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Abstract  16 

Recently, a large number of synthetic aperture radar (SAR) images has been introduced into landslide 17 

investigations with the growing launch of new SAR satellites, such as ALOS/PALSAR-2 and Sentinel-1. 18 

Therefore, it is appropriate to develop new approaches to retrieve three-dimensional (3D) displacements and 19 

long-term (> 10 years) displacement time series to investigate the spatio-temporal evolution and creep behavior 20 

of landslides. In this study, a new approach for the estimation of 3D and long-term displacement time series of 21 

landslides, based on the fusion of C- and L-band SAR observations, is presented. This method is applied to map 22 

3D and long-term displacements (nearly 12 years) of the landslides in Gongjue County, Tibet in China; four 23 

sets of SAR images from different platforms (i.e., L-band ascending ALOS/PALSAR-1, C-band descending 24 
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ENVISAT, and C-band ascending and descending Sentinel-1 SAR datasets) covering the period of January 25 

2007 to November 2018 were collected and exploited. First, the assumption that the landslide moves parallel to 26 

its ground surface is used to produce 3D displacement rates and time series by fusing ascending and descending 27 

Sentinel-1 SAR images, from which the optimal sliding direction for each pixel of the slope is well estimated. 28 

Then, the long-term displacement time-series of the landslide between January 2007 and October 2018 in the 29 

estimated sliding direction is recovered by fusing L-band ALOS/PALSAR-1 and C-band Sentinel-1 SAR 30 

images. In order to fill the time gap of nearly four years between ALOS/PALSAR-1 and Sentinel-1 SAR images, 31 

the Tikhonov regularization (TR) method is developed to establish the observational equation. Moreover, to 32 

solve the problem arising from ALOS/PALSAR-1 and Sentinel-1 images with different wavelengths, incidence 33 

angles and flight directions, the measurements from ALOS/PALSAR-1 and Sentinel-1 images are both 34 

projected to the estimated optimal sliding direction to achieve a unified displacement datum. Our results from 35 

ascending and descending Sentinel-1 images suggest that the maximum displacement rates of the study area in 36 

the vertical and east-west directions from December 2016 to October 2018 were greater than 70 and 80 37 

mm/year, respectively, and 2D displacement results reveal that the displacement patterns and movement 38 

characteristics of all the detected landslides are not identical in the study area. Specifically, the 3D displacement 39 

results successfully revealed the spatiotemporal displacement patterns and movement direction of each block 40 

of the Shadong landslide, and long-term displacement time series showed for the first time that the maximum 41 

cumulative displacement exceeds 1.3 m from January 2007 to October 2018. Moreover, the kinematic evolution 42 

and possible driving factors of landslides were investigated using 2D and 3D and long-term displacement 43 

results, coupled with hydrological factors and unidimensional constitutive models of the rocks.  44 

Keywords: Landslide; Jinsha River; Tibet; InSAR; 3D displacements; Long-term displacement time series 45 

1 Introduction  46 

Landslides are a major natural geological hazard in many areas of the world. During the last few decades, 47 

significant economic losses and fatalities have been caused by landslide hazards worldwide (Froude and Petley, 48 

2018; Lin et al., 2018). More recently, the frequencies and magnitudes of landslide occurrences have increased 49 

greatly owing to the influence of global extreme climate and intensive anthropogenic activities (Piciullo et al., 50 

2018). The detection and monitoring of unstable slopes play a crucial role in the management and early warning 51 

of geohazards (Dai et al., 2020). Interferometric synthetic aperture radar (InSAR) enables the measurement of 52 

surface displacement over wide areas, with precisions of centimeter to sub-centimeter scales. This has been 53 

widely used to determine the location of landslides over large areas and to monitor the temporal activities of 54 
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landslides in specific regions (Dong et al., 2018; Herrera et al., 2013; Hu et al., 2020; Shi et al., 2019). In 55 

particular, InSAR-derived displacement information can be used to investigate the mechanisms of landslides, 56 

including landslide types (Burrows et al., 2019), triggering factors (Chen et al., 2020), failure modes (Eriksen 57 

et al., 2017; Kang et al., 2017), depth and volume estimation, and risk assessment (Hu et al., 2016, 2018; Intrieri 58 

et al., 2020).  59 

However, most related studies (Hu et al., 2016; Shi et al., 2020; Wasowski et al., 2020) have characterized 60 

such landslide displacements only in the one-dimensional line-of-sight (LOS) direction, owing to the limitations 61 

of the SAR imaging geometry and single SAR platform. As a consequence, several challenges have arisen for 62 

detailed landslide investigations for the following reasons: (1) it is impossible to map landslide movement 63 

orthogonal to the LOS direction (Eriksen et al., 2017), thus causing the omissions of that direction for landslide 64 

detection; (2) it is difficult to analyze the dynamics and mechanisms of landslide displacement in complex 65 

situations (Samsonov et al., 2020); (3) it is inaccurate to map the boundary of landslides and to invert the depth 66 

and volume of unstable slopes. In contrast, spatio-temporal three-dimensional (3D) displacements can provide 67 

insights on the landslide mechanisms, which can particularly benefit landslide forecasting and risk management 68 

(Hu et al., 2018, 2019). To date, different strategies have been explored to retrieve 3D surface displacements 69 

from InSAR observations (Wright et al., 2004; Raucoules et al., 2013; Hu et al., 2014a; Wang and Jonsson, 70 

2015); these strategies are typically used to measure large-gradient displacement caused by geomorphological 71 

processes such as glacier movement (Hu et al., 2014b), fast-moving landslides (Li et al., 2019; Raucoules et al., 72 

2013; Shi et al., 2018), volcanic activity (Jo et al., 2017; Schaefer et al., 2019), and earthquakes (He et al., 2019). 73 

However, there are few studies on the 3D displacement estimation of slow-moving landslides (Sun et al., 2016; 74 

Eriksen et al., 2017; Ao et al., 2019), particularly for 3D time-series displacement estimation.  75 

In general, landslides experience three stages from initiation to failure, including primary creep, steady-76 

state creep, and accelerating creep (Aydan et al., 2014; Intrieri et al., 2019); the entire process can last from 77 

months to several decades. It is of great significance to investigate the kinematic evolution and creep behavior 78 

of landslides to assess the long-term stability of slope and forecast the time of its failure (Aydan et al., 2014). 79 

Therefore, it is necessary to recover the long-term (i.e., longer than 10 years) displacement time series of some 80 

known specific landslides. However, different SAR satellites operate at different periods with distinctive 81 

imaging geometries (i.e., incidence angle and flight direction) and wavelengths. Thus, it is necessary to develop 82 

a new InSAR approach to retrieve long-term displacement time series of landslides by fusing multi-platform 83 

SAR observations. To this end, there are two challenging issues that need to be addressed: the first is to link 84 

SAR acquisitions from different platforms without overlap in the time domain, and the second is to determine 85 
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the optimal movement direction of the landslide to which the LOS measurements from different SAR platforms 86 

can be transformed. Several researchers have explored the first issue in terms of vertical land subsidence 87 

monitoring; for example, Pepe et al. (2016a) used a time-dependent geotechnical model to obtain preliminary 88 

information to realize the combination of ENVISAT and COSMO-SkyMed SAR images. However, the 89 

displacement of landslides is much more complicated than the vertically dominated land subsidence; thus, there 90 

are no previously published studies in which the time-gapped InSAR displacement time series from different 91 

SAR platforms are linked in a common direction (e.g., sliding direction of slope). For the second issue, the ideal 92 

solution is to define the unique and physical sounding movement direction of the slope. The mean slope angle 93 

and aspect derived from digital elevation models (DEMs) was regarded as the overall sliding direction of a 94 

landslide in previous studies (e.g., Kang et al., 2017), without considering the sliding direction for each block 95 

or pixel of the landslide. Moreover, geologists have demonstrated that the sliding direction of the landslide 96 

varies along with displacement evolution (Lu, 2015).  97 

The main objective of this study was to propose a new InSAR-based approach to investigate landslide 98 

characteristics, with threefold research outcomes, producing: (1) 3D and long-term time series displacement 99 

monitoring, (2) interpretation of kinematic evolution and displacement characteristics, and (3) determination of 100 

the creep behaviours and possible driving factors of landslides. The proposed method was used to characterize 101 

the landslides over Gongjue County, Tibet, China, using C- and L-band SAR images from three different 102 

platforms (i.e., C-band ENVISAT, L-band ALOS/PALSAR-1, and C-band Sentinel-1) that were acquired from 103 

January 2007 to November 2018. The study area is situated on the southeast edge of the Qinghai-Tibet Plateau, 104 

where a series of large-scale ancient landslides are placed as a result of the coupling effects of the complex 105 

geological settings, high annual precipitation, and river erosion (Lu et al., 2019; Li et al., 2021). First, active 106 

landslides were detected and mapped using the ALOS/PALSAR-1, ENVISAT, and Sentinel-1 SAR images. 107 

Second, the 2D displacement rates and time series of all detected landslides were estimated by the fusion of 108 

ascending and descending Sentinel-1 SAR images. Then, 3D displacement rates and time series were calculated 109 

for one translational landslide, i.e., the Shadong landslide. Evidence from field geological exploration (Li et al., 110 

2021) illustrated that the Shadong landslide is a giant ancient landslide with characteristic of translational 111 

movement. Next, the long-term (nearly 12 years) displacement time series of the Shadong landslide in the 112 

sliding direction was retrieved by fusing all three SAR datasets. Finally, the displacement characteristics, 113 

kinematic evolution, creep behaviors and possible driving factors of the landslides were analyzed and 114 

determined.  115 

2 Study area and datasets 116 
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2.1 Study area 117 

The study area is situated on the right bank of the Jinsha River, Gongjue County, Tibet, China (Fig. 1), 118 

and has an area of approximately 176 km2. It belongs to the southeast edge of the Qinghai-Tibet Plateau, with 119 

steep topography and complex geological conditions as a result of the rapid uplift of the Qinghai-Tibet Plateau 120 

(Wang et al., 2000; Li et al., 2006). The elevation in most parts of the study area is higher than 3000 m a.s.l. 121 

reaching more than 4000 m a.s.l. in some regions (Fig. 1). Valleys feature strong “V”-shaped topography due 122 

to violent river downward cutting and the rapid uplifting of the Qinghai-Tibet Plateau. The height differences 123 

range from 500 to 2000 m, resulting in slope angles of greater than 25° in most slopes. The climate belongs to 124 

the continental plateau monsoon, and rainfall is concentrated in the summer each year. The annual average 125 

temperature and precipitation are approximately 6.5 °C and 480 mm, respectively. Strong physical weathering 126 

on the surface of slope materials has occurred owing to the influence of the climate. 127 

 128 

Fig. 1. Location of the study area and coverage of the synthetic aperture radar (SAR) images, with SRTM DEM 129 

as the base map. The white and black rectangles represent the study area and the coverage of the SAR images, 130 

respectively, and the red dots are the earthquakes that occurred in the study area and vicinity during the period 131 

of 1954 to 2019. The red lines are the faults modified from Li et al., 2021, where F1: Jinsha River East Fault; 132 

F2: Jinsha River Main Fault; F3: Xiongsong-Suwalong Fault; and F4: Batang Fault.  133 

The geological map with the scale of 1: 250000 in the study area is presented in Fig. 2(a). The outcrops 134 

are composed of Paleo-Mesoproterozoic, Lower Triassic, Carboniferous–Permian, Silurian, and Late Triassic 135 
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strata (Fig. 2). They mainly include plagiogneiss ( 1 2Pt Nd− ), mica quartz schist ( 1Pt g ), basalt ( 1Pt x ), limestone 136 

( CPca ), carbonate ( Sca ), quartz diorite ( 3oTδ ), monzonitic granite ( 3Tηγ ), quartz monzonite ( 3oTη ), and 137 

ultrabasic rocks ( ∑ ). The attitude and dip angle of schistosity in the study area greatly vary as the influence of 138 

tectonic movements, mainly ranging from 17 to 50°. The tectonic setting is conditioned by a series of NW-trend 139 

faults (Li et al., 2021); significant among them are the Jinsha River (F1, F2 and F3 marked in Fig. 1) and Batang 140 

faults (F4 marked in Fig. 1) (Chen et al., 2013), thus resulting in frequent seismic activities. There have been 141 

approximately 22 earthquakes of 3.0Mw ≥  in the study area and its surroundings since 1954, including three 142 

stronger earthquakes greater than 5.0Mw = , which occurred in 1954, 1979, and 1989.  143 

 144 

Fig. 2. (a) Geological setting of the study area, with the scale of 1: 250000. The name of the labeled landslides 145 

(i.e., No.1 ~ No.13) is listed in Table 2, and the red lines indicate the faults. (b) Shaded relief map of the Shadong 146 

landslide, labeled as No.2 in (a). The polygons with different colors represent five blocks (B1-B5) of the 147 

landslide. (c) Geological cross section along the Profile I-I’ marked in (b), adapted from Li et al., 2021.  148 

The complex geological settings, tectonic movements, high annual precipitation, and river erosion and 149 

human activities work together to lead to the extensive distribution and strong activity of large-scale landslides 150 

in the study area (Ma et al., 2004; Li et al., 2021). The lithology of the stratum provides favorable geological 151 

javascript:;
javascript:;
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conditions for the occurrence of landslides, and it is an inherent factor in the formation of landslides. We can 152 

see from Fig. 2(a) that the landslides are basically distributed in the Gangtuo Rock Formation ( 1PT g ) of Lower 153 

Triassic. This kind of formation belongs to the weaker rock mass and is prone to slide under the action of shear 154 

stress (Li et al., 2021). Generally, rock masses are more likely to fracture in active tectonic zones, and landslide 155 

susceptibility directly correlates with the distribution and activity of faults (Guo et al., 2015). It should be 156 

mentioned that the Xiongsong-Suwalong fault passes through the Shadong and Sela landslides (No.2 and No.3 157 

labeled in Fig. 2(a)). Heavy rainfall in the summer can lead to the decrease of shear strength of the soil due to 158 

the rise of the river water level and water infiltration favoured by the existence of cracks, thus driving the 159 

landslide movements. Remote sensing images show that the foot of most of the landslides intersects the Jinsha 160 

River. The stress of the foot of the slopes can be changed by the intense scouring and erosion of the Jinsha 161 

River; additionally, the variations in the Jinsha River water level can alter the shear strength of slope material, 162 

thus generating large-scale pull-type landslides (Lacroix et al., 2020; Li et al., 2021). Landslide hazards greatly 163 

endanger the safety of the cities and towns as well as the traffic lines in this area. The landslides could block 164 

the Jinsha River when the rupture occurs, thereby also threatening the normal operation of hydropower stations. 165 

Previous studies have mapped the distribution of landslides in this area using InSAR and optical remote sensing 166 

methods (Lu et al., 2019). However, complete investigations of the landslides in terms of 3D displacements, 167 

kinematic evolution, and creep behaviours are absent. 168 

Among the distributed landslides, field survey (Li et al., 2021) and optical image from unmanned aerial 169 

vehicle (UAV) measurement (Fig. S1(a)) show that the Shadong landslide (Fig. 2(b)) is a giant ancient landslide, 170 

with an area of approximately 5.33 km2. From the optical image and shaded relief map shown in Figs. S1 (c) 171 

and (d), the severe collapse can be evidently seen at the front edge of the landslide, as a result of the erosion of 172 

the Jinsha River. Additionally, field geological survey showed that several large scarps and cracks have been 173 

developed on the slope surface (Figs. 2(b) and S2), the height of the scarps ranges from 0.5 to 3.0 m, and the 174 

width of the cracks ranges from 5 to 150 cm (Li et al., 2021). Based on the geomorphological analysis (Fig. 175 

S1(b)), in conjunction with the developments of the gullies, the entire landslide can be divided into five different 176 

blocks as shown in different colors in Fig. 2(b). Geomorphic features and slope aspect derived from UAV DEM 177 

indicate that these blocks have different sliding directions (Figs. S1 and 2(a)), among which blocks B1, B2 and 178 

B4 are moving toward the northeast direction, and blocks B3 and B5 are moving toward the east direction. 179 

Moreover, two secondary sliding regions R1 and R2 (Figs. S1(a) and (b)) were found in blocks B1 and B3 180 

respectively, by visual interpretation of UAV image. From the optical image and shaded relief map shown in 181 

Figs. S1(e) and (f), we can clearly see that there have been developed two large cracks (yellow arrows in Figs. 182 
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S1(e) and (f)) and a scarp (red arrows in Figs. S1(e) and (f)) at the both sides and head of the Region R1, 183 

respectively. The landslide is mainly composed of rock and soil fragments ( del
4Q ) and mica quartz schist ( 1PT g ) 184 

(Fig. 2(c)). The attitude of the bedrock is 190 ~ 256°∠ 17 ~ 37° (Li et al., 2021). The Xiongsong-Suwalong 185 

fault, a branch of the Jinsha River fault zone, passes through the middle and back sections of the landslide in 186 

the NNW direction (Figs. 2(b) and (c)). Field geological exploration revealed that the landslide is a translational 187 

slide according to Cruden and Varnes (1996) classification, with two potential failure planes (Li et al., 2021), 188 

i.e., S1 and S2 marked in Fig. 2(c). The first failure plane (S1) with a depth of 51 ~ 56 m, corresponds to a 189 

landslide volume of 2.67×108 ~ 2.88 ×108 m3; and the second failure plane (S2) with a depth of 101 ~ 115 m, 190 

corresponds to a landslide volume of 5.28×108 ~ 6.02×108 m3. In addition, field geological exploration found 191 

that there are two major locked segments in the middle of the Shadong landslide that control the deep-seated 192 

stability of the landslide (Li et al., 2021), as shown by the green lines in Fig. 2(c).   193 

2.2 Datasets 194 

To demonstrate the proposed approach and investigate the detailed landslide characteristics, 165 SAR 195 

images composed of four independent SAR datasets from three different sensors onboard the ENVISAT, 196 

ALOS/PALSAR-1, and Sentinel-1 satellites were obtained. The spatial coverage of the SAR datasets used in 197 

this study is shown in Fig. 1, and the basic parameters of the SAR images are summarized in Table 1. The 2D 198 

and 3D displacement rates and time series were estimated using ascending and descending Sentinel-1 SAR 199 

images. As there exists a time gap of nearly four years where no SAR images were archived, we recovered the 200 

long-term displacement time series in the sliding direction by fusing the ascending ALOS/PALSAR-1 and 201 

Sentinel-1 SAR measurements using the Tikhonov regularization method (Tikhonov 1963). It is worth noting 202 

that the ALOS/PALSAR-1 images were acquired under both modes of fine-beam dual-polarization (FBD) and 203 

beam single-polarization (FBS), and the SAR images in FBD mode were oversampled to the FBS mode in this 204 

study to improve the spatial resolution.  205 

Table 1. Basic parameters of SAR images used in this study 206 

Sensors Track Orbit 
Heading 

(°) 

Incidence 

angle (°) 

Start date 

dd/mm/yyyy 

End date 

dd/mm/yyyy 

No. of 

images 

No. of 

interferograms 

ALOS/PALS

AR-1 
484 Ascending -10.29 38.73 02/01/2007 28/02/2011 16 37 
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ENVISAT 

ASAR 
190 Descending -168.17 23.54 21/02/2007 13/10/2010 17 35 

Sentinel-1 99 Ascending -10.46 33.85 12/10/2014 03/10/2018 79 198 

Sentinel-1 33 Descending 170.02 43.94 01/12/2016 03/11/2018 53 120 

 207 
We employed a standard differential InSAR (DInSAR) procedure to handle all SAR images as follows. 208 

To avoid the influences of temporal and spatial decorrelation, all possible interferometric pairs of the Sentinel-209 

1 dataset were generated using a small baseline subset (SBAS) strategy (Berardino et al., 2002). The spatial and 210 

temporal baseline thresholds were set at 250 m and 60 d, respectively. A full combination was conducted to 211 

generate the interferograms for the ALOS/PALSAR-1 and ENVISAT datasets, as we had collected a relatively 212 

small quantity of SAR data. After the interferogram filtering (Goldstein and Werner, 1998) and phase 213 

unwrapping (Costantini, 1998), we carefully checked and processed the errors related to residual topography, 214 

phase unwrapping and atmospheric artifacts. Furthermore, the corrected unwrapped interferograms with high 215 

quality were finally chosen for further processing. The spatiotemporal baseline combinations of the selected 216 

interferograms for each SAR sensor are shown in Fig. 3. To unify the spatial resolution and to map small-scale 217 

landslides, the interferograms were multi-looked using factors of 2 5×  (range × azimuth) for 218 

ALOS/PALSAR-1 images, 1 5×  (range × azimuth) for ENVISAT images, and 4 1×  (range × azimuth) for 219 

Sentinel-1 images. The pixel spacing of the multi-looked images in both the ground-range and azimuth 220 

directions was approximately 15 m for the ALOS/PALSAR-1 images, 20 m for the ENVISAT images, and 15 221 

m for the Sentinel-1 images. One arc-second SRTM DEM with a spatial resolution of 30 m was adopted to 222 

remove the topographic phase during differential InSAR processing. 223 
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 224 

Fig. 3. Spatial-temporal baseline combinations of all interferograms used in this study. (a) ALOS/PALSAR-1 225 

dataset for Path 484; (b) ENVISAT dataset for Path 190; (c) ascending Sentinel-1 dataset for Path 99; and (d) 226 

descending Sentinel-1 dataset for Path 33. 227 

3 Methodology 228 

A new approach to fuse C- and L-band SAR images for 3D and long-term displacement time series 229 

monitoring of landslides is presented in this section. Figure 4 shows the workflow and main modules of the 230 

approach, which can be organized into four steps as follows.  231 

Step 1: Each SAR dataset was processed independently to generate unwrapped interferograms using the 232 

standard DInSAR procedure, including interferogram generation; filtering; phase unwrapping; quality checking; 233 

and corrections for atmospheric artifacts, DEM errors, and phase unwrapping errors. The high-quality 234 

unwrapped interferograms of each SAR dataset were geocoded and resampled to an identical spatial grid in the 235 

World Geodetic System 1984 (WGS 84) coordinate system with a spatial resolution of 15 m for further 236 

processing. Then, the displacement rate of each SAR dataset in the LOS direction was calculated using the 237 

stacking interferograms method (Lyons et al., 2003) to detect and map active landslides. This was done because 238 

the combination of multi-platform SAR datasets to detect active landslides can not only cross-validate the 239 

results, but also weaken the influence of SAR geometric distortions on landslide mapping in areas with steep 240 

topography with single-track SAR dataset. 241 
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Step 2: The 2D displacement rates and time series were calculated using the unwrapped interferograms 242 

from the identical SAR platform with different flight directions (i.e., ascending and descending Sentinel-1 243 

images). Furthermore, for translational landslides, the 3D displacement rates and time series were further 244 

calculated with the same unwrapped interferograms by imposing a constraint on the surface parallel flow (Sun 245 

et al., 2016; Samsonov, 2019). The dominant movement directions of landslides were determined using the 246 

obtained 2D and 3D displacement maps and the geomorphological features that were obtained from DEM and 247 

optical images, including satellite and unmanned aerial vehicle (UAV) images. 248 

Step 3: The optimal sliding direction for each pixel of the translational landslide was estimated using the 249 

InSAR-derived 3D displacement fields. Subsequently, the LOS measurements from different SAR platforms 250 

were transformed into the estimated sliding direction to achieve a unified datum of different SAR observations. 251 

Then, the unwrapped interferograms from different SAR platforms, which had identical flight directions (i.e., 252 

L-band ascending ALOS/PALSAR-1 and C-band ascending Sentinel-1 images) without overlap in the time 253 

domain, were linked to estimate the long-term displacement time series in the sliding direction using the 254 

Tikhonov regularization and singular value decomposition (SVD) methods. It is worth noting that an identical 255 

reference region was chosen for phase unwrapping to avoid systematic biases among the results from different 256 

SAR platforms.  257 

Step 4: The displacement patterns and kinematic evolutions of landslides were investigated. The possible 258 

driving factors were determined for certain representative landslides based on the 2D and 3D displacement rates, 259 

time series, and hydrological factors including precipitation and water level fluctuation in the Jinsha River. 260 

Finally, unidimensional constitutive models of the rocks developed by laboratory creep testing (Aydan et al., 261 

2014) were exploited to analyze the kinematic evolution and to determine the creep behavior of the landslide.  262 
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 263 

Fig. 4. Flowchart of 3D and long-term displacement time series estimation and mechanism analysis of landslide.  264 

3.1 Inversion of two- and three-dimensional (2D and 3D) landslide displacement rates and time series  265 

In general, InSAR satellites are insensitive to any movement along the azimuth direction (approximately 266 

in the north-south direction) as most SAR satellites operate in near-polar orbits (Samsonov et al., 2013). 267 

Therefore, for one specific landslide, if both ascending and descending SAR images are available with 268 

overlapping time intervals, the 2D displacement rates can be inverted using Eq. (1). This can be done based on 269 

the imaging geometry of SAR satellites by ignoring the displacement components in the north-south direction 270 

(Samsonov et al., 2014):  271 

 272 
ˆ ˆE

U

V =
V

G d    
⋅           Γ 0

 ,                                   (1) 273 

 274 
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where d̂  is the observation vector in the LOS direction from the ascending and descending tracks, EV  and 275 

UV  are the displacement rate parameters in the east-west and vertical directions, respectively; Ĝ  is the design 276 

matrix of observations consisting of east-west and vertical components of the LOS vector and time intervals 277 

between consecutive SAR acquisitions; and Γ  is the Tikhonov matrix composed of the regularization 278 

parameter λ  and regularization order L .  279 

As 2D displacement parameter estimation from multi-platform SAR acquisitions is a rank-deficient and 280 

ill-posed inversion problem, Eq. (1) is built by imposing the Tikhonov regularization constraint to stabilize 281 

parameter inversion; additionally, it can also be built by imposing the additional constraint that the displacement 282 

time series have minimum acceleration (Pepe et al., 2016b). The unknown 2D displacement rates EV  and UV  283 

in Eq. (1) can be estimated using SVD, and the 2D displacement time series are then retrieved through numerical 284 

integration of the time intervals between adjacent SAR acquisitions based on the estimated 2D displacement 285 

rates.  286 

When the north-south displacement component cannot be neglected, it is necessary to retrieve 3D 287 

displacements. To date, several approaches have been explored to retrieve 3D displacements by combining 288 

multi-platform SAR observations as well as integrating DInSAR-based displacement results with external data, 289 

which includes combining of multi-track LOS and multiple aperture interferometry (MAI) measurements 290 

(Wright et al., 2004), fusion of the DInSAR and offset-tracking measurements (Hu et al., 2014a), combining 291 

multi-track offset-tracking measurements (Raucoules et al., 2013), integrating DInSAR and global navigation 292 

satellite system (GNSS) measurements (Samsonov et al., 2007), and using a priori information as a constraint 293 

(Gourmelen et al., 2011). Offset-tracking and MAI methods are challenging to map the displacement of slow-294 

moving landslides owing to their low measurement precision. In the case that the SAR data sets from three 295 

different platforms are available and with distinctive flight directions and incidence angles, the 3D displacement 296 

rates and time series can be generated using a minimum acceleration approach (Pepe et al., 2016b). If only two 297 

independent SAR datasets from ascending and descending tracks are available, it is still possible to estimate the 298 

3D landslide displacements by applying an a priori model about displacement process to reduce the free degrees. 299 

The surface-parallel flow model (Gourmelen et al., 2011) is an acceptable assumption in the displacement 300 

mapping of landslides.  301 

For translational landslides, the movement direction is almost parallel to the ground surface under the 302 

effect of gravity (Varnes, 1996). Therefore, the surface–parallel displacement rate can be assumed as follows 303 

(Gourmelen et al., 2011; Sun et al., 2016): 304 
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where H  is the elevation of the topography, and 
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∂
∂

 and H
y

∂
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 represent the first derivatives in the east and 308 

north directions, respectively, which can be estimated using the external DEM. The sliding surface of a 309 

translational slide is an approximately regular plane, which is usually smoother than the external DEM (Frattini 310 

et al., 2018). Thus, prior filtering of the DEM often needs to be conducted to remove the effect of surface 311 

features on landslide displacement estimation. The 3D displacement inversion model can be constructed using 312 

Eqs. (1) and (2) (Samsonov, 2019): 313 
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where H  is the constraint of surface–parallel flow and stands for , , 1H H

y x
 ∂ ∂

− 
∂ ∂ 

; similarly, Ĝ  is the new 317 

design matrix of observations composed of the matrix G  and north-south, east-west, and vertical components 318 

of the LOS vector; and NV , EV  and UV  are the unknown displacement rates in the north-south, east-west, 319 

and vertical directions, respectively. Eq. (3) can be solved using the SVD method to obtain the 3D displacement 320 

rates, and the 3D displacement time series are then recovered through the numerical integration mentioned 321 

above.  322 

3.2 One-dimensional long-term displacement time series estimation of landslide  323 

To forecast the time of failure of a specific active landslide, it is of great significance to retrieve long-term 324 

(longer than 10 years) historical displacement time series by fusing multi-platform SAR observations. 325 

Assuming two independent SAR datasets 1S  and 2S without overlap in the time domain, their SAR 326 

acquisition dates would be 
12 ST ,T , ,T1,1 1, 1, =  1T  and 

22 2 2 2 2 ST ,T , ,TT ,1 , , =   , respectively. The unwrapped 327 

interferograms of two SAR datasets with homologous highly coherent pixels, namely 
11 1 2 Md ,d , ,d1, 1, 1, =  d  328 

and, 
22 2 1 2 2 2 Md ,d , ,d, , , =  d  are linked to produce a long-term displacement time series, namely, 329 
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1 21 2 T TD ,D , ,DD + =   , which spans all acquisition dates 1 2+T T  of the two SAR datasets. Moreover, all 330 

displacement time series are referred to as the earliest acquisition dates T1,1 .  331 

InSAR measurements are a projection of the real 3D displacements of the earth's surface in the LOS 332 

direction of each SAR satellite, and SAR images from different satellites possess different wavelengths, 333 

incidence angles, and flight directions. Therefore, we should transform the LOS measurements from different 334 

SAR satellites to the unique sliding direction of the landslide based on the SAR imaging geometry and landslide 335 

geometry (Cascini et al., 2010). Here, we retrieved the optimal sliding direction for each pixel of the landslide 336 

using the InSAR-derived 3D displacements. In the monitoring of land subsidence, the time-gapped InSAR 337 

displacement time series from different SAR platforms can be linked using an a priori time-dependent model 338 

for the on-going displacements (Pepe et al., 2016a). However, for landslides it is difficult to find an a priori 339 

model that can exactly characterize the on-going slope displacements, since they are strongly controlled by 340 

external variables (e.g., rainfall, reservoir level, seismic events) that change the movement trends over time. 341 

Thus, in order to resolve the problem of rank deficiency caused by the time gap between two SAR datasets, we 342 

adopt the Tikhonov regularization method as follows (Tikhonov 1963):  343 

G d
m   
⋅ =   

   Γ 0
 ,                                    (4) 344 

 345 
where 

1 2
[ , ]G G G Τ= S S  is the design matrix consisting of time intervals between consecutive SAR acquisitions 346 

of two datasets, [ ]1 2, Τd= d d  is the observations from two datasets, m  represents the unknown displacement 347 

rate vector in the sliding direction of the landslide with the elements as 
1 20 1 2 1, , , , T Tm m m m

Τ

+ −   , and Γ is 348 

the Tikhonov matrix composed of regularization order L and regularization parameter λ , where the first-349 

order regularization is adopted in this study. The optimal value of λ  is estimated using the L-curve method 350 

(Hansen and O’Leary, 1993). Equation (4) can then be resolved based on the criterion of minimizing the 351 

objective function, as shown in Eq. (5):  352 

2 2

2 2min( )Gm d m
L L

− + Γ  ,                              (5) 353 

where 
2L

⋅  represents the Euclidean 2L  norm. Thus, the unknown displacement rate vector can be expressed 354 

as follows in Eq. (6), and the displacement time series is then reconstructed through numerical integration of 355 

the estimated displacement rates, as shown in Eq. (7):  356 

1ˆ ( )m G G G dΤ Τ − Τ= + ⋅Γ Γ  ;                              (6) 357 
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 , , , , ,i 1 i i i 1 2D D m t i 0 1 2 T T 1∆+ = + = + −  .                       (7) 358 

4 Displacement retrieval results and analyses 359 

4.1 Line-of-sight (LOS) displacement rates between January 2007 and November 2018 360 

The LOS displacement rate of each SAR dataset in the study area was independently calculated using the 361 

standard DInSAR procedure and stacking interferogram method (Lyons et al., 2003), as shown in Fig. 5. It is 362 

worth noting that the negative values (red color) represent the landslide moving away from the sensor, and the 363 

positive values (blue color) indicate movement towards the sensor. Dense measurement scatterers (MSs) with 364 

total numbers of 434927, 521529 and 551649 were identified from the ascending ALOS/PALSAR-1 (Fig. 5(a)), 365 

ascending Sentinel-1 (Fig. 5(c)) and descending Sentinel-1 (Fig. 5(d)) datasets respectively, producing an 366 

overall spatial density of greater than 2450 MSs/km2 for the three SAR datasets. These scatterers were identified 367 

on the roads, buildings, and rocks and soils with sparse vegetation. In contrast, extremely sparse MSs of only 368 

60798 were identified from ENVISAT dataset, generating an overall density of less than 400 MSs/km2. 369 

Compared with other three SAR datasets, the incidence angle of the ENVISAT satellite was as small as 23°, 370 

thus causing severe geometric distortions (i.e., layover and shadow) of the SAR images (Wasowski and 371 

Bovenga, 2014), which result in extremely sparse MSs for landslide detection. As shown in Fig. 5, large-scale 372 

displacement regions were detected in the study area, and most displacement regions were greater than 2 km in 373 

length and/or width. For displacement rates calculated with ascending ALOS/PALSAR-1 (Fig. 5(a)) and 374 

ascending Sentinel-1 SAR images (Fig. 5(c)), the displacement regions and their extent were basically 375 

consistent, but the displacement magnitude and the detailed patterns were locally different across regions, likely 376 

due to the different wavelengths, imaging geometries, and acquisition durations between the two SAR datasets 377 

(see Table 1). Moreover, the locations of detected active displacement regions were generally consistent 378 

between ascending and descending Sentinel-1 measurements, but the extent of the displacement measured by 379 

ascending images was substantially greater than that of descending images (see Figs. 5(c) and (d)). This can be 380 

attributed to the slope orientation and the different sensitivities of landslide movement to the flight direction 381 

between ascending and descending SAR images. Therefore, we can combine both ascending and descending 382 

SAR images to map the complete extent of active landslides.  383 
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 384 

Fig. 5. Line-of-sight (LOS) displacement rate maps for the study area derived from (a) ascending 385 

ALOS/PALSAR-1 images between January 2007 and March 2011; (b) descending ENVISAT images between 386 

February 2007 and October 2010; (c) ascending Sentinel-1 images between August 2016 and October 2018; 387 

and (d) descending Sentinel-1 images between December 2016 and November 2018. The labels indicate the 388 

name of the detected landslides listed in Table 2, and the white solid polygons indicate the boundaries of the 389 

landslides.  390 

Layover will be caused if the slope angle of the landslide is larger than the incidence angle of the SAR 391 

images, resulting in omissions for landslide detection. To avoid the effect of layover on the landslide mapping, 392 

we detected active landslides using a combination of the displacement rates derived from ascending 393 

ALOS/PALSAR-1, descending ENVISAT, and ascending and descending Sentinel-1 images, i.e., active 394 

landslides are first detected respectively using the displacement rates calculated with ascending 395 
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ALOS/PALSAR-1, descending ENVISAT, and ascending and descending Sentinel-1 images, and then the 396 

mapped landslides from each SAR dataset are mosaiced to produce the final landslide inventory map. The 397 

location and distribution of the detected active landslides are shown in Fig. 6, and detailed information is 398 

presented in Table 2. These landslides are situated at slope angles ranging from 10° to 51°, which can be 399 

attributed to the unique geological settings in the study area (Wang et al., 2000). Results from archived 400 

ALOS/PALSAR-1 and ENVISAT images indicate that these detected landslides have been active since January 401 

2007. However, the spatiotemporal displacement characteristics of these landslides were inconsistent during 402 

different periods. For instance, the large displacement of the Shadong landslide mainly occurred in the middle 403 

and upper left regions between January 2007 and March 2011 and transferred to the lower right regions between 404 

August 2016 and October 2018, as shown in Figs. 5(a) and (c).  405 

 406 

Fig. 6. Location and extent of the detected active landslides on the perspective remote sensing image. The points 407 

indicate the location of the main villages placed in the study area.  408 

Table 2. Basic information of the detected landslides. 409 

No. Location Name Aspect (°) Slope (°) Detected from SAR image Dominant displacement 

1 Laduoting  342 22–43 ALOS, S1A, S1D Vertical and North 

2 Shadong 32, 75 15–38 ALOS, S1A, S1D Vertical, North and East 

3 Sela 125 15–51 ALOS, S1A, S1D East 

4 Geguo 215 18–42 EV, S1D South and West 

5 Majue  70 20–38 ALOS, S1A, S1D Vertical, North and East 

6 Guoba  75 14–36 ALOS, S1A, S1D East 
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7 Gongba 91, 110 10–35 ALOS, S1A, S1D Vertical and East 

8 Shangquesuo  140, 155 20–40 ALOS, S1A, S1D East 

9 Shangde No.1  60 15–34 ALOS, S1A East 

10 Shangde No.2  45 15–32 ALOS, S1A North and East 

11 Decun 350 14–34 ALOS, S1A, S1D Vertical and North 

12 Suoxue No.1  90 18–44 ALOS, S1A, S1D Vertical and East 

13 Suoxue No.2 349 22-38 ALOS, S1D North and West 

*Notes: ALOS and EV represent ALOS/PALSAR-1 and ENVISAT SAR images, respectively; and S1A and 410 

S1D stand for ascending and descending Sentinel-1 SAR images, respectively.  411 

4.2 Two-dimensional displacement patterns of the detected landslides 412 

One-dimensional LOS displacement results can be applied to determine the locations and spatial extents 413 

of landslides. However, it is challenging to accurately delimit the boundary of a landslide and determine its 414 

movement direction by merely using the LOS displacement results. Figure 7 shows the 2D displacement rate 415 

maps in the east-west and vertical directions of the detected landslides; the displacement rates were calculated 416 

using the method described in Section 3.1, where the positive values (blue color) indicate eastward movement 417 

and the negative values (red color) indicate westward movement in the horizontal component map (Fig. 7(a)), 418 

and the negative values (red color) represent the downward movement and the positive values (blue color) 419 

represent upward movement in the vertical component map (Fig. 7(b)). The maximum east-west displacement 420 

rate is greater than 8 cm/year, and the maximum vertical displacement rate is less than -7 cm/year. In general, 421 

the displacement and failure patterns of landslides are subject to topography, lithology, and geological structure 422 

of slopes, as well as external driving factors, such as earthquakes and rainfall. From Fig. 7, we can see that each 423 

detected landslide has its own movement direction and displacement pattern. All the detected landslides except 424 

the Laduoting, Geguo and Suoxue No.2 landslides are moving eastward, whereas the Laduoting landslide is 425 

moving northward and the Geguo and Suoxue No.2 landslides are moving westward. It is worth noting that, 426 

evidence from optical image (Fig. S3) illustrates that the main movement direction of the Laduoting landslide 427 

is along the north-south direction, thus failing to measure its movement by the east-west displacement map 428 

presented in Fig.7 (a). Moreover, most landslides are dominated simultaneously by horizontal and vertical 429 

movements, such as the Laduoting, Shadong, Majue, Gongba, Decun, and Suoxue No.1 and No.2 landslides 430 

(see Table 2), and some landslides are dominated by horizontal movement, such as the Sela and Geguo 431 

landslides (see Table 2). 432 
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 433 

Fig. 7. Two-dimensional displacement rate maps of the detected landslides from December 2016 to October 434 

2018 calculated with ascending and descending Sentinel-1 images. The white solid polygons indicate the 435 

boundaries of the landslides. (a) Horizontal east-west displacement rate map; and (b) vertical displacement rate 436 

map.  437 

4.3 Three-dimensional displacement characteristics of the Shadong landslide 438 

It is necessary to retrieve the 3D displacement rates and time series of landslides if the north-south 439 

displacement cannot be neglected. We take the Shadong landslide located at the outside of a meander bend of 440 

the Jinsha River, as an example to retrieve its 3D displacement rates and time series using the method described 441 

in Section 3.1. Field geological exploration (Fig. 2(c)) revealed that the landslide can be classed as a 442 

translational slide according to Cruden and Varnes (1996) classification. Figure 8(a) shows the optical remote 443 

sensing image of the Shadong landslide acquired in March 2015. The extent of the landslide is ~2.61 km in 444 

length and ~2.93 km in width. The polygons with different colors in Fig. 8(a) indicate different blocks (i.e. B1-445 

B5) of the landslide, which are divided according to the geomorphological analysis and the developments of 446 

the gullies (see Section 2.1). The 3D displacement rates in the north-south, east-west, and vertical directions 447 

from December 2016 to October 2018 are shown in Figs. 8(b), (c), and (d), respectively. The positive values 448 

(blue color) indicate northward movement and the negative values (red color) indicate southward movement in 449 

Fig. 8(b). The maximum displacement rates in the north-south, east-west, and vertical directions were more 450 

than 80, 76, and -67 mm/year, respectively. We then extracted the displacement rates and elevation along two 451 

representative Profiles AA’ and BB’ (see Fig. 8(d)) to reveal the detailed spatial displacement characteristics, 452 
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as shown in Fig. 9. The error bars in Fig. 9 indicate the standard deviations of the estimated 3D displacement 453 

rates. Profile AA’ is approximately parallel to the main sliding direction of block B1, and Profile BB’ 454 

transversely passes through blocks B1-B4. Furthermore, the optimal sliding direction for each pixel of the 455 

landslide was calculated using the estimated 3D displacement rates, as shown in Fig. 10.  456 

 457 

Fig. 8. Remote sensing image and 3D displacement rate maps from December 2016 to October 2018 of the 458 

Shadong landslide. The boundary of the landslide movement is marked using the red solid lines, and the black 459 

dotted polygons (i.e., R1 and R2) in (b) indicate the two secondary sliding regions. (a) Remote sensing image 460 

acquired in March 2015, where different colors represent five blocks of the landslide; (b) north-south 461 

displacement rate map; (c) east-west displacement rate map, from which Points P1–P4 are analyzed in the text 462 

to show displacement time series; and (d) vertical displacement rate map, where two black lines indicate the 463 

locations of Profiles AA’ and BB’. 464 

As shown in Figs. 8, 9, and 10, the 3D displacement map provides an intuitive description of the 465 

displacement characteristics and movement direction of each block of the Shadong landslide, which can be 466 

further used to analyze the displacement characteristic and failure mode on a detailed scale. In particular, the 467 

displacement characteristic obtained from the 3D displacement results exhibit strong agreement with the actual 468 

geomorphological features of the slope observed from satellite and UAV images (see Figs. 8 and S1), presenting 469 

the characteristics of block displacement. The north and vertical displacement rates on blocks B1–B2 are larger 470 
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than those on blocks B3–B4. In contrast, the east-west displacement rates of blocks B1–B2 are slightly lower 471 

than those of blocks B3–B4, except at the lower-right part of block B1. From the 3D displacement results shown 472 

in Figs. 8(b), (c), and (d), we can clearly see a distinct sliding boundary between block B1 and block B2. As 473 

evidenced in the east-west and vertical displacement rate maps shown in Figs. 8(c) and (d), the entire landslide 474 

shows a trend of eastward and downward movement. However, evidence from Figs. 8(b) and 9 suggests that 475 

the northward displacement mainly occurred in blocks B1, B2 and B4, and there is no remarkable north-south 476 

displacement in the block B3 except for a small region on its left side (i.e., R2 labelled in Fig. 8(b)). The 477 

geomorphological feature and optical image (Fig. S1(a) and (b)) demonstrate that the Region R2 is a secondary 478 

sliding area on the block B3, and it moves mainly to the north direction. Furthermore, geomorphological 479 

analysis and slope aspect indicate that blocks B1, B2 and B4 are moving toward the northeast direction, and 480 

blocks B3 is moving toward the east direction, as described in detail in Section 2.1.  481 

In Fig. 9(a), the 3D displacement rates of block B1 (along profile AA’) are negatively correlated with the 482 

elevation, that is, the displacement at the lower section is larger than that at the middle-to-upper section. This 483 

evidence indicates that block B1 belongs to a pull-type landslide (Lu, 2015), which can be adequately verified 484 

by the displacement boundary presented in Fig. 8 and the geomorphological feature presented in Fig. 10, that 485 

is, the displacement boundary of block B1 is shaped like a tower, and the lateral width of the head is smaller 486 

than that of the foot. A similar type of landslide has previously been identified in the Wudongde reservoir area 487 

in the lower reaches of the Jinsha River (Zhao et al., 2018). Moreover, the displacement rate in the north 488 

direction of block B1 is also larger than that in the east and vertical directions, which suggests that block B1 489 

mainly moves toward the north. 490 

 491 

Fig. 9. Displacement rates along the three components and elevation along the Profiles AA’ and BB’ labeled in 492 

Fig. 8(d). (a) Profile AA’; and (b) Profile BB’, where B1, B2 and B3–B4 indicate block 1, block 2 and blocks 493 

3-4 of the Shadong landslide labeled in Fig. 8(a), respectively.  494 
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The largest displacement rates were observed at the leading edge of block B1, that is, Region R1 marked 495 

in Fig. 8(b). The movement direction of each pixel is shown in Fig. 10(b), and the 3D displacement rate maps 496 

are presented in Fig. 11. The boundary of the maximum displacement region can be clearly seen in Fig. 11, 497 

where the 3D displacements are precisely bounded by the cracks and scarp. The region moves toward the Jinsha 498 

River with maximum displacement rates of approximately 125, 75, and -40 mm/year in the north, east, and 499 

vertical directions, respectively. The displacement in the north direction was significantly larger than that in the 500 

east and vertical directions as the slope faced north (see Figs. S1 and 11(a)). Region R1 is the most active area 501 

on the entire Shadong landslide, where a main scarp has formed at the back edge of the region, and two 502 

continuous, large cracks have also developed on the left and right sides of the region (see Figs. S1(e), (f) and 503 

11). These displacement and geomorphological features are completely consistent with the failure modes I and 504 

III of pull-type landslide derived from the theoretical analyses of geologist (Lu, 2015). Thus, it can be concluded 505 

that block B1 are deforming along the entire weak face under the control of the mechanical behaviors (strain 506 

and shear stress) of geo-materials, and the shear deformation occurs in the Region R1 under the effects of 507 

external driving factors (e.g., water level fluctuations in the Jinsha River, see Section 5.2).  508 

 509 

Fig. 10. (a) The horizontal movement vector of the Shadong landslide; and (b) the enlarged horizontal 510 

movement vector over Region R1 marked in Fig. 8(b). The base map is the UAV image acquired on 13 June 511 

2020, with a spatial resolution of 0.3 m. 512 

In Fig. 10, the sliding directions show that the block B3 moves eastward, and the block B4 moves 513 

northward and eastward, which is highly consistent with the actual geomorphic features of blocks B3 and B4 514 

(see the details in Section 2.1). Geomorphological analyses of optical images and shaded relief map suggest 515 
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that the slope aspect of block B3 mainly faces to the east, and the slope aspect of block B4 mainly faces to the 516 

northeast, see the details in Section 2.1 and Figs. 2(b) and S1. 517 

 518 

Fig. 11. Three-dimensional displacement rate maps of Region R1 marked in Fig. 8(b). (a) UAV image acquired 519 

on 13 June 2020; (b) north-south displacement rate; (c) east-west displacement rate; and (d) vertical 520 

displacement rate. 521 

To investigate the temporal evolution of the landslide displacements, we selected four typical points (P1–522 

P4 in Fig. 8(c)) located in different parts of the Shadong landslide to exhibit their 3D displacement time series. 523 

Points P1 and P2 are located on block B1, and Points P3 and P4 are located on blocks B3 and B4, respectively. 524 

Figure 12 shows the displacement time series along the three main components (i.e., north, east, and vertical 525 

directions) for Points P1–P4 from December 2016 to October 2018. We can see that the largest cumulative 526 

displacement that occurs at Point P1 was approximately 157, 116, and -98 mm in the north, east, and vertical 527 

directions, respectively, and it corresponds to the fastest moving area (Fig. S1). Meanwhile, a larger cumulative 528 

displacement was also observed at Points P2 and P4, with cumulative displacements of 89, 43, and -49 mm for 529 

Point P2 and 84, 97, and -50 mm for Point P4 in the north, east, and vertical directions, respectively. Point P3 530 

showed relatively small cumulative displacements as -7.3, 60.5, and -24.8 mm in the north, east, and vertical 531 

directions, respectively. Field geological exploration evidenced that there is a major locked segment in the area 532 
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where Point P3 is located (Fig. 2(c)), and it controls the deep-seated stability of the Shadong landslide (Li et al., 533 

2021). Points P1, P2 and P4 showed an approximately linear displacement trend in the three directions during 534 

the InSAR observation period from December 2016 to October 2018; and Point P3 exhibited a roughly linear 535 

movement trend, and there are short periods of acceleration displacement signal in some SAR acquisitions. 536 

Furthermore, the displacement time series along the three main components revealed that the temporal evolution 537 

of the displacement of the four points was inconsistent. The cumulative displacement of Points P1 and P2 in 538 

the north direction was larger than that in the east and vertical directions. In contrast, the displacement in the 539 

north direction of Points P3 and P4 is smaller than that in the east and vertical directions. 540 

 541 

Fig. 12. The displacement time series along the three main components for Points P1–P4 (marked in Fig. 8(c)) 542 

of the Shadong landslide from December 2016 to October 2018. (a) P1; (b) P2; (c) P3; and (d) P4.  543 

4.4 Long-term displacement time series in the sliding direction of the Shadong landslide 544 

To generate long-term displacement time series in the sliding direction of the Shadong landslide over ten 545 

years, we link the L-band ALOS/PALSAR-1 measurements acquired between January 2007 and March 2011 546 

and the C-band Sentinel-1 measurements acquired between October 2014 and October 2018 with a four-year 547 

gap based on the method described in Section 3.2. First, we resampled the high-quality unwrapped 548 

interferograms from the ALOS/PALSAR-1 and Sentinel-1 images to a common georeferenced grid with the 549 

uniform spatial resolution of 15 m, and the common measurement scatterers among the two datasets were 550 

selected for further processing. Then, the resampled interferograms in the LOS direction of the Sentinel-1 and 551 

ALOS/PALSAR-1 images were transformed into the estimated sliding direction of the slope (Fig. 10). 552 
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Subsequently, the long-term displacement time series was estimated using Eq. 4. Meanwhile, the long-term 553 

time series of displacements were also calculated using the least squares (LS) and linear fitting methods, 554 

respectively, to highlight the performance of the proposed method.  555 

Figure 13 shows the long-term displacement time series of Points P1–P4 (marked in Fig. 8(c)) of the 556 

Shadong landslide, where the red triangles indicate the displacements calculated with the proposed method (i.e., 557 

Tikhonov regularization), the blue rectangles indicate the ones calculated using the LS method, and the gray 558 

solid circles are the ones calculated by the linear fitting method. We can see that the results obtained by the LS 559 

method exhibit a serious deviation compared with those obtained by the proposed method and the linear fitting 560 

method for the sake of rank deficiency problem. This suggests that the long-term displacement time series 561 

results generated by the LS method are unreliable to some extent (Pepe et al., 2016a). Comparison of the results 562 

derived from the Tikhonov regularization and linear fitting methods, the displacement time series results 563 

generated by the two methods are relatively close at Points P1 and P3; however, there is a large deviation at 564 

Points P2 and P4, which will be discussed in detail in Section 5.2. Here the results from the Tikhonov 565 

regularization method are finally selected to investigate the movement characteristics of the Shadong landslide 566 

over the past nearly 12 years. Results show that all points exhibit creep displacement characteristics, among 567 

which the fastest movement was measured in Region R1 marked in Fig. 8(b), and the cumulative displacement 568 

in the sliding direction at Point P1 was around -1.33 m between January 2007 and October 2018. The smallest 569 

cumulative displacement was measured at Point P4 with a magnitude of approximately -0.56 m. In addition, 570 

some large cumulative displacements were also observed at Points P2 and P3, with magnitudes of around -0.97 571 

and -0.8 m, respectively. A significant signal of the displacement acceleration was observed at Points P1, P2, 572 

and P3 from January 5 to May 22, 2008, which may be exactly correlated with the Wenchuan earthquake in 573 

Sichuan, China, on May 12, 2008 (Yin et al., 2009). Furthermore, we can see from Fig. 13 that Points P1, P2, 574 

P3, and P4 experienced a nonlinear displacement trend during the period from January 2007 to October 2018. 575 

The movement rates of Points P2 and P3 before October 10, 2009, were faster than those after October 10, 2009, 576 

and the slight acceleration signals of the displacement were detected at Points P1 and P4 on July 21, 2016. Thus, 577 

it is essential to conduct continuous displacement monitoring with newly acquired SAR images or ground-based 578 

equipment, such as GNSS or crack gauges.  579 
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 580 

Fig. 13. One-dimensional long-term displacement time series in the sliding direction of the Shadong landslide 581 

for Points P1–P4 calculated by fusing L-band ALOS/PALSAR-1 and C-band Sentinel-1 SAR measurements 582 

from January 2007 to October 2018. (a) P1; (b) P2; (c) P3; and (d) P4. 583 

5 Discussion 584 

5.1 Kinematic evolution and creep behavior of the Shadong landslide 585 

To assess the long-term stability and forecast the time of failure of an active landslide, it is important to 586 

investigate its long-term kinematic evolution and creep behavior. Previous studies (Fukuzono, 1985; Intrieri et 587 

al., 2019; Saito, 1969; Aydan et al., 2014) have demonstrated three stages (also sometimes known as 588 

displacement-time curve) of the kinematic evolution and creep behavior of slopes before failure, as shown in 589 

Fig. 14(a). The first stage is the primary creep (or transient or decelerating) with the displacement rate 590 

logarithmically decreasing, followed by the second stage of secondary creep (or constant-state) with a steady 591 

displacement rate. After a period of relative stability within the second stage, the third stage of tertiary creep 592 

(or hyperbolic acceleration) begins, and the slope either accelerates until it ruptures (or fails) (A) or accelerates 593 

and then reaches a new limit equilibrium (B), as shown in Fig. 14 (a). The results from laboratory creep testing 594 

of rocks (Aydan et al., 2014) have demonstrated that such the three stages can be characterized using 595 

unidimensional constitutive laws/models of the rocks, as illustrated in Eqs. (8)-(10). In these equations, Eq. (8) 596 

is applicable to primary stage, hereinafter refer as Lomnitz 1956, 1957; Eq. (9) is applicable to primary and 597 

secondary stages, hereinafter refer as Modified Lomnitz law; and Eq. (10) is applicable to all stages creep 598 

terminating with rupture, hereinafter refer as Aydan et al. 2003.  599 
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ln(1 )S A tα= ⋅ +  (Lomnitz 1956, 1957)                          (8) 600 

= log( )S A B t C t+ ⋅ + ⋅  (Modified Lomnitz law)                      (9) 601 

1 2/ /= (1 ) ( 1)t tS A e B eτ τ−⋅ − + ⋅ −  (Aydan et al. 2003)                     (10) 602 

where S  indicates the displacement, A , B , α , C , 1τ  and 2τ  are constants, and t  is the time.  603 

To investigate the kinematic evolution and creep behavior of the Shadong landslide, we applied 604 

unidimensional constitutive laws of the rocks to model the displacement behavior of Points P1 and P3 marked 605 

in Fig. 8(c). The displacement time series of Points P1 and P3 were modelled based on Eqs. (8), (9) and (10) 606 

using the Levenberg-Marquardt algorithm (Marquardt, 1963), respectively. The original InSAR observations, 607 

the modelled displacement and the residuals are plotted in Fig. 14, and comparison of the results modelled by 608 

different unidimensional constitutive laws is presented in Table 3. For Point P1, the displacement modelled by 609 

Modified Lomnitz law perfectly matches that observed by ALOS/PALSAR-1 and Sentinel-1 images (see Fig. 610 

14(b)), with a correlation coefficient (R) of 0.997. Nevertheless, the laws of Lomnitz 1956, 1957 and Aydan et 611 

al. 2003 failed to model the displacement of Point P1, because Eqs. (8) and (10) cannot be converged when they 612 

were used to model the displacement of Point P1. Similar to Point P1, the law of Aydan et al. 2003 also failed 613 

to model the displacement of Point P3, but it can be perfectly modelled by the laws of Lomnitz 1956, 1957 and 614 

Modified Lomnitz (see Fig. 14(c)), with the correlation coefficients (R) of 0.999 and 0.996, respectively. 615 

Evidences from Table 3 and Fig. 14(c) suggest that the displacement modelled by Lomnitz 1956, 1957 is closer 616 

to InSAR observations than that modelled by Modified Lomnitz law, i.e., there are higher correlation coefficient 617 

and smaller mean of the residuals in the modelled results from Lomnitz 1956, 1957. Moreover, from Figs.14 618 

(b) and (c), we can see that the cumulative displacement of Point P1 is much larger than that of Point P3. During 619 

the period of January 2007 to October 2018, the temporal evolution of Point P1 showed an overall linear trend, 620 

whilst Point P3 was deforming in a non-linear trend with the logarithmically decreasing rate. Based on the 621 

modelled results of the unidimensional constitutive laws of rocks, in conjunction with the temporal evolution 622 

behaviours of Points P1 and P3, it can be concluded that the slope movement at Point P1 may be in the second 623 

stage (secondary creep), while the slope movement at Point P3 may be in the first stage (primary creep). The 624 

three stages of creep behavior of slopes can be broadly organized into two categories (Lu, 2015): stable feature 625 

(primary and secondary creeps) and unstable feature (tertiary creep). As a consequence, the results suggest that 626 

the Shadong landslide exhibits the stable feature currently. In addition, we can see from Figs. 14(d) and (e) that 627 

the maximum residual appears on the SAR observation on May 22, 2008 (see the red dotted ellipses). This 628 
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finding further supports the conclusion that the 2008 Wenchuan earthquake resulted in a transient acceleration 629 

in landslide displacement.  630 

 631 
Fig. 14. Kinematic evolution and creep behavior of the Shadong landslide from January 2007 to October 2018. 632 

(a) Standard three-stage creep rupture curve of the slope (modified after Fukuzono, 1985; Intrieri et al., 2019; 633 

and Saito, 1969); (b) displacement time series (in the sliding direction) of the Shadong landslide for Point P1 634 

derived from InSAR observations (black squares) versus that derived by modeling of rock’s unidimensional 635 

constitutive laws (blue curve); (c) displacement time series of Point P3 derived by InSAR observations (black 636 

squares) versus that derived by modelling (red and blue curves); (d) Residuals of Point P1, calculated by 637 

subtracting the modeled values (using Modified Lomnitz law) from the observed values; (e) Residuals of Point 638 

P3, calculated by subtracting the modeled values (using Lomnitz 1956, 1957) from the observed values. The 639 

locations of Points P1 and P3 are marked in Fig. 8(c).  640 

Table 3 Comparison of the results modelled by different unidimensional constitutive laws 641 

Points Models/Laws 
Convergence 

of the solution 
R 

Mean of residuals 

(mm) 

Standard deviation 

of residuals (mm) 

P1 
Lomnitz 1956, 1957 No - - - 

Modified Lomnitz law Yes 0.997 18.8305 18.6 
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Aydan et al. 2003 No - - - 

P3 

Lomnitz 1956, 1957 Yes 0.999 4.8357 6.5 

Modified Lomnitz law Yes 0.996 7.0208 6.1 

Aydan et al. 2003 No - - - 

5.2 Performance of the proposed method for estimating the long-term landslide displacement 642 

Some researchers (Pepe et al., 2016a; Wu et al., 2020) have explored the use of geotechnical models to 643 

link time-gapped InSAR displacement time series that derived from different SAR sensors (e.g., ENVISAT and 644 

COSMO-SkyMed), thus estimating the long-term time series (> 10 year) of land settlement. The outcomes 645 

obtained in Section 5.3 clearly show that the long-term displacement time series of the Shadong landslide 646 

calculated with the proposed method can be well modelled by the unidimensional constitutive laws of rocks. 647 

As there are no ground-based measurements of displacements, we regard the modelled displacement results of 648 

rocks’ unidimensional constitutive laws as references to assess the performance of our proposed method. Apart 649 

from the Points P1-P4 marked in Fig. 8(c), six points (PS1-PS6) located in different areas of the Shadong 650 

landslide were further selected to exhibit the long-term displacement time series. The locations of Points PS1-651 

PS6 are marked in Fig. S4, and the long-term displacement time series derived from the Tikhonov regularization, 652 

linear fitting and LS methods are given in Fig. S5. Furthermore, we exploited the unidimensional constitutive 653 

laws of rocks (Eqs. (8)-(9)) to model the displacement time series generated by Tikhonov regularization and 654 

linear fitting methods, respectively. Fig. S6 shows the displacement time series of Points P1-P4 and Points PS1-655 

PS6 estimated from the Tikhonov regularization method (black squares) and rocks’ unidimensional constitutive 656 

models (blue curves), and Fig. S7 shows the ones estimated from the linear fitting method (black squares) and 657 

rocks’ unidimensional constitutive models (blue curves). In addition, a quantitative comparison of the modelled 658 

displacement results is presented in Table S1. As can be seen from Figs. S6 and S7, the long-term displacement 659 

time series estimated with the Tikhonov regularization method overall outperform those estimated with the 660 

linear fitting method, in which the rocks’ unidimensional constitutive laws modelled the displacement time 661 

series of each point estimated from the Tikhonov regularization method very well. In contrast, in some 662 

measurements generated by the linear fitting method, such as Points P4 and PS2 in Fig. S7, the rocks’ 663 

unidimensional constitutive laws did not model the displacement time series very well. Moreover, from the 664 

standard deviations (STDs) of the residuals (calculated by subtracting the modeled values from the InSAR 665 

measured values) listed in Table S1, we can see that the STDs of the Tikhonov regularization method are 666 

generally smaller than those of the linear fitting method. These evidences can verify the validity of our proposed 667 

method to some extent. It is worth to specify that, the unidimensional constitutive laws presented in Eqs. (8)-668 
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(9) were developed under the natural movement state of the rocks (Aydan et al., 2014), i.e., there is no intense 669 

and sudden disturbances from external environmental factors such as strong earthquakes. Similarly, our method 670 

is suitable for retrieving the long-term displacements of slopes which are moving naturally under the effect of 671 

gravity. However, the generated results may be biased in the case that the landslides exhibit strong non-linear 672 

movement trends or transient acceleration displacement signals caused by periodic strong rainfall or strong 673 

earthquake events.  674 

5.3 Possible driving factors for the landslide displacement 675 

Gravity is usually the primary driving factor for landslide displacement. In addition, several external 676 

environmental factors can contribute to the acceleration of landslide displacement, such as heavy precipitation, 677 

groundwater and river level fluctuations, and earthquakes. To investigate the possible driving factors for 678 

landslide displacement in this case, we selected six points (Points P5–P10) located in different regions of four 679 

massive landslides to analyze the correlations between displacement and environmental factors. Figure 15(a) 680 

shows an optical image of four massive landslides and six locations, and the optical images of these landslides 681 

are enlarged in Fig. S8 to clearly show evidences of their activity. The analysis of the optical images reveals 682 

that there have been cracks, collapses and scarps developed on the surface of these slopes. Points P5, P7, and 683 

P9 are located near the intersection of the slope and the watercourse of the Jinsha River, and Points P6, P8, and 684 

P10 are located far away from the Jinsha River. Figures 15(b)–(g) show the 2D displacement time series in the 685 

east-west and vertical directions of Points P5–P10 and the monthly precipitation in the study area. 686 

Figure 15 demonstrates that heavy precipitation mainly occurred from June to September each year (i.e., 687 

in the summer) in the study area. In particular, the number of days with rainfall during this period was much 688 

greater than in other periods. Heavy precipitation may have accelerated the displacement of landslides in two 689 

ways. First, the stability of the landslide may have been directly reduced, that is, regional increases in the 690 

duration, intensity and amount of rainfall can generate elevated pore-water pressures of the slope, thus resulting 691 

in a decrease in the shearing strength of the soil and an increase in displacement (Handwerger et al., 2019). 692 

Second, the displacement of landslides may be indirectly accelerated as follows: periodic rainfall generally 693 

causes fluctuations in the Jinsha River water level, which reduces shear stress in the foot of the landslide and 694 

further decreases the safety factor (FS); this increases its instability (Shi et al., 2015; Lacroix et al., 2020). As 695 

shown in Fig. 15, the landslide displacements at Points P5, P7, and P9 showed a strong correlation with monthly 696 

precipitation, while there was a weak correlation at Points P6, P8, and P10, where the landslides exhibited a 697 

linear evolution trend. The landslide displacements in Figs. 15(b), (d), and (f) can be further segmented into 698 
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three major stages annually by visual interpretation, as indicated by the blue dashed rectangles. First, the 699 

landslide was in a stable state (Stage I), with very little precipitation from December 2016 to February 2017. It 700 

then began to deform along with small rainfall from March to May 2017. In particular, significant acceleration 701 

(Stage II) was observed, accompanied by heavy rainfall from June to August 2017, with a maximum monthly 702 

precipitation of 154 mm in June. A particular displacement evolution of the landslide was detected from August 703 

to December 2017, that is, the landslides exhibited a stable state during this period; however, the study area was 704 

still in the rainy season, with a monthly precipitation of approximately 111 mm. A notable acceleration of 705 

landslide displacement (Stage III) was also observed from September to December 2017. Furthermore, the 706 

displacement accelerated again (see the black dashed rectangles in Figs. 15(b), (d), and (f)) along with the 707 

emergence of strong precipitation in the summer of 2018. From the results of the correlation analysis between 708 

precipitation and water level changes in the Jinsha River as shown in Fig. 15(h), we can observe that there is a 709 

strong correlation between the water level changes in the Jinsha River and precipitation. That is, a sharp rise 710 

(see A marked in Fig. 15(h)) in the water level of the Jinsha River resulted from heavy rainfall and quick 711 

declines (see B marked in Fig. 15(h)) were observed with the decrease in rainfall. These findings suggest that 712 

the non-linear movement behaviour of the landslide at Points P5, P7 and P9 is likely caused by the water level 713 

fluctuations resulted from periodic heavy rainfall. Thus, we infer that the fluctuation of river water level is one 714 

of the major driving factors of landslide activity in the study area. 715 
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 716 

Fig. 15. Plots of 2D displacement time series of typical landslides versus monthly precipitation. (a) Optical 717 

image of the selected typical landslides, where the red lines are the boundary of the landslides, and the green 718 

circles indicate the locations of Points P5–P10; (b) P5; (c) P6; (d) P7; (e) P8; (f) P9; (g) P10; and (h) weekly 719 

precipitation in the Xiluodu reservoir area of the Jinsha River versus actual water level of the Jinsha River.  720 

6 Conclusions 721 

We presented a new approach for fusing C- and L-band SAR images to retrieve the 3D and long-term 722 

(nearly 12 years) displacement time series of landslides. Its performance was tested and validated by landslides 723 

over the Jinsha River in Gongjue County, China. The spatial distribution and spatiotemporal displacement 724 

patterns of landslides were retrieved using four SAR datasets of L-band ascending ALOS/PALSAR-1, C-band 725 

descending ENVISAT, and C-band ascending and descending Sentinel-1 acquired from January 2007 to 726 

November 2018. Moreover, the kinematic evolution and possible driving factors of landslide displacements 727 

were analyzed and discussed. Several conclusions can be drawn as follows: 728 
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First, 13 active landslides with diverse dimensions were detected and mapped with a total coverage of 729 

approximately 176 km2, seven of which were larger than 2 km in either length or width. The two-dimensional 730 

displacement results revealed that the detected landslides had the different spatiotemporal displacement patterns 731 

and movement directions, which were strongly correlated with the geomorphological features of the slopes. In 732 

particular, the heterogeneous displacement pattern and movement direction of each block of the Shadong 733 

landslide were identified using 3D displacement rates and time series.  734 

Second, nearly 12 years of displacement time series of the Shadong landslide were first retrieved by linking 735 

L-band ALOS/PALSAR-1 and C-band Sentinel-1 SAR images based on the Tikhonov regularization (TR) 736 

method. The experimental results indicated that the largest cumulative displacement of the Shadong landslide 737 

reached -1.33 m in the sliding direction from January 2007 to October 2018, and the kinematic evolution and 738 

creep behavior of the Shadong landslide were investigated using rock’s unidimensional constitutive laws of 739 

Lomnitz 1956, 1957, Modified Lomnitz, and Aydan et al. 2003. The displacement observed by InSAR data fit 740 

well with that modelled by unidimensional constitutive laws. Therefore, we can conclude that the Shadong 741 

landslide may have been in the primary and secondary creep stages.  742 

Third, the 2D nonlinear displacement time series were captured on the landslides near the Jinsha River, 743 

which corresponded directly to the river water level fluctuations that were caused by seasonal heavy rainfall. 744 

Consequently, the river water level fluctuations can be inferred as one of the major driving factors of landslide 745 

displacement.  746 
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 926 

List of Figure Captions 927 

 928 

Fig. 1. Location of the study area and coverage of the synthetic aperture radar (SAR) images, with SRTM DEM 929 

as the base map. The white and black rectangles represent the study area and the coverage of the SAR images, 930 

respectively, and the red dots are the earthquakes that occurred in the study area and vicinity during the period 931 

of 1954 to 2019. The red lines are the faults modified from Li et al., 2021, where F1: Jinsha River East Fault; 932 

F2: Jinsha River Main Fault; F3: Xiongsong-Suwalong Fault; and F4: Batang Fault.  933 

 934 

Fig. 2. (a) Geological setting of the study area, with the scale of 1: 250000. The name of the labeled landslides 935 

(i.e., No.1 ~ No.13) is listed in Table 2, and the red lines indicate the faults. (b) Shaded relief map of the Shadong 936 
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landslide, labeled as No.2 in (a). The polygons with different colors represent five blocks (B1-B5) of the 937 

landslide. (c) Geological cross section along the Profile I-I’ marked in (b), adapted from Li et al., 2021. 938 

 939 

Fig. 3. Spatial-temporal baseline combinations of all interferograms used in this study. (a) ALOS/PALSAR-1 940 

dataset for Path 484; (b) ENVISAT dataset for Path 190; (c) ascending Sentinel-1 dataset for Path 99; and (d) 941 

descending Sentinel-1 dataset for Path 33. 942 

 943 

Fig. 4. Flowchart of 3D and long-term displacement time series estimation and mechanism analysis of landslide. 944 

 945 

Fig. 5. Line-of-sight (LOS) displacement rate maps for the study area derived from (a) ascending 946 

ALOS/PALSAR-1 images between January 2007 and March 2011; (b) descending ENVISAT images between 947 

February 2007 and October 2010; (c) ascending Sentinel-1 images between August 2016 and October 2018; 948 

and (d) descending Sentinel-1 images between December 2016 and November 2018. The labels indicate the 949 

name of the detected landslides listed in Table 2, and the white solid polygons indicate the boundaries of the 950 

landslides. 951 

 952 

Fig. 6. Location and extent of the main detected active landslides on the perspective remote sensing image. The 953 

points indicate the location of the main villages placed in the study area. 954 

 955 

Fig. 7. Two-dimensional displacement rate maps of the detected landslides from December 2016 to October 956 

2018 calculated with ascending and descending Sentinel-1 images. The white solid polygons indicate the 957 

boundaries of the landslides. (a) Horizontal east-west displacement rate map; and (b) vertical displacement rate 958 

map. 959 

 960 

Fig. 8. Remote sensing image and 3D displacement rate maps from December 2016 to October 2018 of the 961 

Shadong landslide. The boundary of the landslide movement is marked using the red solid lines, and the black 962 

dotted polygons (i.e., R1 and R2) in (b) indicate the two secondary sliding regions. (a) Remote sensing image 963 

acquired in March 2015, where different colors represent five blocks of the landslide; (b) north-south 964 

displacement rate map; (c) east-west displacement rate map, from which Points P1–P4 are analyzed in the text 965 

to show displacement time series; and (d) vertical displacement rate map, where two black lines indicate the 966 

locations of Profiles AA’ and BB’. 967 
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 968 

Fig. 9. Displacement rates along the three components and elevation along the Profiles AA’ and BB’ labeled in 969 

Fig. 8(d). (a) Profile AA’; and (b) Profile BB’, where B1, B2 and B3–B4 indicate block 1, block 2 and blocks 970 

3-4 of the Shadong landslide labeled in Fig. 8(a), respectively. 971 

 972 

Fig. 10. (a) The horizontal movement vector of the Shadong landslide; and (b) the enlarged horizontal 973 

movement vector over Region R1 marked in Fig. 8(b). The base map is the UAV image acquired on 13 June 974 

2020, with a spatial resolution of 0.3 m. 975 

Fig. 11. Three-dimensional displacement rate maps of Region R1 marked in Fig. 8(b). (a) UAV image acquired 976 

on 13 June 2020; (b) north-south displacement rate; (c) east-west displacement rate; and (d) vertical 977 

displacement rate. 978 

 979 

Fig. 12. The displacement time series along the three main components for Points P1–P4 (marked in Fig. 8(c)) 980 

of the Shadong landslide from December 2016 to October 2018. (a) P1; (b) P2; (c) P3; and (d) P4.  981 

 982 

Fig. 13. One-dimensional long-term displacement time series in the sliding direction of the Shadong landslide 983 

for Points P1–P4 calculated by fusing L-band ALOS/PALSAR-1 and C-band Sentinel-1 SAR measurements 984 

from January 2007 to October 2018. (a) P1; (b) P2; (c) P3; and (d) P4. 985 

 986 

Fig. 14. Kinematic evolution and creep behavior of the Shadong landslide from January 2007 to October 2018. 987 

(a) Standard three-stage creep rupture curve of the slope (modified after Fukuzono, 1985; Intrieri et al., 2019; 988 

and Saito, 1969); (b) displacement time series (in the sliding direction) of the Shadong landslide for Point P1 989 

derived from InSAR observations (black squares) versus that derived by modeling of rock’s unidimensional 990 

constitutive laws (blue line); (c) displacement time series of Point P3 derived by InSAR observations (black 991 

squares) versus that derived by modelling (red and blue lines); (d) Residuals of Point P1, calculated by 992 

subtracting the modeled values (using Modified Lomnitz law) from the observed values; (e) Residuals of Point 993 

P3, calculated by subtracting the modeled values (using Lomnitz 1956, 1957) from the observed values. The 994 

locations of Points P1 and P3 are marked in Fig. 8(c).  995 

 996 

Fig. 15. Plots of 2D displacement time series of typical landslides versus monthly precipitation. (a) Optical 997 

image of the selected typical landslides, where the red lines are the boundary of the landslides, and the green 998 
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circles indicate the locations of Points P5–P10; (b) P5; (c) P6; (d) P7; (e) P8; (f) P9; (g) P10; and (h) weekly 999 

precipitation in the Xiluodu reservoir area of the Jinsha River versus actual water level of the Jinsha River. 1000 
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