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a b s t r a c t

A generalized harmonic balance method is used to calculate the periodic solutions of a
nonlinear oscillator with discontinuities for which the elastic force term is proportional
to sgn(x). This method is a modification of the generalized harmonic balance method in
which analytical approximate solutions have rational form. This approach gives us not
only a truly periodic solution but also the frequency of the motion as a function of the
amplitude of oscillation. We find that this method works very well for the whole range
of amplitude of oscillation in the case of the antisymmetric, piecewise constant force
oscillator and excellent agreement of the approximate frequencies with the exact one has
been demonstrated and discussed. For the second-order approximation we have shown
that the relative error in the analytical approximate frequency is 0.24%. We also compared
the Fourier series expansions of the analytical approximate solution and the exact one.
Comparison of the result obtained using this method with the exact ones reveals that this
modified method is very effective and convenient.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear oscillator models have been widely used in many areas of physics and engineering and are of significant
importance in mechanical and structural dynamics for the comprehensive understanding and accurate prediction of
motion [1–4]. It is very difficult to solve nonlinear problems and, in general, it is often more difficult to get an
analytic approximation than a numerical one to a given nonlinear problem. There are several techniques used to find
approximate solutions to nonlinear problems. Some of these techniques include perturbation [4–7], variational [8–13],
decomposition [14], homotopy perturbation [15–29], homotopy analysis [30,31], harmonic balance [4], standard and
modified Lindstedt–Poincaré [4,32–38], artificial parameter [37,38], linearized and quasilinearized harmonic balance
[39–44] methods, etc. An excellent review on some asymptotic methods for strongly nonlinear equations can be found
in detail in References [2] and [37].
In the present paper we obtain higher-order analytical approximations to the periodic solutions to a nonlinear oscillator

with discontinuity for which the elastic restoring force is an antisymmetric and constant force. To do this, we apply a
modified generalized harmonic balance method [4,45]. This type of oscillator has been analyzed by Özis and Yildirim [16]
applying the first-order homotopy perturbation method and by Beléndez et al. [46] applying the higher-order homotopy
perturbation method. This oscillator has been also studied by Rafei et al. [10] applying He’s variational iteration method, by
Liu [36] applying a modified Lindstedt–Poincaré method, by Wu et al. [42] using a linearized harmonic balance technique
and by Ramos [47] using an artificial parameter Lindstedt–Poincaré method. Nowwe apply a modified generalized, rational
harmonic balance method to obtain analytic approximate solutions for this nonlinear oscillator. The harmonic balance
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method is a well-established method for the analysis of nonlinear problems, the time domain response of which can be
expressed as a Fourier series. In the usual harmonic balance methods, the solution of a nonlinear system is assumed to
be of the form of a truncated Fourier series [4]. This method can be applied to nonlinear oscillatory systems where the
nonlinear terms are not small and no perturbation parameter is required. Being different from the other nonlinear analytical
methods, such as perturbation techniques, the harmonic balance method does not depend on small parameters, so that it
can find wide application in nonlinear problems without linearization or small perturbations. In the generalized or rational
harmonic balance method, the approximate solution obtained approximates all of the harmonics in the exact solution [48],
whereas the usual harmonic balance techniques provide an approximation to only the lowest harmonic components. In an
attempt to provide better solution methodology a modification in this technique is proposed. As we will see, the second-
order approximation obtained by this method is of extreme accuracy.

2. Solution procedure

Non-smooth oscillators play an important role in nonlinear dynamics [18,47,49–51]. Conservative non-smooth
oscillators such as the one considered here are governed by

d2x
dt2
+ f (x) = 0 (1)

where x is the displacement and f (x) is a nonlinear, non-smooth function of x. We consider the case corresponding to
the antisymmetric, piecewise constant force oscillator, f (x) = sgn(x), which has been considered by several authors
[4,10,16,36,42,46,47,50,51]

d2x
dt2
+ sgn(x) = 0 (2)

with initial conditions

x(0) = A and
dx
dt
(0) = 0 (3)

and sgn(x) is defined as

sgn(x) =
{
−1, x < 0
+1, x > 0. (4)

Eq. (2)models themotion of a punctual ball rolling in a ‘‘V’’ shape trough in a constant gravitational field. The arms of the ‘‘V’’
make equal angles with horizontal plane and the origin of the (horizontal) x coordinate is taken to be the point of interaction
of the two arms [4]. In a suitable set of units, the equation of motion can be written as Eq. (2). All the solutions to Eq. (2) are
periodic. We denote the angular frequency of these oscillations by ω and note that one of our major tasks is to determine
ω(A), i.e., the functional behaviour of ω as a function of the initial amplitude A.
A new independent variable τ = ωt is introduced. Then Eqs. (2) and (3) can be rewritten as

ω2
d2x(τ )
dτ 2

+ sgn(x(τ )) = 0, x(0) = A,
dx
dτ
(0) = 0. (5)

The new independent variable is chosen in such a way that the solution of Eq. (5) is a periodic function of τ of period 2π .
Following the lowest-order harmonic balance approximation, we set

x1(τ ) = A cos τ (6)

which satisfies the initial conditions in Eq. (5). Substituting Eq. (6) into Eq. (5) and setting the resulting coefficient of cos τ
to zero yield the first approximation to the frequency in terms of A

ω1(A) =
2
√
πA
≈
1.128379
√
A

, T1(A) =
2π
ω1(A)

= 5.568328
√
A. (7)

Eq. (7) is identical to the result that can be obtained from the application of a modified Lindstedt–Poincaré method [36],
the homotopy perturbation method [16,46] and a variational iteration method [10,12].
In order to determine an improved approximation we use a generalized, rational form given by the following

expression [4,45]

x2(τ ) =
A1 cos τ

1+ B2 cos 2τ
. (8)
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In this equation A1, B2 and ω are to be determined as functions of the initial conditions expressed in Eq. (5) and |B2| < 1.
From Eq. (5) we obtain A1 = (1+ B2)A and Eq. (8) can be rewritten as follows

x2(τ ) =
(1+ B2)A cos τ
1+ B2 cos 2τ

. (9)

Substituting Eq. (9) into Eq. (5) leads to

ω2
4AB2(1+ B2) cos τ cos 2τ

(1+ B2 cos 2τ)2
− ω2

A(1+ B2) cos τ
1+ B2 cos 2τ

− ω2
4AB2(1+ B2) sin τ sin 2τ

(1+ B2 cos 2τ)2

+ω2
8AB22(1+ B2) cos τ sin

2 2τ
(1+ B2 cos 2τ)3

+ sgn
(
(1+ B2)A cos τ
1+ B2 cos 2τ

)
= 0. (10)

Eq. (10) can be written as follows

F(A, B2, ω, τ ) = 0. (11)

As |B2| < 1 we can do the following series expansion

F(A, B2, ω, τ ) =
∞∑
n=0

Fn(A, B2, ω, τ ) =
∞∑
n=0

fn(A, ω, τ )Bn2 (12)

where

fn(A, ω, τ ) =
1
n!

(
∂nF(A, B2, ω, τ )

∂Bn2

)
B2=0

. (13)

From Eq. (10) we can conclude that fn(A,−τ) = −fn(A, τ ). Before applying the harmonic balance method to Eq. (11) we
consider the following approximation in Eqs. (11) and (12)

F(A, B2, ω, τ ) ≈ F2(A, B2, ω, τ ) = f0(A, ω, τ )+ f1(A, ω, τ )B2 + f2(A, ω, τ )B22 = 0. (14)

Expanding F2(A, B2, τ ) in a trigonometric series yields

F2(A, B2, ω, τ ) = H1(A, B2, ω) cos τ + H3(A, B2, ω) cos 3τ + HOH (15)

where

H1(A, B2, ω) =
4
π

∫ π/2

0
F2(A, B2, ω, τ ) cos τdτ (16)

H3(A, B2, ω) =
4
π

∫ π/2

0
F2(A, B2, ω, τ ) cos 3τdτ . (17)

Setting the coefficients of cos τ and cos 3τ to zero in Eq. (15) we can obtain B2 and the second-order approximate frequency
ω as a function of A. From Eqs. (10)–(17) we obtain

H1(A, B2, ω) =
1
8
(8− 2πAω2 − πAB2ω2) = 0 (18)

H3(A, B2, ω) =
1
48
(−16+ 54πAB2ω2 + 27πAB22ω

2) = 0. (19)

In Eqs. (18) and (19) we have taken into account the following expressions

g(B2) = sgn
(
(1+ B2)A cos τ
1+ B2 cos 2τ

)
(20)

g(B2) = g(0)+
(
dg(B2)
dB2

)
B2=0

B2 +
1
2

(
d2g(B2)
dB22

)
B2=0

B22 + O(B
3
2). (21)

Substituting Eq. (20) into Eq. (21) gives

dg(B2)
dB2

=
d2g(B2)
dB22

= · · · = 0 (22)

and

g(B2) = g(0) = sgn(A cos τ) = sgn(cos τ). (23)
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Solving Eqs. (18) and (19) for B2 and ω, yields

B2 =
2
27
≈ 0.0740741 (24)

ω2(A) =

√
27
7πA
≈
1.108046
√
A

(25)

T2(A) =
2π
ω2(A)

= π

√
28πA
27
≈ 5.670508

√
A. (26)

Therefore, the second approximation to the periodic solution of the nonlinear oscillator is given by the following equation

x2(t)
A
=

1.0740741 cos(1.108046A−1/2t)
1+ 0.0740741 cos(2.216092A−1/2t)

. (27)

This periodic solution has the following Fourier series expansion

x2(t)
A
=

∞∑
n=0

a2n+1 cos[(2n+ 1)ω2t] (28)

where (Appendix A)

a2n+1 = (−1)n22n+1
(
B2
1− B2

)n√1+ B2
1− B2

( √
1− B2

√
1− B2 +

√
1+ B2

)2n+1
. (29)

Aswe can see, Eq. (27) gives an expression that approximates all of the harmonics in the exact solutionwhereas the usual
harmonic balancing techniques provide an approximation to only the lowest harmonic components.

3. Results and discussion

We illustrate the accuracy of the modified approach by comparing the approximate solutions previously obtained with
the exact frequency ωe and other results in the literature. In particular we will consider the solution of Eq. (1) by means
of the homotopy perturbation method [46] and a linearized harmonic balance method [42]. This last method incorporates
salient features of both Newton’s method and the harmonic balance method.
For this nonlinear problem, the exact period and periodic solution are [46]

Te(A) = 4
√
2A = 5.656854

√
A (30)

and

xe(t) =


−
t2

2
+ A, 0 ≤ t ≤

Te
4

t2

2
− 2
√
2At + 3A,

Te
4
< t ≤

3Te
4

−
t2

2
+ 4
√
2At − 15A,

3Te
4
< t ≤ Te.

(31)

An easy and direct calculation gives the following series representation for the exact solution xe(t)

xe(t) =
32A
π3

∞∑
n=0

(−1)n

(2n+ 1)3
cos[(2n+ 1)ωet] (32)

where

ωe(A) =
2π
Te(A)

=
π

2
√
2A
=
1.110721
√
A

. (33)

Also the condition xe(0) = A gives the result
∞∑
n=0

(−1)n

(2n+ 1)3
=
π3

32
. (34)

The first terms of the Fourier expansion in Eq. (32) are

xe(t) = 1.03205A cosωet − 0.03822A cos 3ωet + 0.008256A cos 5ωet − 0.003009A cos 7ωet + · · · . (35)
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The period values and their relative errors (RE) obtained in this paper by applying a modified generalized harmonic
balance method to this nonlinear oscillator with discontinuity are the following

T1(A) = π
√
πA ≈ 5.568328

√
A RE = 1.6% (36)

T2(A) = π

√
28πA
27
≈ 5.670508

√
A RE = 0.24% (37)

where the percentage errors (RE) were calculated using the following equation

RE (%) = 100
∣∣∣∣Tj(A)− Te(A)Te(A)

∣∣∣∣ j = 1, 2. (38)

It can be observed that these equations provide excellent approximations to the exact period regardless of the oscillation
amplitude A. It is also clear that at the second approximation order, the accuracy of the result obtained in this paper is very
good.
From Eqs. (27)–(29) the Fourier series expansion for the second-order approximate solution obtained in this paper is

x2(t)
A
= 1.03709 cosω2t − 0.0384635 cos 3ω2t + 0.00142653 cos 5ω2t − 0.0000529072 cos 7ω2t + · · · (39)

which has an infinite number of harmonics.
Beléndez et al. [46] approximately solved Eq. (1) using He’s homotopy perturbation method (HPM). They achieved the

following results for the first and second approximation orders

TB1(A) = π
√
πA ≈ 5.568328

√
A RE = 1.6% (40)

TB2(A) = π

√
2πA

1+
√
4− π

≈ 5.673551
√
A RE = 0.30%. (41)

Wu, Sun and Lim [42] approximately solved Eq. (1) using an improved harmonic balance method that incorporates the
salient features of both Newton’s method and the harmonic balance method. They achieved the following results for the
first and second approximation orders

TWSL1(A) = π
√
πA ≈ 5.568328

√
A RE = 1.6% (42)

TWSL2(A) = π

√
27πA
26
≈ 5.674401

√
A RE = 0.31%. (43)

It is clear that at the second-order approximation order, the result obtained in this paper is a little better than those
obtained previously by other authors.

4. Conclusions

A modified, generalized, rational harmonic balance method has been applied to obtain analytical approximate solutions
for a conservative antisymmetric, constant force nonlinear oscillator for which the elastic force term is proportional to
sgn(x). Excellent agreement between approximate periods and the exact one has been demonstrated and discussed, and the
discrepancy of the second-order approximate periodwith respect to the exact one is as low as 0.24%. Themethod considered
in this paper does not require the presence of small parameters in the governing equation. Finally,we can see that themethod
considered here is very simple in its principle and we think that the method has great potential and can be applied to other
strongly nonlinear oscillators.

Acknowledgement

This work was supported by the ‘‘Ministerio de Ciencia e Innovación’’, Spain, under project FIS2008-05856-C02-02.

Appendix

From Eqs. (9) and (28) we can write

(1+ B2) cos τ
1+ B2 cos 2τ

=

∞∑
n=0

a2n+1 cos[(2n+ 1)τ ]. (A.1)
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Now applying the Taylor series expansion, it follows that

(1+ B2) cos τ
1+ B2 cos 2τ

=

(
1+ B2
1− B2

)
cos τ

1+ 2B2
1−B2

cos2 τ
=

(
1+ B2
1− B2

) ∞∑
m=0

(−1)m2m
(
B2
1− B2

)m
cos2m+1 τ . (A.2)

The formula that allows us to obtain the odd power of the cosine is

cos2m+1 τ =
1
22m

m∑
j=0

(
2m+ 1
m− j

)
cos[(2j+ 1)τ ]. (A.3)

Substituting Eq. (A.3) into Eq. (A.2) gives

(1+ B2) cos τ
1+ B2 cos 2τ

=

∞∑
m=0

(−1)m2−m
(1+ B2)Bm2
(1− B2)m+1

m∑
j=0

(
2m+ 1
m− j

)
cos[(2j+ 1)τ ]. (A.4)

Comparing Eqs. (A.1) and (A.4), we can find

a2n+1 =
∞∑
m=n

(−1)m2−m
(1+ B2)Bm2
(1− B2)m+1

(
2m+ 1
m− n

)
= (−1)n2n+1

(
B2
1− B2

)n√1+ B2
1− B2

( √
1− B2

√
1− B2 +

√
1+ B2

)2n+1
.

(A.5)

This result has been obtained using Mathematica r©.
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