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Abstract: Buckling of structural elements is a phenomenon that has great consequences on the bear-

ing capacity of structures. Historically, there have been serious buckling-related structural accidents 

that have resulted in loss of human lives and high material costs. In this article, an attempt is made 

to perform a historical analysis of the diverse models that experts have been using in designing and 

calculating compression buckling of simple metallic elements in the last 275 years. The analysis co-

vers the lapse from the mid-18th century, in which the pioneers in this classic field of structural 

design are located, up to the present, highlighting the main standards that have been applied to 

steel structural analysis in the past and at present all over the world. What the study tries to provide 

is an overall view and a sense of continuity of the methods used for improving structural safety 

regarding buckling failures in the last three centuries. Each analyzed buckling model is compared 

with the results of a numerical finite element model of compressed steel columns. Finally, the con-

clusion reached is that in the last one hundred years, the convergence of solutions proposed in the 

field is gradually greater and more accurate. 
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1. Introduction 

Throughout history, numerous accidents and collapses of structures have occurred 

due to buckling of steel structural elements, which resulted in loss of human lives and 

high material costs. Several bridge accidents, such as Dee Bridge, 1847, Tay Bridge, 1879, 

Quebec Bridge, 1907, and Tacoma Bridge, 1940, stimulated a considerable amount of re-

search into the buckling behavior of steel members [1]. Augenti and Parisi [2] discussed 

the collapse of a long-span steel roof structure which fell down suddenly during construc-

tion as a result of an out-of-plane buckling phenomenon induced by wind. Al-Marwaee 

[3] stated that the World Trade Centre towers were designed with steel columns braced 

against buckling by the floors. The high temperatures in the fires weakened the steel brace 

systems and columns, causing the buckling length of columns to increase and, conse-

quently, the onset of buckling. 

The first historical, scientifically valid reference to the concept of maximum axial load 

capable of supporting a column subjected to simple compression comes from the hands 

of Leonardo da Vinci, the Renaissance genius, who, in the second half of the 15th century, 

deals with the strength of the columns in the following terms: “This varies inversely pro-

portional to its length, but directly proportional to its cross section” [4]. If Leonardo’s 

words were transformed into today’s mathematical language, they would be 
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where 

�����  Maximum critical load which depletes the column. 

�  Undetermined coefficient, with units of force over length. 

�  Cross-sectional area of the column. 

�  Length of the column. 

Later in 1638, the great scientist Galileo Galilei, in his book Dialogues Concerning Two 

New Sciences [5], posed several problems that nowadays would pertain to the field of ma-

terials science; among them, that which enquired about the maximum axil load needed to 

deplete a column subjected to simple compression. In Proposition 1, Galileo, through his 

characters, wonders about the axil load that would support a beam, and reaches the con-

clusion that the load decreases as the beam’s geometrical slenderness increases. However, 

he did not ground it mathematically. Galileo, as well as Leonardo, left this problem un-

solved. Galileo also presented similar problems, such as that of the cantilever, in another 

seven new propositions. Galileo himself did provide some type of solutions to such prob-

lems, but none stood the passage of time. 

In 1729, the Dutchman Petrus van Musschenbroek [6] (PvM) of the University of 

Utrecht published a voluminous book containing dissertations on several different topics. 

Of special interest is the section entitled: “lntroductio ad cohaerentiam corporum 

firmorum”, in which PvM reported experiments carried out mainly on pieces of wood, 

which he subjected to tensile, bending, and compressive stresses. By testing pieces of 

wood of different dimensions in compression, PvM identified that, during the loading 

process and before reaching breakage, the columns underwent lateral bending and pos-

tulated a general law derived from the experiments, according to which the resistance of 

a column is inversely proportional to the square of its length. 

A century passed by, and in 1744 [7] the great Swiss mathematician Leonhard Euler 

tackled the problem of the column model with absolute mathematical precision. He pro-

posed his celebrated buckling critical load equation for an elastic cantilever column sub-

jected to centered compression, which, using the original terminology, appears in the fol-

lowing equation: 

����� =
� ∙ ��

4 ∙  ��
 (2)

where 

C Material dependent coefficient and cross section, in units of force multiplied 

by length squared. 

Euler later narrowed the coefficient “C” down to the product of E·k2, “E” being a 

property of the strength of the material, and “k2”, a dimensional property of the column’s 

cross section. 

For Euler’s coefficient, E·k2, to become today’s “E·I ”, where “E” is the material’s mod-

ulus of longitudinal elasticity, the Young’s modulus, and “I” is the moment of inertia with 

respect to the axis buckling, this took place after a number of decades passed by. Mean-

while, the alternative was to apply Hooke’s law in combination with the correct assess-

ment of the internal distribution of the loads in the bent member. Bernoulli and Coulomb 

made great contributions for the problem to be solved, but it was not until 1770–1773 that 

the great French mathematician Lagrange came up with a solution to the equation of the 

buckling critical mass in a biarticulated elastic column subjected to centered compression, 

which in today’s words would look similar to the following equation: 

����� =
�� ∙ � ∙ �

��
�  (3)

where 
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E Modulus of longitudinal elasticity of the column’s material. The Young’s Mod-

ulus. 

I Moment of inertia with respect to the axis buckling takes place. 

Lk Buckling length of the column. In the case of pinned–pinned bar, it corresponds 

to the geometrical length, precisely because it is a pinned–pinned column. 

In the study of a compressive buckling bar, Euler was the first to come up with the 

idea that the resistance of the column decreases with the square of its length, precisely 

because length is in the denominator. Da Vinci and Galileo suspected that resistance de-

creased with geometrical slenderness of the member, i.e., length to the first power. 

Equation (3) can readily be transformed into critical compressive buckling stress by 

dividing both terms of the equation by the cross-sectional area and making some straight-

forward mathematical operations. It can be expressed as 

����� =
�� ∙ �

��
�  (4)

where the referents are the same as those for Equation (3): 

σcrit Maximum critical compression stress that triggers the buckling of the column. 

λk Mechanical slenderness of the column. 

The mechanical slenderness (λk) for a linear member can be defined as the ratio be-

tween the effective length of the buckled column and the radius of gyration with respect 

to the main axis of inertia of the section under consideration. Moreover, the radius of gy-

ration is, in turn, the square root of the ratio between the inertia of the section and its area. 

In numerical form, it can be expressed as Equation (5), where (“β”) is a nondimensional 

coefficient of buckling, assuming the member’s support conditions, 1 being the value for 

the pinned–pinned bar, and 2 for Euler’s cantilever bar. 

�� =
��

�
=

� ∙ �

�
�
�

 
(5)

Through their equations, Leonhard Euler and his successors introduced a series of 

concepts that, from that time to the present, have played a decisive role in the study of 

structural mechanics. They include “moment of inertia”, “radius of gyration of a flat sec-

tion”, and “mechanical or geometrical slenderness of a straight guideline bar”. Surpris-

ingly enough, Euler’s equation is one of the few that has stood unmodified for almost 

three centuries, and still applies. 

As a curiosity, let us mention that, paradoxically, in Euler’s equation there is no room 

for the material’s compressive stress. For that reason, for slight slenderness, huge values 

are obtained. It took almost one hundred years to understand that Euler’s equation is only 

applicable to steel columns whose mechanical slenderness surpassed the slenderness limit 

of 100. 

In 1826, L. Navier (1785–1836) pointed out the fact that the values of the critical force 

according to Euler form the upper limit of the resistance of real columns, due to the as-

sumption of ideal elasticity of the material. 

The concept of mechanical slenderness (λk), a key factor in buckling, was first defined 

in 1845 by E. Lamarle [4]. 

2. Development of Steel Construction: 19th, and Beginnings of the 20th, Century 

With the advent of iron as a new structural material for construction both in civil 

engineering and in building construction in the middle of the 19th century in Europe, a 

new series of structural typologies where metallic members acquire particular relevance 

appear as a result. 

These new metallic members that initially were made of cast iron were much thinner 

compared to previous members, basically made of stone as were the case of the pillars 

and columns made of marble, brick, wood, or masonry using some other material. 
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The slenderness of the new cast iron elements carried with them the idea of buckling 

for loads that were less than that they could support in simple compressive stress of the 

material of which they were made: cast iron in the first place, and later, steel. 

In previous buildings where the slenderness of walls, pillars, and columns rarely sur-

passed a geometric ratio of 1:10, i.e., a geometrical slenderness less than 10—which would 

equate a mechanical slenderness in the order of 35 for a rectangular section whose total 

width was at its greatest 10 times its thickness—the problem of compressive buckling of 

any of the members was seldom seen as a real problem. Should any designer any time 

dare to surpass the recommended slenderness, the trial methods would tell him where 

the limits were to be contemplated in his designs. 

One of the first bibliographic references to more complex equations or formulae that 

took buckling in cast iron columns into consideration in Spain came thanks to José Marvá 

y Mayer, Engineer General [8], who, around the year 1910, makes some reference, mainly 

taken from North American, British, and French research, to formulae for the dimensions 

of cast iron columns. 

In his reference work [8], José Marvá provides a number of formulae to be applied to 

find out the dimensions of solid or hollow circular cast iron columns using expressions in 

line with the following equation. He calls it Hodgkinson’s formula: 

�� = � ∙
��.�

��.�
 (6)

where 

Po Fracture/buckling load, in kp. 

d Outer diameter of the column, in cm. 

L Length of the column, in dm. 

K Coefficient of values 10,320 for a fixed bar, 5954 for fixed–pinned, and 2977 for 

pinned–pinned. 

The numerical coefficient “K” of the equation is dimensional. Marvá recommended 

a working design on the order of six times less than that of fracture. This formula worked 

for those columns whose length contained 25 and 60 times their diameter, precisely in the 

part of the column in which buckling was clearly appreciated, the reason being that the 

corresponding mechanical slenderness to such values would be located between 90 and 

200, approximately. 

Eaton Hodgkinson (1789–1861) [4] was a British self-taught engineer who brought 

forward a number of experimental formulae he obtained from his own tests. The formu-

lae, widely used all through the 19th century, dealt with compressive buckling of such 

members as metallic columns. 

In his work [8], Marvá refers to formulae proposed by the French researchers M. 

Barré and G.H. Lowe (1859) to apply to problems related to establishing the dimensions 

of wooden and steel columns. 

G.H. Lowe proposes the following expression—the original wording of which re-

mains to this day—for solid cast iron columns: 

�� = � ∙
�’ ∙ �

1.45 + 0.00337 ∙ �
�
��

� (7)

where 

P0 Maximum fracture load which the column can withstand. 

α Coefficient that depends on the boundary conditions, 1 for a fixed member, 4/7 

for a fixed–pinned member, and 2/7 for a pinned–pinned member. 

R’ Simple compressive fracture stress of the material the column is made of. 

w Cross-sectional area. 

L Member length. 

d Outer diameter of the column. 
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The geometrical slenderness squared in Equation (7) appears in the denominator of 

the previous expression to act as a corrector to the buckling stress. 

Should the expression be termed in today’s terms, it would be as follows: 

��,�� = � ∙
��� ∙ �

1.45 + 0.00337 ∙ ����
�  (8)

Later, in the same work, for more general cases, Marvá [9] proposes a formula from 

Barré, which in the original terminology is 

�� =
�´ ∙ �

1 + 0.000156 ∙
�� ∙ �

�

 (9)

What these Expressions (8) and (9) mean is the same as previous formulae. If this last 

equation were to be expressed in today’s terminology, it would be 

��,�� =
��� ∙ �

1 + 0.000156 ∙ ��
�  (10)

Expression (10), which came about at the end of the 19th century, resembles today’s 

standards and more recent models. Obviously, a nondimensional coefficient for buckling 

“χ” less than the unit—the ratio between the critical load and the plastic load—has been 

introduced indirectly with the following value: 

� =
1

1 + 0.000156 ∙ ��
� ≤ 1 (11)

The coefficient “χ” is inversely proportional to the square of the mechanical slender-

ness. Consequently, as the critical axle decreases, the square of the mechanical slenderness 

increases. 

In the second half of the 19th century and the first half of the 20th, researchers con-

tinued studying the phenomenon of buckling of actual metallic members, probably moti-

vated by the great development metallic construction undergoing and its wide application 

to every structure in the fields of civil engineering and building construction. 

In the 1860s, another researcher, William John Macquom Rankine, a Scotsman, made 

another important contribution for the understanding of the phenomenon of buckling of 

slender steel columns in his book A Manual of Civil Engineering [9]. The first edition of the 

very many it had dates back to 1862. Rankine refers to Lewis Gordon, who in turn took 

Eaton Hodgkinson’s experimental results as the basis of his work. Rankine proposed that 

when a column exhibits a mechanical slenderness of less than 105, the following formula, 

already converted to today’s terminology, should be applied: 

����� =
 ��� ∙ �

1 + � ∙ ��
�  (12)

where “c” is a nondimensional coefficient that can have the following values: 

c = 1 × 10−4, for steel. 

c = 2 × 10−4, for cast iron and wood. 

When the mechanical slenderness is greater than 105, Rankine suggests that Euler’s 

equation should be applied directly. 

Equation (12), proposed by Rankine, is half-experimental and has a vague resem-

blance to Lowe and Barré’s previous proposals. Rankine’s expression in its various for-

mulations was profusely used for the design of steel columns up to the first half of the 

20th century, so much so that in the year 1929, the “American Institute of Steel Construc-

tion” [10] produced the following equation, which in tensile stress units (kp/cm2) and in 

today’s terms would be expressed as follows: 
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� =  
�����

�
=  

1265

1 +
��

18,000 ∙ ��

 
(13)

where “r” is the radius of gyration smaller than the cross section of the steel column. In 

this case, the coefficient “c” of Rankine’s equation was 1/18,000 = 0.000056 with a yield 

stress of steel of 1265 kp/cm2 (126.5 N/mm2). It was not to surpass the value of 1,050 kp/cm2 

(105 N/mm2) for tensile working stress “f”, and the mechanical slenderness was to be less 

than or equal to 120. 

Towards the end of the 19th century, very simple formulae were proposed with par-

abolic expressions for the buckling design of steel column, as was A. Ostenfield’s [11] in 

the year 1898, which stated that for ordinary steel, the equation looked similar to the fol-

lowing: 

����� = 2650 − 0.09 ∙ �
�

��
�

�

 (14)

where 

L Member length. 

kz Radius of gyration of the section with respect to the buckling axis. 

Equation (14) is expressed in the stress units of kp/cm2. 

In the year 1886, the Slovak researcher Ludwig von Tetmajer (1850–1905) [12], having 

gone through a deep study of a great many experimental results, proposed a diagram for 

the critical buckling of steel, the most widely applied at the time in Germany and middle 

Europe, the A-37, whose yield stress was in the order of 240 MPa (2400 kp/cm2). When the 

members presented mechanical slenderness greater than 105, Euler’s equation was to be 

applied directly, since Euler’s hyperbola application limit is defined as 

���� =
��

�
= �

�� ∙ �

��

=  �
�� ∙ 210,000

200
≈ 105 (15)

When the members are characterized by a mechanical slenderness that falls between 

0 and 105, the straight line of Tetmajer was proposed (Figure 1) by regression of his ex-

perimental data, which, in stress units of kp and cm squared, is the following: 

����� =  �3100 − 11.4 ∙
�

�
� (16)

Equation (16) is known as Euler–Tetmajer. Tetmajer also proposed a more elaborated 

parabolic expression to account for this area of buckling. 

Around this time, in 1889, the researchers Considère and Engesser advanced sepa-

rately that in Euler’s Equation (4), and for slenderness less than 100, the Young’s modulus 

to be used was to be less than the actual one, which they termed as effective modulus “Eeff” 

and tangent modulus “Et”, respectively, to predict the behavior of the compressed mem-

ber in the nonelastic zone, where Euler’s equation cannot apply. 

About two decades later (1910), von Karman suggested his well-known double-mod-

ulus ER theory founded on Engesser’s theory and Considere’s idea [13]. 

Southwell (1914) introduced the concept of initial deformations in straight pieces un-

der compression, in order to infer a first Euler load on the column [14]. 

Sometime later, in 1928, German standards for metallic construction stated that for 

steel type A-37 of yield stress 2400 Kp/cm2, the stress–mechanical slenderness diagram in 

Figure 1, which happens to be Tetmajer’s with some modification, was to be applied. The 

precise values of the mechanical slenderness in the points B and C of the diagram are 

exactly 61.4 and 104, respectively. The German legislation reporters rounded off to 60 and 

100, with sound criteria. With Tetmajer’s contributions, the design and calculation of slen-

der steel columns subjected to centered compression advanced by leaps and bounds. 
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Figure 1. Basic diagram to show buckling of steel columns in the light of Euler’s equation, the 

yield stress of steel, and Tetmajer’s later equation. 

To bring to an end this historical overview on equations for the design of slender 

steel column buckling, Timoshenko’s secant method formula needs to be noted, deduced 

forthright from his Materials Resistance [11]. The secant formula in today’s terms would be 

as follows: 

���� =  �� ∙ �1 +
� ∙ �

��
∙ ��� �

�

2 ∙ �
∙ �

��

�
�� (17)

where the meanings of which are 

σmax Steel yield stress (fy). 

σc Maximum compression stress which depletes the column. 

e Load eccentricity caused by the flexural momentum acting on the section, 

measured in relation to the section’s center of gravity. 

c Section’s center of gravity distance with respect to the most compressed fiber, 

for symmetric sections c = h/2 (half the section’s edge). 

E Longitudinal elasticity modulus of the column’s material. The Young’s Modulus. 

r Radius of gyration of the section with respect to the buckling axis. 

L Buckling length of the member. 

The secant method formula has basically two shortcomings when applied to a slen-

der steel column subjected to central compression. The first problem is that the equation 

is transcendent, i.e., the value of “σc” must be obtained by successive numerical approxi-

mations. The second is that in cases when there is no exterior flexural moment applied to 

the section, there will be no eccentricity: “e = 0”, and so the formula cannot work. In such 

circumstance, Euler’s equation must be used straightforwardly. A possible solution to this 

problem—and only for columns subjected to central compression—could be that eccen-

tricity equaled the initial geometric imperfection of the column, either “e = L/500 or e = 

L/300”, depending on the manufacturing and assembly tolerances. Finally, the type of sec-

tion must be defined, as the secant method formula requires that the parameter’s value 

“c” be defined. 

In the case of plate buckling, the earliest attempts were made by Bleich (1924), [15] 

who suggested the replacement of Young’s modulus in the elastic critical buckling stress 

of plates by a reduced modulus such as the tangent modulus or the secant modulus. 

Using the Engesser–von Karman methods for the inelastic buckling of columns, and 

with reference to the buckling of stocky plates beyond the proportional limit, Lundquist 

(1939) was the first who derived the buckling equation for plates [16]. 
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The axially loaded steel I-section column has a tendency to buckle by twisting on its 

own axis. In the case of thin-wall sections of certain cross section and length, twisting 

buckling may occur at lower loads than the bending or Euler buckling. This type of buck-

ling was studied by Kappus (1938) [17]. 

Based on Wagner and Kappus theories, Goodier, in 1941 [18], investigated the behav-

ior of columns which are torsionally weak. In 1946, Shanley stated that the tangent mod-

ulus Et is the correct effective modulus to be employed for buckling beyond the propor-

tional limit and that the unloading of one side of the column does not occur until the tan-

gent modulus load is reached [19,20]. 

3. The First Construction Standards, the Second Half of the 20th Century 

It was in the year 1952 that the German standard DIN 4114 [21] introduced the con-

cepts of buckling coefficient “ω” in the form of a table for the various types of steel existing 

at the time: the A-37 and the A-52. It also defined the concept of length of buckling in 

terms that practically have not changed today. The concept of buckling coefficients, “ω”, 

however, had already been proposed by the French researcher J. Dutheil [22] sometime 

around the year 1947. 

In 1952 the German standards criteria were introduced in Spain, and then in the year 

1962, the Spanish EM-62 [23] came to life, which, in its 1969 version, proposes the very 

same concepts for the buckling coefficient “ω” and for the length of buckling “Lk”. 

In the year 1972, the standard MV-103 [24] was published in Spain. This standard 

broadens and improves the previous EM-62 in issues related to the design and calculation 

of buckling in simple steel columns subjected to centered compression—which happens 

to be the same as that named NBE-EA-95 [25] that appeared in 1995. This standard, MV-

103, stood the passage of time well into the year 2006, when it was superseded by the CTE-

DB SE A (Steel) [26]. 

Both Spanish standards, the MV-103 and the NBE-EA-95, introduced nondimen-

sional coefficients for buckling “ω”; coefficients greater than the unit, arranged in three 

tables for the three types of steel currently in existence in Spain: A-37, A-42, and A-52, 

each of which show a yield stress of 2400, 2600, and 3600 Kp/cm2, respectively. 

In standards MV-103 and NBE-EA-95, the buckling test is carried out by satisfying 

the following inequality: 

�∗ ∙ �

�
≤ ���� (18)

where 

P* Maximum design load the column can withstand. 

ω Nondimensional buckling coefficient greater than or equal to the unit, a func-

tion of the type of steel, yield stress, and mechanical slenderness of the mem-

ber. 

A Gross cross-sectional area. 

σadm Tolerable steel strength equal to its yield stress. 

As shown in Equation (5), the mechanical slenderness is a function of the buckling 

length and the radius of gyration with respect to the buckling axis or buckling plane. The 

buckling coefficients “ω” of previous Spanish standards, MV-103 and NBE-EA-95, can, 

not only readily but also exactly, be obtained through numerical calculations rather than 

through the proposed tables in the standards, applying the following expressions: 

� =
����  ∙ ��

�

�� ∙ �
 (19)

� = 0.50 + 0.65 ∙ � (20)

� = � + ��� − �  (21)
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where 

λk Mechanical slenderness of the column. 

E Modulus of longitudinal elasticity of the material the column is made of. The 

Young’s modulus. 

a, b Nondimensional auxiliary coefficients. 

ω Nondimensional buckling coefficient greater than or equal to the unit, a func-

tion of the type of steel, yield stress, and mechanical slenderness of the mem-

ber. 

In the year 1976, the Manual on Stability of Steel Structures [27] published a series of 

buckling curves, where the ordinate axis showed the axial load related to the yield load 

and, in the abscissas axis, the slenderness ratio (Figure 2). These curves were obtained 

after the analysis of 1067 compression column tests performed in seven European coun-

tries (Belgium, France, Germany, Italy, Netherlands, United Kingdom, and Yugoslavia). 

The test program included various types of members (I,H,T, round, and square hollow 

sections) and it covered the range of slenderness ratios most frequently used in European 

constructional practice (55, 75, 95, 130, and 160). Later, a complementary program was 

carried out at Lehigh University on columns of relatively heavier sections, and the con-

clusions were used for establishing the buckling curves. 

There was a total of three curves. Each one was valid for a certain type of section, and 

they considered whether the section was welded or rolled. The document gave parame-

ters to transform those buckling curves to consider the dependence of their magnitude 

from the thickness of the compressed parts of the cross sections in buckling direction. Be-

sides, the documents considered yield stress reduction factors based on geometrical char-

acteristics of the cross sections as, for example, if the section had welded flange cover 

plates. 

 

Figure 2. Buckling curves published in Manual of Stability of Steel Structures [27]. 

4. Operative Standards, Current Situation 

In Spain, current buckling designs for steel columns follow the CTE DB SE A [27] and 

the EAE [28] standards, and in addition, the Structural Code [29] has recently been ap-

proved. This new Structural Code standard has a similar approach, in reference to the 

study of the buckling of steel bars, to the EC-3 and the repealed EAE. The two of them 

agree with both the ultimate limit state (ULS) and the Eurocode EC-3 [30], but the Spanish 

buckling coefficient “ω” has undergone a more sophisticated evolution as five buckling 

curves are advanced. The European buckling curves, proposed by the European Recom-

mendation of Steel Construction [27] in 1976, appear to adapt better to the actual buckling 

phenomenon of steel columns. 
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These European buckling curves are slightly different to one another because they 

depend on the type of cross section, type of steel, steel plate thickness, and the axis, 

whether strong or weak, on which the member is likely to buckle. As a result, an elastic 

imperfection factor “α” is introduced for each of the cases. 

Applying the buckling curves, a nondimensional buckling coefficient “χ” is obtained. 

This coefficient is roughly the inverse of the buckling coefficient “ω”, which, remotely but 

clearly, connects to the coefficients advanced by Rankine in his formulae. 

Current European operative standards state that metallic members exhibiting simple 

cross section and centered compressive stress should verify Equation (22) so as not to un-

dergo buckling. 

��,�� = � ∙ � ∙ ���  ≥ ���  (22)

where 

Nb,Rd  Design buckling resistance of a compression member. 

NEd Design value of the compression force. 

χ Buckling coefficient less than or equal to the unit, a function of the imperfection 

factor and of the member’s reduced slenderness. 

A Gross cross-sectional area. 

fyd Design yield stress. 

The nondimensional buckling coefficient “χ” can be obtained, applying 

� =  
1

� + ��� − ��
 ≤ 1 (23)

� =  0.50 ∙ [1 + � ∙ (0.20 − �) + ��]  (24)

� = �
���

�����
=

�

� ∙ ��

��

��
� ∙ � ∙ �

  (25)

where 

χ Nondimensional buckling coefficient less than or equal to the unit, a function 

of the member’s imperfection factor and reduced slenderness. 

λ Member’s reduced slenderness with respect to the selected axis. It should be 

less than or equal to 3. 

α Imperfection factor, dependent on the type of cross section and buckling axis. 

I Cross-sectional inertia dependent on the selected axis. 

A Gross cross-sectional area. 

Lk Buckling length of the column. 

fy Yield stress of steel. 

The ratio between reduced slenderness and mechanical slenderness of a member can 

readily be obtained when the following equation is applied: 

� = �� ∙ �
��

�� ∙ �
 =

��

����
  (26)

The reduced slenderness “λ” is the square root of the coefficient “a” in Equation (19), 

and the coefficient “ϕ” matches roughly with the coefficient “b” in Equation (20). There-

fore, the buckling coefficient “χ” is approximately the inverse of the buckling coefficient 

“ω” present in the Spanish standards MV and NBE for steel, already superseded, with the 

exception of the imperfection factor “α” in current operative standards, where five buck-

ling curves, not the single one previously advanced, are proposed. 

Figure 3 shows the ratio between compressive strength and mechanical slenderness 

for buckling steel columns proposed by current EC-3 [30], and by previous standards—
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already in disuse—together with Euler’s ideal hyperbola and Tetmajer’s experimental 

right line. 

 

Figure 3. Strength–mechanical slenderness ratio diagram. Comparing different models from Spanish buckling standards 

for slender steel columns. 

As can be observed, in the last 150 years, a long distance has been covered to obtain 

today’s buckling coefficients for slender metallic members likely to buckle. Practically, 

since Rankine’s proposals, the way has already been paved for advances to take place. 

Since then, every contribution made to the field has revolved around finding a gradually 

more sophisticated nondimensional coefficient that includes extra parameters without 

losing sight of the slenderness, the type of cross section, and the yield stress steel offers. 

These coefficients aim at reducing stress while confronting buckling, the yield stress, in 

steel members. The stress corrected and reduced multiplied by the cross section yields the 

maximum load the steel column can withstand, which, in turn, corrected by a series of 

safety coefficients—also evolving historically—achieves the purpose of obtaining the safe 

load that a column can withstand without buckling. 

In Figure 4, the most representative historical standards using the same acceptable 

stress parameters of steel are grafted to compare column behavior when the strength is 

reduced while the slenderness is increased. 

The type of steel selected is the current 275, exhibiting a yield stress of 275 N/mm2, 

ignoring any safety coefficient to avoid conflicts among the different standards. 
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Figure 4. Strength–mechanical slenderness graph. Comparison between past and current models for slender steel column 

buckling. 

Regarding American design codes, the American Institute of Steel Construction pub-

lished specifications for structural steel buildings [10]. The main expression for buckling 

of nonslender elements under axial compression is 

��� = �0.658 
��

�� � · �� when 
��

�
 ≤ 4.71 �

�

��
 (27)

��� = 0.877 · �� when 
��

�
 > 4.71 �

�

��
 (28)

where 

E Modulus of elasticity of steel. 

Fe Elastic buckling stress through an elastic buckling analysis �� =  
��·�

( 
��
�

)�
. 

Fy Specified minimum yield stress of the type of steel being used. 

r Radius of gyration. 

Lc Effective length of the member for buckling about the minor axis. 

The Chinese “Code for Design of Steel Structures” [31] offers an expression for solid 

web beam columns, subjected to combined axial load and bending: 

�

���
+

�����

ɤ��������.�
�

����
�

≤ �  (29)

where 

N Axial compression in the calculated portion of the member. 

N’Ex Parameter, N’Ex = π2EA/(1.1 λx2). 

φx Stability factor of axial compression members buckling in the plane of bending. 

Mx Maximum moment in the calculated portion of the member. 

W1x Gross section modulus referred to the more compressed fiber in the plane of 

bending. 

Βmx Factor of equivalent moment, taken between 0.65–1.00. 

� Yield stress. 

Let us finally highlight recent studies related to buckling, our main interest in this 

article. On the one hand, those works on elastic buckling on cold forming steel columns 
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[32], those on buckling of plates [33], those on localized buckling on high-strength steel 

columns [34–36], and on the other, the studies of stress distribution by tension and by 

compression applied to steel [37], experimental and analytical studies on buckling [38–

41], studies about buckling of restrained braces [42], and, finally, those on buckling be-

havior of rectangular plates [43]. 

5. Numerical Simulation 

The objective of the numerical simulation was to verify the accuracy of the critical 

stress vs. mechanical slenderness curves shown in Figures 3 and 4. For this, the commer-

cial finite element software Abaqus [44] was employed. A total of 66 simulations were 

carried out on two different types of profiles widely used in construction. 

5.1. Geometry 

Two profile sections were studied: HEB-200 (universal column) and two-welded 

UPE-200 (two channel section) (Figure 5 and table 1). HEB and UPE are two types of hot-

rolled normalized European steel profiles. HEB profiles have H shape and UPE profiles 

have U shape. Every profile is followed by a number in the normalized European stand-

ard, which is the total height of the section. These two profiles are commonly used in 

construction to make steel columns and they are representative of open and closed sec-

tions. The length of the columns was modified from 250 to 30,000 mm, maintaining the 

cross section constant (33 lengths were studied for each column). Consequently, the me-

chanical slenderness ��  (Equation (5)) changed in each case from 2.5 up to a maximum 

value of 250 (33 slendernesses were studied for each column). 

 

Figure 5. Mechanical characteristics of the profiles. 

Table 1. Mechanical characteristics of the profiles. 

Profile h (mm) b (mm) r (mm) tw (mm) tf (mm) 
Area 

(mm2) 

Y axis Inertia—Iy 

(mm4) 

Z axis Inertia—Iz 

(mm4) 

HEB-200 200 200 18 9 15 78.1 5696 2003 

UPE-200 200 80 13 6 11 29 1910 187 

Two-welded UPE-200 200 160 13 9 11 58 3820 2090 

5.2. Finite Element Model Description 

The employed finite elements are fully integrated, first-order, solid hexahedral ele-

ments with eight nodes and three degrees of freedom per node (C3D8). The size of each 

hexahedron was 1 cm, which offered accurate results with no sensitivity problems when 

the size slightly changed (Figure 6a). The boundary conditions are illustrated in Figure 6b. 

All the degrees of freedom of one end are fixed, and those of the other end are also fixed, 

except for the vertical displacement. 
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(a) (b) 

Figure 6. Specimen mesh and idealization: (a) Mesh for 5 m long specimen and mechanical slender-

ness of 49.4. (b) Boundary conditions, load, and displacement applied to the columns. 

To achieve the initial geometrical imperfection that will produce buckling, an initial 

discrete load F was applied to the center of the profile and perpendicularly to its direction 

line (force F in Figure 6b). The magnitude of this force was chosen to produce a central 

bow of L/1000, L being the member length. This assumption safely covers unintentional 

load eccentricities at the member ends for the slenderness range of practical interest [28]. 

Therefore, the deviatoric load F varied depending on the slenderness of each specimen. 

After performing a sensibility analysis, it was concluded that, in all cases, this load was 

small enough to avoid significantly altering the critical buckling stress. Even when this 

initial load was applied to cause buckling along strong inertia axis, buckling along weak 

axis also took place first, as Figure 7 depicts. For this reason, only the buckling along the 

weak inertia axis was considered. Once the horizontal load was applied, vertical displace-

ment V was imposed (Figure 6b). Displacement control was used to reach a vertical dis-

placement V equal to 50 mm. Abaqus Standard static analysis [44] was employed, in which 

the solver is based on stiffness method and, consequently, gives solutions unconditionally 

stable, contrary to Abaqus Explicit analysis [44]. 

v 

L 

F 
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(a) (b) 

Figure 7. Displacements in X direction (mm) of buckled IPE-200 with initial load applied perpen-

dicularly to the strong inertia axis, mechanical slenderness of 29.3: (a) front view; (b) lateral view. 

For the steel specimens, the elastoplastic model of Abaqus [44] was applied with the 

following parameter values: �� = 210000 MPa, ν = 0.3, and �� = 275 MPa,  where ��  is 

the elasticity modulus, ν is the Poisson coefficient, and �� is the yield stress. 

The finite element model was validated with experimental results on circular col-

umns in previous research [45]. The same boundary conditions, applied loads, imposed 

displacements, material type, and element type were employed. 

5.3. Results 

Buckling took place in all specimens during the numerical simulations. Figure 8 

shows the buckling shape of the HEB-200 and the two-welded UPE-200 for low and mid-

slenderness ratios. The buckling stress was computed by performing the summation of 

the reaction forces on each node of the lower end and dividing the result by the profile 

area to obtain the equivalent compressive stress in column for all V displacement incre-

ments (Figure 6b) and, subsequently, finding the maximum equivalent compressive stress 

reached by the column [45]. 
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(a) (b) 

  
(c) (d) 

Figure 8. Displacements along X axis (mm) of buckling shapes: (a) HEB-200, mechanical slenderness of 9.9; (b) HEB-200, 

mechanical slenderness of 79; (c) two-welded UPE-200, mechanical slenderness of 4.2; (d) two-welded UPE-200, mechan-

ical slenderness of 66.6. 

The results of all numerical simulations are summarized in Figures 9 and 10, where 

the critical buckling stress is represented according to the mechanical slenderness of the 

columns �� (Equation (5)). Figure 9 contains the comparison between the finite element 
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model and the different buckling theories (Euler, Tetmajer, Rankine, Secant, Barré, and 

Marvá) and Figure 10 compares the finite element model with the design standard curves 

(CTE, EC-3, AISC, MV-103, and NBE EA 95). 

As can be seen in Figure 9, Euler’s model [7] overestimates the critical stress for low 

and middle mechanical slendernesses because it does not consider the nonlinear behavior 

of the steel when the yielding takes place. For high slenderness ratios, the onset of buck-

ling occurs when no fiber of the cross section is yielded yet and, consequently, the Euler’s 

model [7] is more accurate. Nevertheless, as Figure 9b depicts, even for high slenderness 

ratios, Euler’s curve [7] is above the numerical model curves. This fact also occurs with 

the Tetmajer curve [13], whose formulation is the same as Euler’s one for high mechanical 

slenderness ratios (�� ≥ 105). Below this mechanical slenderness value, the Tetmajer 

curve [12] is a straight line that overestimates the critical buckling stress at very low slen-

dernesses (up to 30), underestimates it from �� ≥ 30 to 90, and overestimates it again 

from �� ≥ 90. Regarding Timoshenko’s secant curve [11], it underestimates the critical 

buckling stress up to �� = 210, and beyond this slenderness, the value of the critical buck-

ling stress almost matches the finite element model curves. Rankine’s curve [9] underes-

timates the critical buckling stress up to �� = 150, from which this curve underestimates 

it. Along the range of mechanical slendernesses 30 ≤ �� ≤ 80, the underestimation of 

Rankine’s curve [9] is more accused. Finally, Barré–Marvá’s curve [9] underestimates the 

critical buckling stress for all mechanical slendernesses, mainly in the range 30 ≤ �� ≤

80, as occurred with the Rankine’s curve [9]. As a global analysis, the order of the curves, 

considering their degree of overestimation of the critical buckling stress, is (1) Euler [7], 

(2) Tetmajer [12], (3) Rankine [9], (4) Timoshenko’s secant [11], (5) Barré–Marvá [8]. From 

a design point of view, Timoshenko’s secant [11] and Barré–Marvá [8] curves are on the 

safety side for any value of mechanical slenderness according to the finite element model 

results, but Timoshenko’s approximation [11] yields more optimized designs because it 

does not underestimate the critical buckling stress as much as Barré–Marvá. 

Figure 10 compares the finite element model with the design standard curves. As can 

be seen, the AISC curve [10] overestimates the critical stress from slendernesses beyond 

100 because its formulation is the same as Euler’s one [7] for high mechanical slenderness 

ratios. Nevertheless, it remains on the safe side with lower slendernesses. The rest of the 

curves (CTE-A, EAE and EC-3 [26,28,30], MV-103 [24], and NBE EA 95 [25]) generally 

underestimate the critical stress. This underestimation is more important when slender-

nesses range from 30 to 100. The curves of CTE-A, EAE, and EC-3 are divided into four 

types (“a0”, “a”, “b”, “c”, and “d”), depending basically on the profile type. The most 

conservative curve is CTE-A, EAE, and EC-3 “d” [26,28,30] for all slendernesses. The 

curves CTE-A, EAE, and EC-3 “a0” and “a” slightly overestimate the critical buckling 

stress for very high slendernesses (�� ≥ 160 and �� ≥ 220, respectively). The HEB-200 

profile should be analyzed with the behavior of “c” curve according to CTE-A [26], EAE 

[28], and EC-3 [30], and the two-welded UPE-200 should be analyzed with the behavior 

of “c” curve according to CTE-A [26] and with “b” curve according EAE [28] and EC-3 

[30]. This is in accordance with the numerical results, because the more accurate curve is 

“b” for two-welded UPE-200 and “c” for HEB-200 in comparison to the finite element 

model curves. For the two-welded UPE-200, the “b” curve is the more accurate with the 

numerical results without overestimating the critical stress at any slenderness. In case of 

HEB-200, for �� ≥ 200, the critical stress of HEB profiles reduces with respect to that of 

two-welded UPE-200 and, consequently, approximates to the “b” curve. This fact causes 

that, at �� = 233, the buckling curve of the two-welded UPE-200 surpasses “b” curve and, 

consequently, “b” curve overestimates the critical buckling length of two-welded UPE-

200 profiles (Figure 10c). 
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(b) 

Figure 9. Strength–mechanical slenderness graph. Comparison theoretical models and numerical simulation: (a) mechan-

ical slenderness from 0 to 250; (b) detail for high mechanical slenderness ratios (from 125 to 250). 
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(c) 

Figure 10. Strength–mechanical slenderness graph. Comparison design standard models and numerical simulation: (a) 

mechanical slenderness from 0 to 250; (b) detail for slenderness ratios from 125 to 250; (c) detail for slenderness ratios from 

200 to 250. 

6. Conclusions 

Several accidents and collapses of structures have occurred due to buckling of steel 

structural elements, which have resulted in loss of a lot of human lives and very important 

material costs in the last 275 years. 

Having considered the different arguments, the following ideas can safely be empha-

sized: 

 Buckling is a transcendent phenomenon for the safety of building and bridge struc-

tures. Buckling problems must be considered in the design, calculation, and construc-

tion phase of the structures. 

 Every model is below Euler–Tetmajer’s equations, with the exception of that of AISC 

[10], proposed in 1921, which, for slenderness greater than 120, Euler’s equation [7] 

applies. 

 Euler’s equation [7] has been applied in structural mechanics for almost 300 years 

with barely any modification. The fact that it is still being applied today makes it the 

most long-lived equation in structural engineering. 

 Every model predicts that for mechanical slenderness of approximately 20, the mem-

ber will not undergo the process of buckling. 

 In practice, the differences that exist between standard MV 103 [24] (NBE EA 95 [25]) 

and standard CTE DB SE A, EAE, and EC-3 [26,28,30] are relatively small. 

 The secant method formula yield values very much in line with those proposed by 

the standards. 

 Rankine’s [9] and AISC [10] models yield values in line with those much more elab-

orated coming afterwards for mechanical slenderness of less than 100. Specifically, 
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Rankine’s equation, even though old, is in tune with all the mechanical slenderness 

values predicted by much more sophisticated modern models. 

 Older models, such as Barré–Marvá’s [8], yield more conservative values, somehow 

far from today’s actual values but quite acceptable nonetheless. The reason could 

well reside in the fact that those values were to be applied to cast iron columns that 

exhibited less slenderness than those used later. 

 According to the performed numerical simulations, older models, such as Euler [7], 

Tetmajer [12], Rankine [9], and AISC [10], tend to slightly overestimate the critical 

buckling stress for high slenderness ratios from around 100 (except Euler, which con-

siderably overestimates the critical stress for low and mid-slenderness ratios because 

it does not consider the nonlinear behavior of the steel when the yielding takes place). 

Besides, the Tetmajer [12] model also overestimates critical buckling stress for low 

slendernesses below approximately 30. 

 The order of the theoretical curves, considering their degree of overestimation of the 

critical buckling stress, is (1) Euler [7], (2) Tetmajer [12], (3) Rankine [9], (4) Timo-

shenko’s secant [11], (5) Barré–Marvá [8]. From a design point of view, Timoshenko’s 

secant [11] and Barré–Marvá [8] curves are on the safe side for any value of mechan-

ical slenderness according to the finite element model results. 

 Design code models such as CTE-A, EAE and EC-3 models [26,28,30], MV-103 [24], 

and NBE EA 95 model [25], generally underestimate the critical buckling stress for 

any slenderness ratio according to the numerical simulations. CTE-A, EAE, and EC-

3 models [26,28,30] show the most accurate results. 
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