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Abstract
In this paper, we study flag codes on the vector space F

n
q , being q a prime power and

Fq the finite field of q elements. More precisely, we focus on flag codes that attain the
maximum possible distance (optimum distance flag codes) and can be obtained from
a spread of F

n
q . We characterize the set of admissible type vectors for this family of

flag codes and also provide a construction of them based on well-known results about
perfect matchings in graphs. This construction attains both the maximum distance for
its type vector and the largest possible cardinality for that distance.

Keywords Network coding · Subspace codes · Spreads · Flag codes · Graphs ·
Perfect matching

1 Introduction

Random network coding is introduced in [1] as a newmethod for attaining a maximum
information flow by using a channel modelled as an acyclic-directed multigraph with
possibly several senders and receivers. In thismodel, intermediate nodes are allowed to
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perform random linear combinations of the received vectors instead of simply routing
them, as it happens when using classical channels of communication. This process is
specially vulnerable to error dissemination, and, as a solution to this problem, in [13],
Koetter and Kschischang introduce the concept of subspace codes as adequate error-
correction codes in random network coding. These codes are families of subspaces of
an n-dimensional vector space over the finite fieldFq endowedwith a specific distance.
If the dimension of all the subspaces in a code is fixed, we say that it is a constant
dimension code.

In coding theory, the distance of a code is closely related to its error-correction
capability. More precisely, a code with distance d can detect d − 1 errors and correct
up to � d−1

2 �. The size of a code is also an important parameter, since it determines the
amount of different messages that can be encoded. Hence, one of the main problems
in this area is the construction of codes with the largest possible size with a given
minimum distance or codes with the largest minimum distance for a given size. In the
particular context of network coding, this fact motivates the search for subspace codes
having the largest possible distance and the best size for that distance.

Spreads are objects coming from finite geometry, introduced by Segre in [25]. A k-
dimensional spread (or k-spread) of F

n
q is just a collection of k-dimensional subspaces

that pairwise intersect trivially and cover the space F
n
q . It is well known that k-spreads

exist if, and only if, k divides n. In the network coding setting, k-spread codes are
optimal codes in the previous sense: they attain the best distance for their dimension,
and their cardinality is as large as possible.

When using subspace codes, every codeword (a subspace) is sent in a single use
of the channel. In contrast, in [23,24], Nobrega and Uchôa-Filho present the notion
of multishot codes, where codewords are sequences of r subspaces of F

n
q and need

r successive uses of the channel (shots) to be sent. This approach allows to con-
struct codes with good parameters without modifying neither the field size q nor
the dimension n. As a particular case of multishot codes, we have the class of flag
codes. A flag on F

n
q is just a sequence F = (F1, . . . ,Fr ) of nested subspaces of F

n
q .

The vector (dim(F1), . . . , dim(Fr )) is called type of the flag F . Now, given integers
0 < t1 < · · · < tr < n, a flag code of type (t1, . . . , tr ) on F

n
q is a nonempty collection

of flags of this type. Flag codes in network coding appear for the first time in [19]. Later
on, in [2], a study of flag codes attaining the best possible distance (optimum distance
flag codes) is undertaken. In that work, these codes are characterized in terms of the
constant dimension codes used in different shots (the projected codes). Moreover, it
was also shown that the presence of a spread code among the projected codes leads to
constructions of optimum distance flag codes that also reach the largest possible size.

In particular, in [2], the authors build optimum distance flag codes with a k-spread
as a projected code fixing the full type vector, that is, (1, . . . , n − 1). They conclude
that such codes exist just if n = 2k or n = 3 and k = 1. On the other hand, in this
paper, we deal with the converse problem: given n and a divisor k of n, we look for
conditions on the type vector of an optimumdistance flag code onF

n
q having a k-spread

as a projected code. We show that not every type vector (t1, . . . , tr ) is allowed for this
purpose, only those satisfying

k ∈ {t1, . . . , tr } ⊆ {1, . . . , k, n − k, . . . , n − 1}
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are admissible.
Observe that, for n = 2k or n = 3 and k = 1, any full type vector is admissible.

In fact, for n = 2k, we have k = n − k. However, this equality does not hold
for an arbitrary divisor k of n, and to overcome the gap between dimensions k and
n − k, we need to provide suitable nested subspaces of these dimensions. We solve
this problem by using classical combinatorial results about the existence of perfect
matchings on bipartite regular graphs. Finally, for any given admissible type vector, we
get a construction of flag codes with the maximum distance and the largest cardinality
among optimum distance flag codes of the corresponding type.

The paper is organized as follows: In Sect. 2, we recall some background on finite
fields, constant dimension codes, flag codes and graphs. In Sect. 3, we determine the set
of admissible type vectors for a flag code to attain the maximum possible distance and
to have a k-spread as a projected code. Then, for those type vectors, we undertake the
construction of such codes in several stages. First, we consider the type (1, n− 1) and
construct optimumdistance flag codes from the spread of lines, exploiting the existence
of perfect matchings in bipartite regular graphs. Then, using the field reduction map,
we translate the previous construction into the type (k, n − k). Finally, by taking
advantage of some properties satisfied by the mentioned map, we finish with the full
admissible type (1, . . . , k, n − k, . . . , n − 1) and any other admissible type vector.
Our codes have the best size for the given admissible type vector and the associated
maximum distance. We complete this section with an example of our construction for
the admissible type (2, 4) on F

6
2 having a 2-spread as the subspace code used at the

first shot.

2 Preliminaries

We devote this section to recall some background we will need along this paper. This
background involves finite fields, subspace and flag codes and graph theory.

2.1 Results on finite fields

Most of the following definitions and results about finite fields as well as the corre-
sponding proofs can be found in [18].

Let q be a prime power and Fq the finite field with q elements. Consider f (x) ∈
Fq [x] a monic irreducible polynomial of degree k and α ∈ Fqk a root of f (x). Then,
we have that Fqk

∼= Fq [α], which allows us to realize the field Fqk as Fq [α]. If
f (x) = xk + ∑k−1

i=0 ai x
i ∈ Fq [x], the following square matrix

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −ak−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠
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is called the companion matrix of f (x) and satisfies that Fq [α] ∼= Fq [P]. Then, Fq [P]
is a field with qk elements. We also have the natural field isomorphism

φ : Fqk → Fq [P],
k−1∑

i=0

viα
i �→

k−1∑

i=0

vi P
i . (1)

For any positive integer n, we denote by Pq(n) the set of all vector subspaces of
F
n
q . The Grassmann variety Gq(k, n) is the set of all k-dimensional subspaces of F

n
q .

Any subspace U ∈ Gq(k, n) can be generated by the rows of some full-rank matrix
U ∈ F

k×n
q . In that case, we write U = rowsp(U ) and say thatU is a generator matrix

of U . By taking the generator matrix in reduced row echelon form (RREF), we get
uniqueness in the matrix representation of the subspace U .

Let us take n = ks with k > 1. The field isomorphism φ provided by (1), in turn,
naturally induces a map ϕ between Pqk (s) and Pq(ks) given by:

ϕ : Pqk (s) −→ Pq(ks)

rowsp

⎛

⎜
⎝

x11 . . . x1s
...

. . .
...

xm1 . . . xms

⎞

⎟
⎠ �−→ rowsp

⎛

⎜
⎝

φ(x11) . . . φ(x1s)
...

. . .
...

φ(xm1) . . . φ(xms)

⎞

⎟
⎠ .

(2)

This map is known as field reduction since it maps subspaces over Fqk into subspaces
over the subfield Fq (see [8,17,21,22]). Let us recall some useful properties of the map
ϕ pointed out in [17] that we will use in Sect. 3.2.2.

Proposition 2.1 The map ϕ defined in (2) satisfies the following:

(1) ϕ is injective.
(2) For any pair of subspaces U ,V of F

s
qk
, we have ϕ(U ∩ V) = ϕ(U) ∩ ϕ(V).

(3) Given U ,V subspaces of F
s
qk

with U ⊆ V , then ϕ(U) ⊆ ϕ(V).

(4) For any m ∈ {1, . . . , s − 1}, it holds that ϕ(Gqk (m, s)) ⊆ Gq(mk, sk).

2.2 Constant dimension codes

The Grassmannian Gq(k, n) can be considered as a metric space with the subspace
distance defined as:

dS(U ,V) = dim(U + V) − dim(U ∩ V) = 2(k − dim(U ∩ V)), (3)

for all U ,V ∈ Gq(k, n) (see [13]).
A constant dimension (subspace) code of dimension k and length n is any nonempty

subset C ⊆ Gq(k, n). The minimum subspace distance of the code C is defined as

dS(C) = min{dS(U ,V) | U ,V ∈ C, U 
= V}
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(see [26] and references therein, for instance). It follows that the minimum distance
of a constant dimension code C is upper-bounded by:

dS(C) �
{
2k if 2k � n,

2(n − k) if 2k > n.
(4)

Constant dimension codes C ⊆ Gq(k, n) in which the distance between any pair of
different codewords is dS(C) are said to be equidistant. For such codes, there exists
some value c < k such that, given two different subspaces U ,V ∈ C, it holds that
dim(U ∩ V) = c. Hence, the minimum distance of the code is precisely dS(C) =
2(k − c), and C is also called an equidistant c-intersecting constant dimension code.
In case the value c is the minimum possible dimension of the intersection between
k-dimensional subspaces of F

n
q , that is,

c =
{
0 if 2k � n,

2k − n if 2k > n,

equidistant c-intersecting codes attain the bound given in (4). In particular, for dimen-
sions k � � n

2 �, we have that these codes are 0-intersecting codes known as partial
spreads. The cardinality of any partial spread C in Gq(k, n) always satisfies

|C| �
⌊
qn − 1

qk − 1

⌋

(5)

(see [9, Lemma 7]). Partial spread codes and equidistant codes have been studied in
[6,9,10]. Whenever k divides n, the previous bound is attained by the so-called spread
codes (or k-spreads) of F

n
q . Notice that a k-spread S is a subset of Gq(k, n) whose

elements give a vector space partition ofF
n
q . Spreads are classical objects coming from

finite geometry (see [25], for instance). For further information related to spreads in
the network coding framework, we refer the reader to [8,21,22,26].

The following spread is due to Segre [25]. In the network coding setting, it was
presented for the first time in [21] as a construction of spread code. Denote byGLk(q)

the general linear group of degree k over the field Fq . Let P ∈ GLk(q) be the
companion matrix of a monic irreducible polynomial in Fq [x]. We will write Ik and
0k to denote the identity matrix and the zero matrix of size k × k, respectively. Take
s ∈ N such that n = sk. Then, the following family of k-dimensional subspaces is a
spread code:

S(s, k, P) = {rowsp(S) | S ∈ �} ⊆ Gq(k, n), (6)

where � is the set of k × ks matrices

� = {(A1|A2| . . . |As)
∣
∣ Ai ∈ Fq [P]} (7)

with the first nonzero block from the left equal to Ik .
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Remark 2.2 Notice that the matrices in � are in reduced row echelon form and it
is clear that the field reduction map ϕ defined in (2) gives a bijection between the
Grassmannian of lines Gqk (1, s) and the spread code S(s, k, P)

ϕ
G
qk

(1,s)

: Gqk (1, s) −→ S(s, k, P)

rowsp
(
x11, . . . , x1s

) �−→ rowsp
(
φ(x11)| . . . |φ(x1s)

)
.

(8)

We will come back to this fact in Sect. 3.2.2.

Given a constant dimension code C ⊆ Gq(k, n), the dual code of C is the subset of
Gq(n − k, n) given by

C⊥ = {U⊥ | U ∈ C},

where U⊥ is the orthogonal of U with respect to the usual inner product in F
n
q . In [13],

it was proved that C and C⊥ have both the same cardinality and minimum distance.
Notice that the dual of a partial spread of dimension k � � n

2 � is an equidistant (n−2k)-
intersecting code of dimension n − k and conversely.

2.3 Flag codes

Subspace codes were introduced for the first time in [13] as error-correction codes in
random network coding. In that paper, the authors propose a suitable network channel
with a single transmitter and several receivers that is used just once, so that subspace
codes can be considered as one-shot codes. The use of the channel more than once
was suggested originally in [23] and gave rise to the so-called multishot codes as a
generalization of subspace codes.We call any nonempty subset C ofPq(n)r amultishot
code of length r � 1, or just r -shot code. In particular, if codewords in C are sequences
of nested subspaces, we say that C is a flag code. Flag codes were first studied as orbits
of group actions in [19], and, in [16], the reader can find a study of bounds on the
cardinality of full flag codes with a prescribed distance. Let us recall some concepts
in the setting of flag codes.

A flag of type (t1, . . . , tr ), with 0 < t1 < · · · < tr < n, on the vector space F
n
q is

a sequence of subspaces F = (F1, . . . ,Fr ) in Gq(t1, n) × · · · × Gq(tr , n) ⊆ Pq(n)r

such that

{0} � F1 � · · · � Fr � F
n
q .

With this notation, Fi is said to be the i-th subspace of F . In case the type vector is
(1, 2, . . . , n − 1), we say that F is a full flag.

The space of flags of type (t1, . . . , tr ) on F
n
q is denoted by Fq((t1, ..., tr ), n) and

can be endowed with the flag distance d f that naturally extends the subspace dis-
tance defined in (3): given two flags F = (F1, . . . ,Fr ) and F ′ = (F ′

1, . . . ,F ′
r ) in

Fq((t1, . . . , tr ), n), the flag distance between them is

123
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d f (F ,F ′) =
r∑

i=1

dS(Fi ,F ′
i ).

A flag code of type (t1, . . . , tr ) on F
n
q is defined as any non-empty subset C ⊆

Fq((t1, . . . , tr ), n). The minimum distance of a flag code C of type (t1, . . . , tr ) on F
n
q

is given by

d f (C) = min{d f (F ,F ′) | F ,F ′ ∈ C, F 
= F ′}.

Given a type vector (t1, . . . , tr ), for every i = 1, . . . , r , we define the i-projection to
be the map

pi : Fq((t1, . . . , tr ), n) −→ Gq(ti , n)

F = (F1, . . . ,Fr ) �−→ pi (F) = Fi .

(9)

The i-projected code of C is the set Ci = {pi (F) |F ∈ C}. By definition, this code Ci
is a constant dimension code in the Grassmannian Gq(ti , n) and its cardinality satisfies
|Ci | � |C|. We say that C is a disjoint flag code if |C1| = · · · = |Cr | = |C|, that is, the
i-projection pi is injective for any i ∈ {1, . . . , r}.

The distance of a flag code C of type (t1, . . . , tr ) is upper-bounded by:

d f (C) � 2

⎛

⎝
∑

ti�� n
2 �
ti +

∑

ti>� n
2 �

(n − ti )

⎞

⎠ . (10)

In particular, if C is a full flag code, we have that (10) becomes

d f (C) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n2

2
, for n even,

n2 − 1

2
, for n odd.

2.4 Matchings in graphs

Now we introduce some basic concepts and results on graphs in order to use them
in the construction of a specific family of flag codes with the maximum distance in
Sect. 3. All these definitions and results together with their proofs can be found in [3].

A graph G = (V , E) consists of a vertex set V and an edge set E ⊂ V × V
where an edge is an unordered pair of vertices. Two vertices v, v′ ∈ V are adjacent
if (v, v′) ∈ E . Also, we say that (v, v′) is an incident edge with v and v′. Two edges
are adjacent if they have a common vertex. Given a vertex v ∈ V we call the degree
of v to the number of incident edges with v. A graph G is said to be k-regular, if each
vertex in G has degree k.

On the other hand, a set of vertices (or edges) is independent if it does not contain
adjacent elements. A set M ⊆ E of independent edges of a graph G = (V , E) is

123
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called a matching. A matching M matches S ⊆ V if every vertex in S is incident with
an edge in M and M is perfect if it matches V .

A graph G is bipartite if the vertex set can be partitioned into two sets V = A ∪ B
such that there is no pair of adjacent vertices neither in A nor in B. For this class of
graphs, perfect matchings are just bijections between A and B given by a subset of
edges of the graph connecting each vertex in Awith another vertex in B. The following
classic result, whose proof can be found in [3] (pages 37–38), states the existence of
perfect matchings in a family of graphs:

Theorem 2.3 Any k-regular bipartite graph admits a perfect matching.

The search for maximum matchings in bipartite graphs is a classical problem in
graph theory that started in the 1930s with the works of König and of Egerváry (see
[5,14]). Later, Kuhn and M. Hall tackled this problem and presented the first for-
mal algorithms to find perfect matchings in bipartite graphs (see [11,15]). This type
of algorithms is known as “Hungarian Method”. Finding matchings in non-bipartite
graphs is a more difficult problem, and the first (efficient) algorithm in this direction
was provided by Edmonds in 1965 (see [4]). For further information on matching
theory, see [20] and references inside.

Wewill use the previous Theorem through Sect. 3 in order to give perfect matchings
of a particular regular bipartite graph of our interest. Such matchings will allow us to
construct disjoint flag codes of a specific type as we will show later.

3 Optimum distance flag codes from spreads

Flag codes attaining the bound in (10) are called optimum distance flag codes and can
be characterized in terms of their projected codes in the following way:

Theorem 3.1 (see [2])LetC beaflag codeof type (t1, . . . , tr ). The following statements
are equivalent:

(i) C is an optimum distance flag code.
(ii) C is disjoint, and every projected code Ci attains the maximum possible subspace

distance.

As a consequence, the i-projected codes of an optimum distance flag code have to
be partial spreads if ti � � n

2 � and equidistant (2ti − n)-intersecting subspace codes
for dimensions ti > � n

2 �.
As mentioned in Sect. 2.2, whenever k divides n, k-spread codes are partial spread

codes (constant dimension codeswithmaximumdistance)with the best size. This good
property of spreads naturally gives rise to the question of finding optimum distance
flag codes having a spread as their i-projected code when the dimension ti is a divisor
of n. Note that, due to the disjointness property, we could have at most one spread
among the projected codes. In [2], it was proved that having a spread as a projected
code makes optimum distance flag codes attain the maximum possible size as well.

123
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Theorem 3.2 [2, Theorem3.12]Let k be a divisor of n and assume thatC is an optimum
distance flag code of type (t1, . . . , tr ) on F

n
q . If some ti = k, then |C| � qn−1

qk−1
and

equality holds if, and only if, the i-projected code Ci is a k-spread of F
n
q .

In the same paper, it is shown that, for the full type vector (1, . . . , n − 1), it is
possible to find optimum distance full flag codes having a spread as a k-projected
code only if either n = 2k or n = 3 and k = 1. Observe that there, the authors always
work with full flag codes (the full type vector is fixed) and then provide conditions
on n and k. Now, we deal with the inverse problem: given n and a divisor k of n, we
look for conditions on the type vector of an optimum distance flag code on F

n
q having

a k-spread as a projected code. We conclude that not all the type vectors are allowed.
Let us describe the admissible ones and provide a construction of optimum distance
flag codes for them, based on the existence of perfect matchings in a specific graph.

3.1 Admissible type vectors

This paper is devoted to explore the existence of optimum distance flag codes of a
general type vector (t1, . . . , tr ), not necessarily the full type, having a spread as their i-
projected code when ti is a divisor of n. The next result states the necessary conditions
that the type vector (t1, . . . , tr ) must satisfy.

Theorem 3.3 Let C be an optimum distance flag code of type (t1, . . . , tr )onF
n
q . Assume

that some dimension ti = k divides n and the associated projected code Ci is a k-
spread. Then, for each j ∈ {1, . . . , r}, either t j � k or t j � n − k.

Proof Notice that in case i = r , clearly t j � tr = k, for every j = 1, . . . , r . Suppose
that i < r . Let us show that ti+1 � n − k.

Since ti = k divides n, we can write n = sk, for some s � 2. If s = 2, we have
that n − k = k and the result trivially holds. In case s > 2, then s < 2(s − 1) and we
have that 2k < n < 2(s − 1)k = 2(n − k). We deduce that k � � n

2 � < n − k. Now,
by contradiction, assume that ti+1 < n − k. We distinguish two possibilities:

(1) If k < ti+1 � � n
2 �, since C is an optimum distance flag code, by Theorem 3.1,

its projected code Ci+1 must be a partial spread of dimension ti+1 and cardinality
|Ci+1| = |Ci | = qn−1

qk−1
. Contradiction with (5).

(2) If � n
2 � < ti+1 < n−k, the projected code Ci+1 has to be an equidistant (2ti+1−n)-

intersecting constant dimension code. In other words, the subspace distance of
Ci+1 is 2(n − ti+1). Hence, its dual code C⊥

i+1 is a partial spread of dimension

n − ti+1 > n − k > k and cardinality |Ci+1| = |Ci | = qn−1
qk−1

, which again
contradicts (5).

We conclude that ti+1 � n − k.

Remark 3.4 This result provides a necessary condition on the type vector of any opti-
mum distance flag code on F

n
q having a k-spread as a projected code. According to

this, we say that a type vector is admissible if it satisfies the conditions in Theorem 3.3.
In other words, if
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k ∈ {t1, . . . , tr } ⊆ {1, . . . , k, n − k, . . . , n − 1}.
Notice that every type vector containing the dimension k is admissible when n = 2k
since, in that case, it holds k = n − k. This particular case has been already studied in
[2], where it was proved that optimumdistance flag codes of any type vector containing
the dimension k can be constructed from a k-spread (planar spread). Moreover, those
codes were shown to attain the maximum possible cardinality as well. In the next
subsection, we tackle the problem of constructing flag codes attaining the maximum
distance and having a k-spread as their projected code for any admissible type vector
in the general case n = ks, for s � 3.

3.2 A construction based on perfect matchings

This part is devoted to describe a specific construction of optimum distance flag codes
on F

n
q from a k-spread of a given admissible type vector (t1, . . . , tr ). By means of

Theorem 3.3, if such codes exist, their type vector must satisfy k ∈ {t1, . . . , tr } ⊆
{1, . . . , k, n−k, . . . , n−1}. For the sake of simplicity, we undertake this construction
in several phases: we consider first the admissible type vector (1, n − 1), that is, the
construction of optimum distance flag codes from the spread of lines. Secondly, by
using thefield reductionmapdefined inSect. 2.1,weproperly translate the construction
in the first step to get optimum distance flag codes of type vector (k, n − k) having
the k-spread S introduced in (6) as its first projected code. Then, taking advantage of
certain properties of the k-spread S, we extend the construction in the second step to
obtain optimum distance flag codes of the full admissible type, that is, (1, . . . , k, n −
k, . . . , n − 1). Finally, this last construction gives optimum distance flag codes of any
admissible type vector after a suitable puncturing process. Let us explain in detail all
these stages.

3.2.1 The type vector (1, n− 1): starting from the spread of lines

Take n � 3. In this section, we provide a construction of optimum distance flag codes
onF

n
q from the spread of lines, that is, having theGrassmannianGq(1, n) as a projected

code. By Theorem 3.3, the only admissible type vector in this case is (1, n − 1). In
other words, to give an optimum distance flag code from the spread of lines of F

n
q , we

have to provide a family of |Gq(1, n)| pairwise disjoint flags of length two, all of them
consisting of a line contained in a hyperplane. To do so, we translate this problem to
the one of finding perfect matchings in bipartite regular graphs, using the results given
in Sect. 2.4. Let us precise this.

Consider the graph G = (V , E), with set of vertices V = Gq(1, n) ∪ Gq(n − 1, n)

and set of edges E defined by

E = {(l, H) ∈ Gq(1, n) × Gq(n − 1, n) | l ⊂ H}.
Notice that the set of vertices in G consists of the lines and hyperplanes of F

n
q . An

edge (l, H) of G exists if, and only if, the line l is contained in the hyperplane H .
With this notation, the next result holds.
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Proposition 3.5 The graph G = (V , E) is bipartite and q(n−1)−1
q−1 -regular.

Proof It is clear that G is a bipartite graph by definition. Moreover, the number of
hyperplanes containing a fixed line coincides with the number of lines lying on a

given hyperplane. This number is precisely q(n−1)−1
q−1 . Then, the degree of any vertex

in G coincides with this value, and then, G is q(n−1)−1
q−1 -regular.

Note that the problem of giving a family of flags with the desired conditions can
be seen as the combinatorial problem of giving a perfect matching in G. Since G is
a regular bipartite graph, we can use Theorem 2.3 to conclude that there exist perfect
matchings in G. More precisely, there exists a subset M ⊂ E that matches V , that
is, each edge in M has an extremity in Gq(1, n) and the other one in Gq(n − 1, n).
In particular, the set M has a number of edges equal to |Gq(1, n)|. This matching M
induces naturally a bijection, also denoted by M , between the set of lines and the
set of hyperplanes in F

n
q . Moreover, by the definition of E , we have that the map

M : Gq(1, n) → Gq(n − 1, n) satisfies that l ⊂ M(l) for any l ∈ Gq(1, n). This fact
allows us to construct a family of flags of type (1, n − 1) on F

n
q in the following way:

C̃ = C̃M = {(l, M(l)) | l ∈ Gq(1, n)}. (11)

Let us see that the family C̃ is a flag code with projected codes C̃1 = Gq(1, n) and
C̃2 = Gq(n − 1, n) satisfying the desired conditions.

Theorem 3.6 Given n � 3, the code C̃ defined in (11) is an optimum distance flag
code of type (1, n − 1) on F

n
q with the spread of lines as a projected code.

Proof Since the map M defined above is bijective, the code C̃ must be a disjoint flag
code with projected codes C̃1 = Gq(1, n) and C̃2 = Gq(n − 1, n). In particular, as
dS(C̃1) = dS(C̃2) = 2 is the maximum possible distance for constant dimension codes
of dimension 1 and n−1 inF

n
q , by Theorem 3.1, we have that C̃ is an optimum distance

flag code with Gq(1, n) as a projected code.

Remark 3.7 Observe that, by means of Theorem 3.2, our code C̃ defined as above
attains the maximum possible cardinality for flag codes of type (1, n−1) and distance
4, which is

|C̃| = qn − 1

q − 1
= qn−1 + qn−2 + · · · + q + 1.

For the particular case n = 3, the previous bound was given in [16], where the author
studied bounds for the cardinality of full flag codes with a given distance. Observe
that this is the only case in which optimum distance full flag codes with a spread as a
projected code can be constructed, apart from the case n = 2k, as it was explained in
[2].

Note that, despite the fact that Theorem 2.3 guarantees the existence of perfect
matchings in regular bipartite graphs, in order to provide a concrete construction of
optimumdistance flag codes of type (1, n−1) onF

n
q , we need to get a precisematching
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inG. As said in Sect. 2, this can be done by using known algorithms (see [7,11,12,15],
for instance). In Sect. 3.3, we exhibit an optimum distance flag code of type (2, 4)
constructed as a perfect matching obtained with GAP.

3.2.2 The type vector (k, n− k)

Take n = ks a natural number with k � 2 and s � 3. In order to construct optimum
distance flag codes of type (k, n − k) on F

n
q , we will use the construction of optimum

distance flag codes of type (1, s−1) on F
s
qk

given in Sect. 3.2.1 together with the field
reduction map defined in Sect. 2.1. Let us explain this construction.

Let M : Gqk (1, s) → Gqk (s − 1, s) be a bijection such that l ⊂ M(l) for any
l ∈ Gqk (1, s). By Theorem 3.6, we know that the code

C̃ = C̃M = {(l, M(l)) | l ∈ Gqk (1, s)}

is an optimum distance flag of type (1, s − 1) on F
s
qk
. In particular, the code C̃

is disjoint. On the other hand, given P ∈ GLk(q) the companion matrix of a
monic irreducible polynomial of degree k in Fq [x], the associated field isomorphism
φ : Fqk → Fq [P] induces the field reduction ϕ : Pqk (s) −→ Pq(ks) as in (2).
Notice that, by Proposition 2.1, we have that for any m ∈ {1, . . . , s − 1}, it holds that
ϕ(Gqk (m, s)) ⊆ Gq(mk, sk). Moreover, given U ,V subspaces of F

s
qk

with U ⊆ V ,
then ϕ(U) ⊆ ϕ(V). As a consequence, if (l, M(l)) ∈ C̃, then (ϕ(l), ϕ(M(l))) is a flag
of type (k, n − k) on F

n
q . This fact allows us to define a family of flags over F

n
q as

follows
Ĉ = {(ϕ(l), ϕ(M(l))) | l ∈ Gqk (1, s)}. (12)

ByRemark 2.2, we know thatϕ gives a bijection betweenGqk (1, s) and the k-spread
S = S(s, k, P) defined in (6). Hence, the family Ĉ is a flag code with projected codes

Ĉ1 = ϕ(Gqk (1, s)) = S, Ĉ2 = ϕ(Gqk (s − 1, s))

and the following result holds:

Theorem 3.8 The code Ĉ defined in (12) is an optimum distance flag code of type
(k, n − k) on F

n
q having the spread S as a projected code.

Proof Since Ĉ1 = ϕ(Gqk (1, s)) = S, we have |Ĉ| = |Ĉ1| = |ϕ(Gqk (1, s))| =
|Gqk (1, s)|. Furthermore, by the injectivity of ϕ (see Proposition 2.1), we also have
that |Ĉ2| = |ϕ(Gqk (s − 1, s))| = |Gqk (s − 1, s)|. As |Gqk (1, s)| = |Gqk (s − 1, s)|, we
conclude that |Ĉ| = |Ĉ1| = |Ĉ2| and Ĉ is disjoint. Let us now prove that the projected
codes of Ĉ are constant dimension codes with the maximum possible distance. Since
the projected code Ĉ1 is a spread, it is enough to check this property for Ĉ2. Given
any two different subspaces ϕ(H), ϕ(H ′) ∈ Ĉ2 = ϕ(Gqk (s − 1, s)), by means of
Proposition 2.1, we have that H , H ′ are different hyperplanes. Moreover, since the
intersection of any two hyperplanes in F

s
qk

is a (s − 2)-dimensional subspace of F
s
qk

we have that

123



Journal of Algebraic Combinatorics (2021) 54:1279–1297 1291

dim(ϕ(H) ∩ ϕ(H ′)) = dim(ϕ(H ∩ H ′)) = k(s − 2) = n − 2k.

Notice that n − 2k = 2(n − k) − n is the minimum among the possible dimensions
of the intersection of subspaces in Gq(n − k, n). Hence, Ĉ2 is an equidistant (n − 2k)-
intersecting constant dimension code and, by applying Theorem 3.1, we are done.

3.2.3 The full admissible type vector

In this subsection, we finally tackle the construction of optimum distance flag codes of
the full admissible type, that is, of type (1, . . . , k, n − k, . . . , n − 1) on F

n
q having the

k-spread S defined in (6) as a projected code. To do this, we start from the optimum
distance flag code Ĉ of type (k, n − k) defined in (12). Recall that the construction of
this code depends on the choice of a bijection M : Gqk (1, s) → Gqk (s − 1, s) such
that l ⊂ M(l) for any l ∈ Gqk (1, s).

Let us fix an order in the set of lines of F
s
qk

and write Gqk (1, s) = {l1, l2, . . . , lL},
where L = |Gqk (1, s)|. This order in Gqk (1, s) naturally induces respective orders in
the sets Gqk (s − 1, s), S and H = ϕ(Gqk (s − 1, s)) as follows:

Hi = M(li ), Si = ϕ(li ),Hi = ϕ(Hi )

for i = 1, . . . , L . Denote also by Si the RREF generator matrix of Si . Notice that
Si ∈ � where � is the set defined in (7), and Si = (φ(xi1)| . . . |φ(xis)), where
(xi1, . . . , xis) ∈ F

s
qk

is the RREF matrix generating the line li .

Now, given a hyperplane Hi = M(li ) of F
s
qk
, we can write

Hi = li ⊕ li2 ⊕ · · · ⊕ lis−1 ,

for li2 , . . . , lis−1 some lines of F
s
qk

. By the properties of the field reduction ϕ described
in Proposition 2.1, we have that

Hi = ϕ(Hi ) = Si ⊕ Si2 ⊕ · · · ⊕ Sis−1 .

So, any subspace Hi ∈ H can be decomposed as a direct sum of subspaces in S.
This representation is not unique since Hi can be written as direct sum of different
collections of lines. Moreover, given that for any line lis in F

s
qk

\ Hi , it holds that

Hi ⊕ lis = F
s
qk
, by using Proposition 2.1 again, we conclude thatHi ⊕ Sis = F

n
q . As

a consequence, the rows of the matrix

Wi =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Si
Si2
...

Sis−1

Sis

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(13)
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form a basis of F
n
q . Moreover, any collection of j � n rows of Wi generates a j-

dimensional subspace of F
n
q .

Denote by W( j)
i the submatrix of Wi given by its first j rows. We also denote by

W( j)
i = rowsp(W( j)

i ). With this notation, it is clear thatW(k)
i = Si andW(n−k)

i = Hi .

In addition, for any 1 � j1 < j2 � n, it holds that W( j1)
i � W( j2)

i . This fact allows
us to define FWi the flag of type (1, . . . , k, n − k, . . . , n − 1) associated with Wi in
the following way:

FWi =
(
W(1)

i , . . . ,W(k−1)
i ,Si ,Hi ,W(n−k+1)

i , . . . ,W(n−1)
i

)
. (14)

Finally, given the family of matrices {Wi }Li=1, we define the family of associated flags
of type (1, . . . , k, n − k, . . . , n − 1):

C = {FWi | i = 1, . . . , L}. (15)

Let us see that C is an optimumdistance flag code. To do so, we analyze the structure
of its projected codes:

C j =
{
W( j)

i | i = 1, . . . , L
}

(16)

and
Ck+ j =

{
W(n−k+ j−1)

i | i = 1, . . . , L
}

, (17)

for all j = 1, . . . , k.

Proposition 3.9 Given the flag code C defined as above, for each j = 1, . . . , k the
following is satisfied:

(1) The code C j is a partial spread in Gq( j, n) with cardinality L = qn−1
qk−1

.

(2) The codeCk+ j is an equidistant (n−2k+2( j−1))-intersecting constant dimension

code in Gq(n − k + j − 1, n) with cardinality L = qn−1
qk−1

. As a consequence, Ck+ j

is a constant dimension code of maximum distance.

In particular, we have that Ck = S and Ck+1 = H.

Proof By construction, it is clear that Ck = S and Ck+1 = H. Now, for any 1 � j � k,
given two different indices i1, i2 ∈ {1, . . . , L}, we have that

W( j)
i1

∩ W( j)
i2

⊂ Si1 ∩ Si2 = {0}.

Hence, C j is a partial spread in the Grassmannian Gq( j, n) with |C j | = L .

To prove (2), consider subspacesW(n−k+ j−1)
i1

,W(n−k+ j−1)
i2

∈ Ck+ j . We know that
dim(Hi1 ∩ Hi2) = (s − 2)k = n − 2k, and then, the subspace sum Hi1 + Hi2 is the
whole space F

n
q . As a consequence,

n = dim(Hi1 + Hi2) � dim
(
W(n−k+ j−1)

i1
+ W(n−k+ j−1)

i2

)
� n
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and then it follows that

n = dim
(
W(n−k+ j−1)

i1
+ W(n−k+ j−1)

i2

)

= 2(n − k + j − 1) − dim
(
W(n−k+ j−1)

i1
∩ W(n−k+ j−1)

i2

)
.

Hence, we obtain

dim
(
W(n−k+ j−1)

i1
∩ W(n−k+ j−1)

i2

)
= 2(n − k + j − 1) − n

= n − 2k + 2( j − 1),

which is the minimum possible dimension of the intersection between subspaces of
dimension n−k+ j−1 of F

n
q . Thus, we conclude that Ck+ j is an equidistant (n−2k+

2( j −1))-intersecting constant dimension code with exactly L elements. In particular,
we have that dS(Ck+ j ) = 2(k − ( j − 1)) and Ck+ j is a constant dimension code with
the maximum distance.

Theorem 3.10 The flag code C defined in (15) is an optimum distance flag code of type
(1, . . . , k, n − k, . . . , n − 1) on F

n
q with the k-spread S as a k-projected code. This

code has cardinality |C| = L = qn−1
qk−1

and distance d f (C) = 2k(k + 1).

Proof By means of Proposition 3.9, we conclude that C is a disjoint flag code of
cardinality L with projected codes attaining the maximum distance for their corre-
sponding dimensions. Then, by Theorem 3.1, C is an optimum distance flag code, that
is, d f (C) = 2k(k + 1).

Remark 3.11 The code C defined in (15) attains the maximum possible distance for
flag codes of type (1, . . . , k, n − k, . . . , n − 1) on F

n
q . Furthermore, by means of

Theorem 3.2, it also has the best possible size among the optimum distance flag codes
of the full admissible type vector on F

n
q .

3.2.4 The general case

Finally, in order to get an optimum distance flag code of any admissible type vector
with a k-spread as a projected code, we apply a puncturing process to the code C
defined in (15). This process was already used in [2] to get optimum distance flag
codes having a planar spread as a projected code. Let us recall it. Fix an admissible
type vector (t1, . . . , tr ), that is, a type vector such that k ∈ {t1, . . . , tr } ⊆ {1, . . . , k, n−
k, . . . , n − 1}. Consider a flag FWi in the code C in (15). The punctured flag of type
(t1, . . . , tr ) associated with FWi is the sequence

(
W(t1)

i , . . . ,W(tr )
i

)
. (18)

The punctured flag code of type (t1, . . . , tr ) associated with C is the code given by

C(t1,...,tr ) =
{(

W(t1)
i , . . . ,W(tr )

i

)
| i = 1, . . . , L

}
. (19)
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Observe that the projected codes of C(t1,...,tr ) are, in particular, projected codes of C.
Hence, the next result follows straightforwardly from this fact, together with Theo-
rem 3.2.

Theorem 3.12 Given n and a divisor k of n, for every admissible type vector
(t1, . . . , tr ), the code C(t1,...,tr ) defined as above is an optimum distance flag code

on F
n
q with the spread S as a projected code. Its cardinality, which is L = qn−1

qk−1
, is

maximum for optimum distance flag codes of this type.

3.3 Example

We conclude the paper with an example of our construction of an optimum distance
flag code of type (2, 4) on F

6
2 having a 2-spread as its first projected code. To do this,

we follow the steps given in Sect. 3.2.
Consider the bipartite graph G = (V , E) where V = G4(1, 3) ∪ G4(2, 3) and E is

the set of pairs (l, H) ∈ G4(1, 3) × G4(2, 3) with l ⊂ H . Take α ∈ F4 with α 
= 0, 1.
Then, we have that F4 = {0, 1, α, α2}. By using the package GRAPE of GAP and
following the process described in [3], we have obtained the next perfect matching of
V . The induced bijection M : G4(1, 3) → G4(2, 3) is explicitly given by:

M(〈(0, 0, 1)〉) = rowsp

(
0 0 1
0 1 0

)

M(〈(0, 1, 0)〉) = rowsp

(
0 1 0
1 0 α2

)

M(〈(0, 1, 1)〉) = rowsp

(
0 1 1
1 0 1

)

M(〈(0, 1, α)〉) = rowsp

(
0 1 α

1 0 α

)

M(〈(0, 1, α2)〉) = rowsp

(
0 1 α2

1 0 1

)

M(〈(1, 0, 0)〉) = rowsp

(
1 0 0
0 1 α2

)

M(〈(1, 0, 1)〉) = rowsp

(
1 0 1
0 0 1

)

M(〈(1, 0, α)〉) = rowsp

(
1 0 α

0 1 1

)

M(〈(1, 0, α2)〉) = rowsp

(
1 0 α2

0 1 α

)

M(〈(1, 1, 0)〉) = rowsp

(
1 1 0
0 1 α2

)

M(〈(1, 1, 1)〉) = rowsp

(
1 1 1
0 1 α2

)

M(〈(1, 1, α)〉) = rowsp

(
1 1 α

0 1 α

)

M(〈(1, 1, α2)〉) = rowsp

(
1 1 α2

0 0 1

)

M(〈(1, α, 0)〉) = rowsp

(
1 α 0
0 1 0

)

M(〈(1, α, 1)〉) = rowsp

(
1 α 1
0 1 1

)

M(〈(1, α, α)〉) = rowsp

(
1 α α

0 1 0

)

M(〈(1, α, α2)〉) = rowsp

(
1 α α2

0 0 1

)

M(〈(1, α2, 0)〉) = rowsp

(
1 α2 0
0 1 α

)

M(〈(1, α2, 1)〉) = rowsp

(
1 α2 1
0 1 0

)

M(〈(1, α2, α)〉) = rowsp

(
1 α2 α

0 0 1

)

M(〈(1, α2, α2)〉) = rowsp

(
1 α2 α2

0 1 1

)

Observe that every line l ∈ G4(1, 3) is a subspace of the (hyper)plane M(l). Even
more, we have expressed every subspaceM(l) as the rowspace of a 2×3matrix whose
the first row is precisely a generator of the line l. In this way, we obtain the optimum
distance flag code of type (1, 2) on F

3
4

C̃ = {(l, M(l)) | l ∈ G4(1, 3)}.
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Now, let f (x) = x2 + x + 1 be the minimal polynomial of α and consider its

companion matrix P =
(
0 1
1 1

)

. If φ is the field isomorphism in (1), we have that

φ(0) = 02, φ(1) = I2 and φ(α) = P . Taking the previous matching M and the field
reduction ϕ induced by φ (2), we define the following optimum distance flag code of
type (2, 4) on F

6
2

Ĉ = {(ϕ(l), ϕ(M(l))) | l ∈ G4(1, 3)}.

If we take l = 〈(0, 1, α)〉, for instance, the corresponding element on Ĉ is the flag

F =
(

rowsp
(
02 I2 P

)
, rowsp

(
02 I2 P
I2 02 P

))

.

Note that Ĉ1 = S(3, 2, P) = S. Also, for every ϕ(l) ∈ S with l ∈ G4(1, 3), we
have that ϕ(M(l)) is a 4-dimensional subspace over F2 that contains ϕ(l). Moreover,
ϕ(M(l)) is the vector space generated by the rows of a 4 × 6 full-rank matrix, whose
two first rows span ϕ(l).

4 Conclusions and future work

In this paper, we have addressed the problem of obtaining flag codes of general type
(t1, . . . , tr ) on a space F

n
q with the maximum possible distance and the property of

having a k-spread as a projected code whenever k divides n. Firstly, we have showed
that the existence of such codes might be not possible for an arbitrary type vector
and have characterized the admissible ones. They have to satisfy the condition: k ∈
{t1, . . . , tr } ⊆ {1, . . . , k, n − k, . . . , n − 1}.

Given an admissible type vector, we have proved the existence of optimum distance
flag codes of such a type with a spread as a projected code by describing a gradual
construction starting from type (1, n − 1), following with type (k, n − k), to finish
with the full admissible type {1, . . . , k, n− k, . . . , n−1}. This construction is mainly
based on two ideas: on the one side, we exploit the existence of perfect matchings in
the bipartite graph with set of vertices given by the lines and the hyperplanes of F

n
q

and edges given by the containment relation. On the other hand, we use the properties
of the field reduction map that allow us to translate the spread of lines to a k-spread
and to build our code from it. Our construction provides codes with the best possible
size among optimum distance flag codes of any arbitrary admissible type vector.

In future work, we investigate the algebraic structure and features of this family of
codes and explore other possible constructions. We also study the family of flag codes
from spreads not necessarily having the maximum distance as well as the existence
and performance of decoding algorithms for them.
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