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Abstract
Optical Music Recognition (OMR) and Automatic Music Transcription (AMT) stand for the research fields that aim at
obtaining a structured digital representation from sheet music images and acoustic recordings, respectively. While these fields
have traditionally evolved independently, the fact that both tasks may share the same output representation poses the question
of whether they could be combined in a synergistic manner to exploit the individual transcription advantages depicted by
each modality. To evaluate this hypothesis, this paper presents a multimodal framework that combines the predictions from
two neural end-to-end OMR and AMT systems by considering a local alignment approach. We assess several experimental
scenarios with monophonic music pieces to evaluate our approach under different conditions of the individual transcription
systems. In general, the multimodal framework clearly outperforms the single recognition modalities, attaining a relative
improvement close to 40% in the best case. Our initial premise is, therefore, validated, thus opening avenues for further
research in multimodal OMR-AMT transcription.

Keywords Multimodal recognition · Automatic music transcription · Optical music recognition and deep learning

1 Introduction

Bringing music sources into a structured digital represen-
tation, typically known as transcription, remains as one
of the key, yet challenging, tasks in the Music Informa-
tion Retrieval (MIR) field [17,21]. Such digitization not
only improves music heritage preservation and dissemina-
tion [11], but it also enables the use of computer-based tools
which allow indexing, analysis, and retrieval, among many
other tasks [20].

In this context, two particular research lines stand out
within the MIR community: on the one hand, when tackling
music scores images, the field of Optical Music Recogni-
tion (OMR) investigates how to computationally read these
documents and store their music information in a symbolic
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format [3]; on the other hand, when considering acoustic
music signals, Automatic Music Transcription (AMT) rep-
resents the field devoted to the research on computational
methods for transcribing them into some form of structured
digital music notation [1]. It must be remarked that, despite
pursuing the same goal, these two fields have been developed
separately due to the different nature of the source data.

Multimodal recognition frameworks, understood as those
which take as input multiple representations or modalities of
the same piece of data, have proved to generally achieve bet-
ter results than their respective single-modality systems [25].
In such schemes, it is assumed that the different modalities
provide complementary information to the system, which
eventually results in an enhancement of the overall recogni-
tion performance. Such approaches are generally classified
in one of these fashions [7]: (i) those in which the individual
features of the modalities are directly merged with the con-
strain of requiring the input elements to be synchronized to
some extent (feature or early-fusion level); or those in which
the merging process is done with the hypotheses obtained by
each individual modality, thus not requiring both systems to
be synchronized (decision or late-fusion level).

Regarding the MIR field, this premise has also been
explored in particular cases as music recommendation, artist
identification or instrument classification, among others [22].
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Music transcription is no strange and has also contemplated
the use of multimodality as a means of solving certain glass
ceiling reached in single-modality approaches. For instance,
researchonAMThas considered the use of additional sources
of information as, for instance, onset events, harmonic infor-
mation, or timbre [2]. Nevertheless, to our best knowledge,
no existing work has considered that a given score image
and its acoustic performance may be considered two differ-
ent modalities of the same piece to be transcribed. Under this
premise, transcription results may be enhanced if the individ-
ual, and somehow complementary, descriptions by the OMR
and AMT systems are adequately combined.

While this idea might have been discussed in the past, we
consider that classical formulations of both OMR and AMT
frameworks did not allow exploring a multimodal approach.
However, recent developments in these fields define both
tasks in terms of a sequence labeling problem [10], thus
enabling research on the combined paradigm. Note that
when addressing transcription tasks within this formulation,
the input data (either image or audio) is directly decoded
into a sequence of music-notation symbols, having this
typically been carried out considering neural end-to-end sys-
tems [4,19].

One could argue whether it may be practical, or even real-
istic, having both the acoustic and image representations of
the piece to be transcribed. We assume, however, that for a
music practitioner it would be, at least, more appealing to
play a composition reading a music sheet rather than man-
ually transcribing it. Note that we find the same scenario in
the field of Handwritten Text Recognition, where producing
a uttering out of a written text and using a speech recogni-
tion system for then fusing the decisions required less effort
than manually transcribing the text or correcting the errors
produced by the text recognition system [8].

This work explores and studies whether the transcrip-
tion results of a multimodal combination of sheet scores and
acoustic performances of music pieces improves those of the
stand-alone modalities. For that, we propose a decision-level
fusion policy based on the combination of the most proba-
ble symbol sequences depicted by two end-to-end OMR and
AMT systems. The experiments have been performed with
a corpus of monophonic music considering multiple scenar-
ios which differ in the manner the individual transcription
systems are trained, hence allowing a thorough analysis of
the proposal. The results obtained prove that the combined
approach improves the transcription capabilities with respect
to single-modality systems in cases in which their individual
performances do not remarkably differ. This fact validates
our initial premise and poses new research questions to be
addressed and explored.

The rest of the paper is structured as follows: Sect. 2
contextualizes the work within the related literature; Sect. 3
describes our multimodal framework; Sect. 4 presents the

experimental set-up considered as well as results and dis-
cussion; finally, Sect. 5 concludes the work and poses future
research.

2 Related work

While multimodal transcription approaches based on the
combination of OMR and AMT have not been yet explored
in the MIR field, we may find some research examples in the
related areas ofTextRecognition (TR) andAutomatic Speech
Recognition (ASR). It must be noted that the multimodal
fusion in these cases is also carried out at the decision level,
keeping the commented advantage of not requiring multi-
modal training data for the underlying models.

One of the first examples in this regard is the proposal by
Singh et al. [23], in which TR and ASR where fused in the
context of postal code recognition using a heuristic approach
based on the Edit distance [14]. More recent approaches
related to handwritten manuscripts have resorted to proba-
bilistic frameworks for merging the individual hypotheses
by the systems as those of using confusion networks [8] or
the word-graph hypothesis spaces [9].

It is worth noting that this type of multimodality may be
also found in other fields as now the Gesture Recognition
(GR) one. For instance, the work by Pitsikalis et al. [16]
improves the recognition rate by re-scoring the different
hypotheses of the GR model with information from an ASR
system. Within this same context other works have explored
the alignment of different hypotheses using Dynamic Pro-
gramming approaches [15] or, again, a confusion networks
framework [13].

In this work, we tackle this multimodal music transcrip-
tion problem considering the alignment, at a sequence level,
of the individual hypotheses depicted by stand-alone end-
to-end OMR and AMT systems. As it will be shown, when
adequately configured, this approach is capable of success-
fully improving the recognition rate of the single-modality
transcription systems.

3 Methodology

We consider two neural end-to-end transcription systems
as the base OMR and AMT methods for validating our
fusion proposal. As commented, the choice of these partic-
ular approaches is that they allow a common formulation of
the individual modalities, thus facilitating the definition of a
fusion policy. Note that, in this case, the combination policy
works at a decision, or sequence, level, as it can be observed
in Fig. 1. To properly describe these design principles, we
shall introduce some notation.
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Fig. 1 Graphical description of
the scheme proposed. For a
given music piece, a score
image xim and an audio signal
(as a CQT spectrogram) xam are
provided to the OMR and AMT
systems, retrieving sequences
zam and zim , respectively. The
multimodal fusion policy
eventually produces the
sequence z f

m

Let T = {(xm, zm) : xm ∈ X , zm ∈ Z}|T |
m=1 represent a

set of datawhere sample xm drawn from spaceX corresponds
to symbol sequence zm = (

zm1, . . . , zmNm

)
from space Z

considering the underlying function g : X → Z . Note that
the latter space is defined asZ = �∗ where� represents the
score-level symbol vocabulary.

Since we are dealing with two sources of information, we
have different representation spaces X i and X a with vocab-
ularies �i and �a related to the image scores and audio
signals, respectively. While not strictly necessary, for sim-
plicity we are constraining both systems to consider the same
vocabulary, i.e., �i = �a . Also note that, for a given m-th
element, while staff xim ∈ X i and audio xam ∈ X a sig-
nals depict a different origin, the target sequence zm ∈ Z
is deemed to be the same.

3.1 Neural end-to-end base recognition systems

Concerning the recognition architectures, we consider aCon-
volutional Recurrent Neural Network (CRNN) scheme to
approximate g (·). Recent works have applied this approach
to both OMR [5,6] and AMT [18,19] transcription systems
with remarkably successful results. Hence, we shall resort to
these works to define our baseline single-modality transcrip-
tion architectures within the multimodal framework.

More in depth, aCRNNarchitecture is formed by an initial
block of convolutional layers devised to learn the adequate
features for the task at issue followed by another group of
recurrent layers that model their temporal dependencies. To
achieve an end-to-end system with such architecture, CRNN
models are trained using the Connectionist Temporal Clas-
sification (CTC) algorithm [10]. In a practical sense, this
algorithm only requires the different input signals and their
associated transcripts as sequences of symbols, without any
specific input-output alignment at a finer level.Note thatCTC
requires the inclusion of an additional “blank” symbol within
the � vocabulary, i.e., �′ = � ∪ {blank} due to its training
procedure.

Since CTC assumes that the architecture contains a fully-
connected layer of |�′| outputs with a softmax activation,

the actual output is a posteriogram with a number of frames
given by the recurrent stage and |�′| activations each. Most
commonly, the final prediction is obtained out of this pos-
teriogram using a greedy approach which retrieves the most
probable symbol per step and a posterior squash function
which merges consecutive repeated symbols and removes
the blank label. In our case, we slightly modify this decoding
approach for allowing the multimodal fusion of both sources
of information.

3.2 Multimodal fusion policy

The proposed policy takes as starting point the posteriograms
of the two recognition modalities, OMR and AMT. For each
posteriogram, a greedy decoding policy is applied to each of
them for obtaining their most probable symbols per frame
together with their per-symbol probabilities.

After that, the CTC squash function merges consecutive
symbols for each modality with the particularity of deriving
the per-symbol probability by averaging the individual prob-
ability values of themerged symbols. For example, when any
of the models obtains a sequence in which the same symbol
is predicted for 4 consecutive frames, the algorithm com-
bines them and computes the average probabilities of these
involved frames. After that, the blank symbols estimated by
CTC are also removed, retrieving predictions zim and zam ,
which correspond to the image and audio recognition mod-
els, respectively.

Since sequences zim and zam may not match in terms of
length, it is necessary to align both estimations for merging
them. Hence, we consider the Smith-Waterman (SW) local
alignment algorithm [24], which performs a search for the
most similar regions between pairs of sequences.

Eventually, the final estimation z f
m is obtained from these

two aligned sequences following these premises: (i) if both
sequences match on a token, it is included in the resulting
estimation; (ii) if the sequences disagree on a token, the one
with the highest probability is included in the estimation;
(iii) if one of the sequences misses a symbol, that of the
other sequence is included in the estimation.
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4 Experiments

Having defined the individual recognition systems as well
as the multimodal fusion proposal, this section presents the
experimental part of the work. For that, we introduce the
CRNN schemes considered for OMR and AMT, we describe
the corpus and metrics for the evaluation, and finally we
present and discuss the results obtained.As previously stated,
the combination of OMR and AMT has not been previously
addressed in the MIR field. Hence, the experimental section
of the work focuses on comparing the performance of the
multimodal approach against that of the individual transcrip-
tion models, given that no other results can be reported from
the literature.

4.1 CRNNmodels

The differentCRNN topologies considered for both theOMR
and the AMT systems are described in Table 1. These config-
urations are based on those used by recent works addressing
the individual OMR and AMT tasks as a sequence labeling
problem with deep neural networks [4,19]. It is important
to highlight that these architectures can be considered as the
state of the art in the aforementioned transcription tasks, thus
being good representatives of the attainable performance in
each of the baseline cases. Note that, as aforementioned, the
last recurrent layer of the schemes is connected to a dense
unit with |�i | + 1 = |�a | + 1 output neurons and a softmax
activation.

These architectures were trained using the backpropaga-
tion method driven by CTC for 115 epochs using the ADAM
optimizer [12]. Batch size was fixed to 16 for the OMR sys-
tem, while for the AMT it was set 1 because of being more
memory-intensive.

4.2 Materials

For the evaluation of our approach, we considered the
Camera-based Printed Images of Music Staves (Camera-
PrIMuS) database [4]. This corpus contains 87, 678 real
music staves of monophonic incipits1 extracted from the
Répertoire International des Sources Musicales (RISM). For
each incipit, different representations are provided: an image
with the rendered score (both plain and with artificial distor-
tions), several encoding formats for the symbol information,
and aMIDI file of the content. Although this dataset does not
represent the hardest challenge for OMR or AMT, it provides
both audio and images of the same pieces while allowing an
artificial control of the performances for studying different
scenarios.

1 Short sequence of notes, typically the first measures of the piece, used
for indexing and identifying a melody or musical work.

Regarding the particular type of data used by each recog-
nition model, the OMR system takes as input the artificially
distorted staff image of the incipit scaled to a height of 64
pixels, while maintaining the aspect ratio. Concerning the
AMT model, an audio file is synthesized from the MIDI file
for each incipit with the FluidSynth software2 and a piano
timbre, considering a sampling rate of 22,050 Hz; then a
time-frequency representation is obtained by means of the
Constant-Q Transform with a hop length of 512 samples,
120 bins, and 24 bins per octave. This result is embedded as
an image whose height is scaled to 256 pixels, maintaining
the aspect ratio.

An initial data curation process was applied to the cor-
pus for discarding samples which may cause a conflict in the
combination, resulting in 67,000 incipits.3 Since this reduced
set still contains a considerably large amount of elements, we
randomly selected approximately a third of this curated set
for our experiments to take a considerable amount of mem-
ory and time, resulting in 22,285 incipits with a label space
of |�i | = |�a | = 1, 180 tokens. Eventually, we derive three
partitions—train, validation, and test—which correspond to
the 60%, 20%, and 20% of the latter amount of data, respec-
tively.

With regard to the performance evaluation, we considered
the Symbol Error Rate (SER) as in other neural end-to-end
transcription systems [4,19]. This measure is defined as:

SER (%) =
∑|S|

m=1 ED
(
zm, z′

m

)

∑|S|
m=1 |zm |

(1)

where ED (·, ·) stands for the string Edit distance, S a set of
test data, and zm and z′

m the target and estimated sequences,
respectively.

4.3 Results

In preliminary experimentation,when training both theOMR
and AMT systems with the same amount of data, the former
one depicted a remarkably better performance. This fact hin-
dered the possible improvement of the multimodal proposal
as the AMT recognition model rarely corrected any flaw of
the (almost perfect) OMR one. Thus, we propose four con-
trolled scenarios with the goal of thoroughly analyzing the
multimodal transcription proposal.

For the sake of compactness, all the results are depicted
in Table 2 while the following sections provide an individ-
ual analysis for each case. A last additional section further
explores the results to analyze the error typology by each

2 https://www.fluidsynth.org/.
3 This is the case of samples containing long multi-rests, which barely
extend the length of the score image but take many frames in the audio
signal.
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Table 1 CRNN configurations considered

Model Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

OMR Conv(64, 5 × 5) Conv(64, 5 × 5) Conv(128, 3 × 3) Conv(128, 3 × 3)

BatchNorm BatchNorm BatchNorm BatchNorm BLSTM(256) BLSTM(256)

LeakyReLU(0.20) LeakyReLU(0.20) LeakyReLU(0.20) LeakyReLU(0.20) Dropout(0.50) Dropout(0.50)

MaxPool(2 × 2) MaxPool(1 × 2) MaxPool(1 × 2) MaxPool(1 × 2)

AMT Conv(8, 2 × 10) Conv(8, 5 × 8)

BatchNorm BatchNorm BLSTM(256) BLSTM(256)

LeakyReLU(0.20) LeakyReLU(0.20) Dropout(0.50) Dropout(0.50)

MaxPool(1 × 2) MaxPool(1 × 2)

Notation: Conv( f , w × h) stands for a convolution layer of f filters of size w × h pixels, BatchNorm performs the normalization of the batch,
LeakyReLU(α) represents a leaky rectified linear unit activation with negative slope value of α, MaxPool2D(wp × h p) stands for the max-pooling
operator of dimensions wp × h p pixels, BLSTM(n) denotes a bidirectional long short-term memory unit with n neurons, and Dropout(d) performs
the dropout operation with d probability

Table 2 Symbol error rate (%) results for the OMR, AMT, and fusion
policy for the scenarios considered

Scenario OMR (%) AMT (%) Fusion (%)

A 26.09 27.53 18.56

B 18.57 27.53 15.14

C 10.82 11.64 6.64

D 2.38 27.53 5.70

transcription method as well as the incorrect hypotheses the
fusion policy is able to correct.

4.3.1 Scenario A:SEROMR ∼ SERAMTSEROMR ∼ SERAMTSEROMR ∼ SERAMT

This first scenario poses the case in which the OMR and
AMT systems depict a similar performance. For obtaining
such situation, we reduced the training data of the OMR to,
approximately, a 2% of the initial partition considered while
that of theAMTsystem remained unaltered.Under these con-
ditions, the individual OMR and AMT frameworks achieve
error rates of 26.09% and 27.53%, respectively.

As it may be checked, the proposed fusion policy reduces
the error rate to a figure of 18.56%, which supposes a rela-
tive error decrease of approximately 28.86% with respect to
that of the OMR system. This fact suggests that the fusion
policy somehow exhibits a synergistic behavior in which the
resulting sequence takes the most accurate estimations of the
OMR and AMT transcription methods.

4.3.2 Scenario B:SEROMR < SERAMTSEROMR < SERAMTSEROMR < SERAMT

The second scenario shows the case in which the individual
performance of one of the transcription systems is consider-
ably superior than that of the other one. For that, we reduced
the training data devoted to the OMR system to, approxi-

mately, a 3% of the initial partition considered, remaining
AMT unaltered.

With this particular configuration the starting point is that
OMR improves the error rate of AMT in, approximately, a
9%. While such difference may, in principle, suggest that no
improvement would be expected, it is eventually observed
that the fusion decreases the error rate to 15.14%, which
supposes a relative improvement of almost 19% with respect
to the OMR system.

This experiment shows that, even in cases where a modal-
ity depicts a better performance than the other one, there is
still a margin for improvement.

4.3.3 Scenario C:SEROMR ∼ SERAMT �SEROMR ∼ SERAMT �SEROMR ∼ SERAMT �

The third posed scenario considers the case in which both
transcription systems also achieve similar recognition rates
but with a remarkably better performance than those shown
in Scenario A. To artificially increase the performance of the
AMT process, we removed the music incipits from the test
set whose error was superior to 30% according to this model.
After the process, the number of elements in this test partition
is reduced to a 60% of the initial size while the others remain
as in Scenario B.

In this case, the error rates depicted by the individual
systems range between 10% and 11%, which already rep-
resent competitive transcription figures, at least in this type
of architectures. However, when combining both modalities,
the error rate decreases to 6.64%, which represents a relative
improvement of, roughly, a 40%.

This particular experiment proves that, even in cases
where both stand-alone transcriptionmethods report compet-
itive performances, the multimodal framework may report a
noticeable benefit in the recognition process.
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Table 3 Example of the
multimodal fusion on a music
incipit

OMR AMT Fusion Ground truth

Clef-G2 Clef-C1 Clef-G2 Clef-G2

KeySignature-FM – KeySignature-FM KeySignature-FM

TimeSignature-C TimeSignature-C TimeSignature-C TimeSignature-C

Rest-half Rest-half Rest-half Rest-half

Note-A4_eighth Note-A4_eighth Note-A4_eighth Note-A4_eighth

Note-D5_eighth Note-D5_eighth Note-D5_eighth Note-D5_eighth

Note-D5_sixteenth Note-D5_sixteenth Note-D5_sixteenth Note-D5_sixteenth

Note-C5_sixteenth Note-C#5_sixteenth Note-C#5_sixteenth Note-C#5_sixteenth

Note-D5_sixteenth Note-D5_sixteenth Note-D5_sixteenth Note-D5_sixteenth

Note-E5_sixteenth Note-E5_sixteenth Note-E5_sixteenth Note-E5_sixteenth

Barline Barline Barline Barline

Note-F5_eighth Note-F5_eighth Note-F5_eighth Note-F5_eighth

Note-D5_eighth Note-D5_eighth Note-D5_eighth Note-D5_eighth

Rest-eighth Rest-eighth Rest-eighth Rest-eighth

Note-C5_eighth Note-C#5_eighth Note-C#5_eighth Note-C#5_eighth

Note-D5_eighth Note-D5_eighth Note-D5_eighth Note-D5_eighth

The OMR and AMT columns depict the estimated sequences by the stand-alone systems while the Fusion
one shows the combined estimation. The ground-truth transcription is also provided. Disagreements between
modalities are highlighted in bold

4.3.4 Scenario D:SEROMR � SERAMTSEROMR � SERAMTSEROMR � SERAMT

In this last scenario, we pose the case where one of the sys-
tems greatly outperforms the other one. For that, we have
considered the original data partitions introduced in Sect. 4.2
for both OMR and AMT transcription systems.

In this particular case, it may be observed that the OMR
model achieves an individual SER of 2.38%, while the AMT
one remains at 27.53%. As expected, when fusing the two
sources of information, the error increases to 5.70%, which
supposes a remarkable performance decrease compared to
the system achieving the best results, i.e., the OMR one.

Not surprisingly, when one of the modalities has a very
limited room for improvement, these results show that the
multimodal framework is not expected to bring any benefit.

4.3.5 Multimodal fusion example

The previously posed scenarios show the performance of the
multimodal music transcription framework proposed, on a
macroscopic level. Hence, we shall now analyze in detail the
actual behavior of the method. For that Table 3 shows an
example of the results obtained for a given incipit with the
OMR and AMT systems, as well with the multimodal fusion
proposed. The reference transcription is also provided.

A first point which can be observed is that, for this par-
ticular case, there is a strong agreement between the OMR
and AMTmodalities, being only four cases in which the two
sequences estimate different labels: one related to the clef,
another one for the key signature, and the remaining related

to actual music notes. We shall now examine how these con-
flicts are solved by the merging policy.

Focusing on the clef and key errors, note that the devised
fusion policy estimates the correct labels to be the ones by
the OMR recognition system. Given that this disagreement is
solved, on a broad sense, by taking the token with a superior
probability among the different modalities, it is possible to
affirm that the OMR performs better on this particular infor-
mation than the AMT system. This conclusion is no strange
since these two data (clef and key) are explicitly drawn in the
score imagewhile, for the case of audio data, this information
must be inferred.

Furthermore, the errors present in the notes of the piece
are better estimated by the AMT system rather than the OMR
one. Again, this behavior is very intuitive since, while the
note information is explicitly present in the audio data, in a
score some information is elided due to the graphical rep-
resentation rules. As an example, if the music piece depicts
pitch alterations (sharp and/or flat notes), this information
is explicitly engraved in the key signature of the piece and
not represented with the notes to be recognized; oppositely,
acoustic data directly contains the note with its possible alter-
ation in the audio stream.

Finally, it must be remarked that the relative improvement
in terms of error rate of almost a 40% achieved in Scenerio
C supports the initial hypothesis that the multimodal com-
bination of OMR and AMT technologies may enhance that
of stand-alone systems, at least in some particular scenarios
where there is margin for improvement. This facts endorses
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the idea of further studying this new multimodal image and
audio paradigm for music transcription tasks.

5 Conclusions

Music transcription, understood as obtaining a structureddig-
ital representation of the content of a given music source, is
deemed as a key challenge in theMusic InformationRetrieval
(MIR) field for its applicability in a wide range of tasks
including music heritage preservation, dissemination, and
analysis, among others.

Within this MIR field, depending on the nature of the data
at issue, transcription is approached from either the Opti-
cal Music Recognition (OMR) perspective if dealing with
image scores or the so-calledAutomaticMusic Transcription
(AMT)when tackling acoustic recordings.While these fields
have historically evolved separately, the fact that both tasks
may represent their expected outputs in the same way allows
developing a synergistic framework with which achieving a
more accurate transcription.

This work presents a first proposal that combines the pre-
dictions depicted by a couple of neural end-to-end OMR
and AMT systems considering a local alignment approach
over different scenarios dealingwithmonophonicmusic data.
The results obtained validate our initial hypothesis that the
multimodal combination of these two sources of informa-
tion is capable of retrieving an improved transcription result.
While the actual improvement depends on the scenario con-
sidered, our results attain up to around 40% of relative error
improvement with respect to the single-modality transcrip-
tion systems. It must be also pointed out that, out of the
different scenarios posed, the only case in which the multi-
modal fusion proposed does not imply any benefit is when
one of the modalities remarkably outperforms the other one
and reaches an almost perfect performance.

In light of these results, different research avenues may
be explored to further improve the results obtained. The first
one is the actual combination of the hypotheses depicted by
the individual systems on a probabilistic framework, such
as that of word graphs or confusion networks. In addition,
while these proposals work on a prediction-level combina-
tion, it may be also explored the case in which this fusion is
done in previous stages of the pipeline as, for instance, the
feature extraction one. Finally, experimentation may be also
extended to more challenging data as handwritten scores,
different instrumentation, or polyphonic music.
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