∗∗ 0.027 -0.073∗∗

(0.059) (0.045) (0.054) (0.030) (0.025) (0.032)
N 872 1,242 1,717 872 1,242 1,717
Bandwidth 1.95 2.92 5.00 1.95 2.92 5.00

Continued on the next page
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Continued from the previous page

Econ. degree Year 2017-18

P̄ 0.139∗∗ 0.040 0.117∗∗ 0.028 0.087 0.223∗∗∗

(0.060) (0.047) (0.057) (0.073) (0.057) (0.069)

T̄ -0.019 -0.001 -0.049 0.051 -0.027 -0.205∗∗∗

(0.038) (0.021) (0.034) (0.048) (0.027) (0.048)

T̄ ∗ × P̄ -0.085 -0.005 -0.035 -0.044 0.033 0.197∗∗∗

(0.052) (0.030) (0.054) (0.064) (0.036) (0.067)

(T̄ ∗)2) -0.016∗∗ -0.036∗∗∗

(0.006) (0.009)

(T̄ ∗)2 × P̄ 0.039∗∗∗ 0.043∗∗∗

(0.011) (0.013)

Constant 0.142∗∗∗ 0.160∗∗∗ 0.132∗∗∗ 0.316∗∗∗ 0.257∗∗∗ 0.125∗∗

(0.042) (0.033) (0.038) (0.055) (0.042) (0.051)
N 872 1,242 1,717 872 1,242 1,717
Bandwidth 1.95 2.92 5.00 1.95 2.92 5.00

Year 2018-19 Repeater

P̄ 0.125 0.057 0.040 0.082 0.074∗ 0.122∗∗

(0.077) (0.058) (0.070) (0.056) (0.043) (0.052)

T̄ -0.063 -0.030 0.014 -0.036 -0.012 -0.077∗∗

(0.054) (0.029) (0.053) (0.039) (0.020) (0.038)

T̄ ∗ × P̄ -0.071 -0.051 -0.143∗∗ 0.014 -0.023 0.038
(0.068) (0.037) (0.068) (0.051) (0.027) (0.050)

(T̄ ∗)2) 0.001 -0.014∗

(0.011) (0.007)

(T̄ ∗)2 × P̄ 0.015 0.015
(0.013) (0.010)

Constant 0.303∗∗∗ 0.327∗∗∗ 0.371∗∗∗ 0.104∗∗ 0.124∗∗∗ 0.078∗∗

(0.059) (0.045) (0.054) (0.042) (0.031) (0.039)
N 872 1,242 1,717 872 1,242 1,717
Bandwidth 1.95 2.92 5.00 1.95 2.92 5.00

Note: The table reports in each panel estimates of regressions with two different dependent

variables clearly labeled in the top row of a panel and independent variables are the same as in

the RDD polynomial used in all specifications in the paper, with T̄ ∗ = max(T ∗
1 , T

∗
2 ) and

P̄ = (T̄ ∗ ≥ 0). Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.3: Pre-treated joint balance at max(T1, T2) cutoff using optimal bandwidth
by donut radius

Female Foreigner BA BA+Law Econ. Year 2018 Year 2019 Repeater
Donut radius 0.1

P̄ -0.02 0.01 -0.10 -0.01 0.30 -0.06 0.09 -0.06
S.e. 0.15 0.09 0.15 0.07 0.12 0.14 0.14 0.11
T̄ ∗ -0.10 0.00 -0.11 0.10 -0.24 0.02 0.18 0.08
S.e. 0.26 0.15 0.25 0.12 0.20 0.24 0.24 0.19
T̄ ∗ × P̄ 0.16 0.01 0.23 -0.12 -0.06 0.24 -0.49 0.14
S.e. 0.33 0.20 0.32 0.16 0.25 0.31 0.31 0.24
(T̄ ∗)2 -0.04 -0.01 -0.04 0.03 -0.10 -0.01 0.12 0.05
S.e. 0.12 0.07 0.12 0.06 0.09 0.11 0.11 0.09
(T̄ ∗)2 × P̄ 0.01 -0.02 0.07 -0.04 0.20 -0.12 -0.03 -0.17
S.e. 0.16 0.09 0.15 0.08 0.12 0.15 0.15 0.11
Constant 0.45 0.11 0.58 0.11 0.05 0.30 0.40 0.15
S.e. 0.12 0.07 0.12 0.06 0.09 0.11 0.11 0.09
N 872
Bandwidth 1.95
P-val P̄ = 0 jointly 0.29

Donut radius 0.2
P̄ 0.03 0.06 -0.15 0.05 0.20 0.01 0.14 -0.04
S.e. 0.18 0.10 0.17 0.09 0.13 0.16 0.16 0.13
T̄ ∗ -0.03 -0.03 0.04 0.15 -0.37 0.10 -0.08 0.07
S.e. 0.28 0.17 0.27 0.14 0.21 0.26 0.26 0.20
T̄ ∗ × P̄ -0.07 -0.01 0.01 -0.32 0.40 -0.04 -0.06 0.13
S.e. 0.37 0.22 0.36 0.18 0.27 0.34 0.34 0.27
(T̄ ∗)2 -0.01 -0.02 0.02 0.05 -0.16 0.02 0.01 0.05
S.e. 0.13 0.08 0.12 0.06 0.09 0.12 0.12 0.09
(T̄ ∗)2 × P̄ 0.05 0.02 0.03 0.00 0.12 -0.06 0.01 -0.16
S.e. 0.17 0.10 0.16 0.08 0.13 0.16 0.16 0.12
Constant 0.49 0.09 0.66 0.13 -0.02 0.35 0.27 0.15
S.e. 0.14 0.08 0.13 0.07 0.10 0.13 0.12 0.10
N 842
Bandwidth 1.95
P-val P̄ = 0 jointly 0.79

Note: The table reports estimates of a single regression of a seemingly unrelated regression

(SUR) model with as many equations as are the predetermined characteristics in the top row in

the table. Each column in the table reports estimates of one of the equations in the SUR model.

The independent variables are the same as in the RDD polynomial used in all specifications in

the paper, with T̄ ∗ = max(T ∗
1 , T

∗
2 ), T ∗

i = Ti − 5 with i = 1, 2 and P̄ = (T̄ ∗ ≥ 0). The bottom row

reports the p-value of the null that P̄ = 0 is jointly zero in all regressions. Robust standard errors

in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.4: Effect of a positive signal in at least one midterm (RDD with all obser-
vations, i.e. a donut with a 0 radius)

Final Exam Score standardised by year
(1) (2) (3) (4) (5) (6)

P̄ -0.172 -0.157 -0.086 -0.092 0.158∗ 0.085
(0.142) (0.139) (0.111) (0.107) (0.090) (0.087)

T̄ ∗ 0.544∗∗∗ 0.521∗∗∗ 0.424∗∗∗ 0.434∗∗∗ 0.222∗∗∗ 0.314∗∗∗

(0.179) (0.176) (0.101) (0.099) (0.066) (0.063)

T̄ ∗ × P̄ -0.132 -0.075 -0.067 -0.044 -0.096 -0.160∗

(0.204) (0.199) (0.117) (0.114) (0.087) (0.083)

T̄ ∗2 -0.003 0.012
(0.012) (0.011)

T̄ ∗2 × P̄ 0.048∗∗∗ 0.027
(0.018) (0.017)

Constant 0.123 0.348∗∗∗ 0.055 0.266∗∗ -0.115 0.122
(0.132) (0.133) (0.099) (0.104) (0.077) (0.081)

N 681 681 903 903 1,880 1,880
Controls 0 1 0 1 0 1
Bandwidth 1.06 1.06 1.60 1.60 5.00 5.00

Robust standard errors in parentheses: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.5: Effect of a positive signal in at least one midterm (donut with a 0.1
radius)

Final Exam Score standardised by year
(1) (2) (3) (4) (5) (6)

P̄ 0.233∗ 0.163 0.253∗∗ 0.234∗∗ 0.432∗∗ 0.296∗∗

(0.119) (0.124) (0.097) (0.089) (0.170) (0.116)

T̄ ∗ 0.347∗∗∗ 0.364∗∗∗ 0.290∗∗∗ 0.290∗∗∗ 0.219 0.316∗∗∗

(0.084) (0.082) (0.053) (0.050) (0.168) (0.095)

T̄ ∗ × P̄ -0.259∗∗ -0.186∗ -0.172∗∗ -0.142∗∗ -0.331∗ -0.350∗∗

(0.120) (0.110) (0.077) (0.069) (0.195) (0.135)

T̄ ∗2 -0.003 0.012
(0.024) (0.016)

T̄ ∗2 × P̄ 0.091∗∗∗ 0.060∗∗

(0.033) (0.025)

Constant 0.003 0.181 -0.050 0.145 -0.119 0.116
(0.119) (0.134) (0.106) (0.139) (0.167) (0.147)

N 827 827 1,182 1,182 1,723 1,723
Controls 0 1 0 0 0 1
Bandwidth 1.78 1.78 2.66 2.66 5.00 5.00

Robust standard errors in parentheses: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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