A nonlinear optimal control approach for underactuated power line inspection robots

G. Rigatos and N. Zervosa,* P. Sianob M. Abbaszadehc

aUnit of Industrial Autom. Industrial Systems Inst.
26504, Rion Patras Greece grigat@ieee.org

bDept. of Innovation Syst. University of Salerno
Fisciano, 84084, Italy psiano@unisa.it

cGE Global Research General Electric
Niskayuna 12309 NY USA masouda@ualberta.ca

J. Pomaresd P. Wirae

dDept. of Systems Eng. University of Alicante
03690 Alicante, Spain jpmares@gcloud.ua.es

eIRIMAS Université d’ Haute Alsace
68093 Mulhouse, France patrice.wira@uha.fr

Abstract: The article proposes a nonlinear optimal (H-infinity) control approach for a type of underactuated power-line inspection (PLI) robots. To implement this control scheme, the state-space model of the power line inspection robot undergoes first approximate linearization around a temporary operating point, through first-order Taylor series expansion and through the computation of the associated Jacobian matrices. To select the feedback gains of the controller an algebraic Riccati equation is solved at each time-step of the control method. The global stability properties of the control loop are proven through Lyapunov analysis. The significance of the article’s results is outlined in the following: (i) the proposed control method is suitable for treating underactuated robotic systems and in general nonlinear dynamical systems with control inputs gain matrices which are in a non-quadratic form, (ii) by achieving stabilization of the power-line inspection robots in underactuation conditions the proposed control method ensures the reliable functioning of these robotic systems in the case of actuators’ failures or enables the complete removal of certain actuators and the reduction of the weight of these robotic systems (iii) the proposed control method offers one of the few existing solutions to the nonlinear optimal control problem which is of proven global stability while also remaining computationally tractable, (iv) the proposed nonlinear optimal control method retains the advantages of linear optimal control that is fast and accurate tracking of reference setpoints under moderate variations of the control inputs, (v) by minimizing the amount of energy that is dispersed by the actuators of the power-line inspection robots the proposed control method improves the autonomy and operational capacity of such robotic systems.

Keywords: power line inspection robots, electric grid security, underactuated robots, nonlinear optimal control, H-infinity control, algebraic Riccati equation, Lyapunov stability analysis, global asymptotic stability.

*Corresponding author
1 Introduction

Inspection for faults of power grid components such as cables of the transmission and distribution system and insulators, as well as cleaning and de-icing of these components are often carried out by humans [1-7]. These are dangerous tasks, taking place in harsh conditions and exposing the life of the maintenance personnel to the risk of fatal accidents. To mitigate such risks and to perform faster and more efficient faults finding and repair in the power grid infrastructure, power-line inspection (PLI) robots can be used [8-14]. The control problem of these robots remains a challenge because of the nonlinearities that characterize the related dynamic model and because of underactuation [15-18]. So far, several approaches have been proposed for solving the nonlinear control problem of power line inspection robots [19-24]. Stability proof has become a prerequisite in the development of controllers for such robotic mechanisms [25-28]. Backstepping control and sliding mode control are among the nonlinear control methods one can consider for the power line inspection robots. However, such methods require the state-space model of the robots to be found in a specific form [25]. Furthermore, there exist few results on the nonlinear optimal control of power line inspection robots and on how energy dissipation by their actuators can be reduced [29-30].

In this article a novel nonlinear optimal (H-infinity) control method is developed for the dynamic model of an underactuated power-line inspection robot [25]. To this end, the robot’s dynamic model undergoes first approximate linearization around a time-varying operating point which is updated at each time-step of the control method. Actually, at each sampling period this operating point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. The linearization relies on first-order Taylor series expansion and on the computation of the related Jacobian matrices [31-33]. The truncation of higher-order terms from the Taylor series expansion is considered to be a perturbation that is asymptotically compensated by the robustness of the control method. For the approximately linearized model of the power-line inspection robot an optimal (H-infinity) feedback controller is designed.

The H-infinity controller provides the solution to the optimal control problem for the power line inspection robots under model uncertainty and external disturbances [34-36]. It represents a min-max differential game taking place between (i) the control inputs which try to minimize a cost function that comprises a quadratic term of the state vector’s tracking error and (ii) the model uncertainty and external perturbations which try to maximize this cost function. To compute the stabilizing feedback gains of the H-infinity controller an algebraic Riccati equation is also solved at each sampling period of the control method [25]. The stability properties of the control loop are proven through Lyapunov analysis. First, it is demonstrated that the control scheme satisfies the H-infinity tracking performance criterion [37-38]. This signifies elevated robustness against model imprecision and exogenous perturbations. Moreover, under moderate conditions, it is proven that the control loop is globally asymptotically stable. Finally, to implement state estimation-based feedback control of the robot, without the need to measure its entire state vector, the H-infinity Kalman Filter is used as a robust state estimator.

The necessity for using robotic systems for inspection and maintenance of the electricity grid is easy to understand since the related tasks expose the repair teams of power corporations to harsh and dangerous conditions with a high risk for fatal accidents [5],[25]. Mainly, the following robotic systems are used for surveillance and repair of the electricity grid (1) Power line inspection robots suspended from cables, (2) unmanned micro-aerial vehicles, (3) Robotic manipulators and mobile manipulators with hydraulic or electric actuation. Robotic systems carrying out the inspection and maintenance of power lines are amenable to improvement and optimization of their function with respect to the following indicators: (i) precise positioning in the case of model uncertainty, accuracy in tasks execution, dexterity and manoeuvrability (ii) lower power consumption and higher autonomy and operational capacity, (iii) reliability in underactuation conditions aiming at reduction of the robots’ weight and of their design’s complexity. With reference to (i) the article develops robust and fault tolerant control and estimation methods that will preserve the reliable functioning of suspended power-line inspection robots With reference to (ii) the article’s methods reduce
energy consumption by power-line inspection robots, thus improving their autonomy and operational capacity and reducing their functioning cost. With reference to (iii) the article’s findings allow to simplify the design of the robots used in power lines inspection and maintenance and to reduce their weight and energy consumption, while also assuring that their accuracy in tasks execution, their manoeuvrability and their dexterity will remain unaffected.

The structure of the article is as follows: in Section 2 Euler-Lagrange analysis is applied and the equations of motion of the power-line inspection robot are obtained. The related state-space model is formulated. In Section 3 the state-space model of the robot undergoes approximate linearization with the use of Tayior series expansion and through the computation of the related Jacobian matrices. Besides an H-infinity feedback controller is developed for the approximately linearized model of the robotic system. In Section 4 the differential flatness properties of the dynamic model of the power-line inspection robot are analyzed and a back controller is developed for the approximately linearized model of the robotic system. In Section 5 the global stability properties of the control scheme are proven through Lyapunov analysis. Furthermore, the H-infinity Kalman Filter is presented as a robust state estimator for the power line inspection robot, which allows for implementing state estimation-based feedback control. In Section 6 the performance of the nonlinear optimal control method is further confirmed and evaluated through simulation experiments. Finally, in Section 7 concluding remarks are stated.

2 Dynamic model of the power line inspection robot

2.1 Computation of the robotic system’s Lagrangian

The specific type of the power-line inspection robot to be analyzed next comes from [1]. The diagram of the underactuated power line inspection robot is depicted in Fig. 1 and in Fig. 2. Actually, in Fig. 2 it is considered that the power-line inspection robot has been rotated about its vertical position by an angle θ_1.

Then, in the $OXYZ$ inertial reference frame, the coordinates of mass m_1 are $x_{m_1} = 0$, $y_{m_1} = -h_1 \cos(\theta_1)$ and $z_{m_1} = -h_1 \sin(\theta_1)$. In the same reference frame, the coordinates of the counterweight mass m_2 are given by $x_{m_2} = l \cos(\theta_2)$, $y_{m_2} = (h_20 - l \sin(\theta_2)) \cos(\theta_1) + d_1 \sin(\theta_1)$ and $z_{m_2} = (h_20 - l \sin(\theta_2)) \sin(\theta_1) - d_1 \cos(\theta_1)$.

The velocity of mass m_1 is given by:

$$
\dot{x}_{m_1} = 0 \quad \dot{y}_{m_1} = h_1 \sin(\theta_1) \dot{\theta}_1 \quad \dot{z}_{m_1} = -h_1 \cos(\theta_1) \dot{\theta}_1 \quad (1)
$$

The velocity of mass m_2 is given by:

$$
\dot{x}_{m_2} = -l \sin(\theta_2) \dot{\theta}_2 \\
\dot{y}_{m_2} = (-l \cos(\theta_2) \dot{\theta}_2) \cos(\theta_1) - (h_20 - l \sin(\theta_2)) \sin(\theta_1) \dot{\theta}_1 + d_1 \cos(\theta_1) \dot{\theta}_1 \\
\dot{z}_{m_2} = (-l \cos(\theta_2) \dot{\theta}_2) \sin(\theta_1) + (h_20 - l \sin(\theta_2)) \cos(\theta_1) \dot{\theta}_1 + d_1 \sin(\theta_1) \dot{\theta}_1 \quad (2)
$$

The kinetic energy due to translation of mass m_1 is

$$
K_1 = \frac{1}{2} m_1 (\dot{x}_{m_1}^2 + \dot{y}_{m_1}^2 + \dot{z}_{m_1}^2) \Rightarrow K_1 = \frac{1}{2} m_1 (h_1^2 \sin^2(\theta_1) \dot{\theta}_1^2 + h_1^2 \cos^2(\theta_1) \dot{\theta}_1^2) \Rightarrow K_1 = \frac{1}{2} m_1 h_1^2 \dot{\theta}_1^2
$$

The kinetic energy due to translation of mass m_2 is
Therefore, the total kinetic energy of the robotic mechanism is

\[K = K_1 + K_2 \]

\[K = \frac{1}{2} m_1 \dot{\theta}_1^2 + \frac{1}{2} m_2 \dot{\theta}_2^2 + \frac{1}{2} m_2 (h_20 - l \sin(\theta_1))^2 + d_1^2 \dot{\theta}_1^2 \]

(7)

Next, the potential energy of the robotic mechanism is computed. The potential energy of mass \(m_1 \) is

\[P_1 = m_1 g z_1 \Rightarrow P_1 = m_1 g (-h_1 \sin(\theta_1)) \]
\[= -m_1 g h_1 \sin(\theta_1) \]

(8)
The potential energy of mass \(m_2 \) is

\[
P_2 = m_2gz_2 \Rightarrow P_2 = m_2g[(h_{20} - l\sin(\theta_2))\sin(\theta_1) - d_1\cos(\theta_1)]
\]

\[
\Rightarrow P_1 = -m_1gh_1\sin(\theta_1)
\]

The aggregate potential energy of the robotic system is given by:

\[
P = P_1 + P_2 \Rightarrow P = -m_1gh_1\sin(\theta_1) - m_2g[(h_{20} - l\sin(\theta_2))\sin(\theta_1) - d_1\cos(\theta_1)]
\]

the Lagrangian of the robotic system is \([1],[25]\)

\[
L = K - P \Rightarrow L = \frac{1}{2}m_1h_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2\dot{\theta}_2^2 + \frac{1}{2}m_2[(h_{20} - l\sin(\theta_2))^2 + d_1^2]\dot{\theta}_1^2 + m_1gh_1\sin(\theta_1) + m_2g[(h_{20} - l\sin(\theta_2))\sin(\theta_1) - d_1\cos(\theta_1)]
\]

2.2 State-space model of the power line inspection robot

The equations that constitute the dynamic model of the power line inspection robot are obtained from the related Euler-Lagrange equations:

\[
\frac{\partial}{\partial t}\left(\frac{\partial L}{\partial \dot{\theta}_1}\right) - \frac{\partial L}{\partial \theta_1} = 0
\]

\[
\frac{\partial}{\partial t}\left(\frac{\partial L}{\partial \dot{\theta}_2}\right) - \frac{\partial L}{\partial \theta_2} = u
\]

where \(u \) is the torque applied to the actuator of the joint that rotates the counterweight of mass \(m_2 \). It holds that:

\[
\frac{\partial L}{\partial \theta_1} = m_1h_1^2\dot{\theta}_1 + m_2[(h_{20} - l\sin(\theta_2))^2 + d_1^2]\dot{\theta}_1
\]
Moreover, it holds that
\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}_1} = m_1 h_1^2 \ddot{\theta}_1 + m_2 [(h_20 - l \sin(\theta_2))(-l \cos(\theta_2)) \ddot{\theta}_2 + m_2 [(h_20 - l \sin(\theta_2))^2 + d_1^2] \ddot{\theta}_1 = 0
\]
Thus, the second equation of motion becomes:
\[
\frac{d}{dt} \frac{\partial L}{\partial \theta_1} = \{m_1 h_1^2 + m_2 [(h_20 - l \sin(\theta_2))^2 + d_1^2]\} \ddot{\theta}_1 + m_2 [2(h_20 - l \sin(\theta_2))(-l \cos(\theta_2))] \ddot{\theta}_2 - m_1 g h_1 \cos(\theta_1) + m_2 g [(h_20 - l \sin(\theta_2)) \cos(\theta_1) + d_1 \sin(\theta_1)] = 0
\]
(14)

Additionally, one has that
\[
\frac{\partial L}{\partial \theta_2} = m_1 g h_1 \cos(\theta_1) - m_2 g [(h_20 - l \sin(\theta_2)) \cos(\theta_1) + d_1 \sin(\theta_1)]
\]
(15)

Consequently, the first equation of motion becomes:
\[
\frac{\partial L}{\partial \theta_1} - \frac{\partial L}{\partial \theta_2} = 0 \Rightarrow \{m_1 h_1^2 + m_2 [(h_20 - l \sin(\theta_2))^2 + d_1^2]\} \ddot{\theta}_1 + m_2 [2(h_20 - l \sin(\theta_2))(-l \cos(\theta_2))] \ddot{\theta}_2 - m_1 g h_1 \cos(\theta_1) + m_2 g [(h_20 - l \sin(\theta_2)) \cos(\theta_1) + d_1 \sin(\theta_1)] = 0
\]
(16)

Furthermore, one has
\[
\frac{\partial L}{\partial \theta_2} = m_2 l^2 \ddot{\theta}_2
\]
(17)

and also
\[
\frac{d}{dt} \frac{\partial L}{\partial \theta_2} = m_2 l^2 \ddot{\theta}_2
\]
(18)

Moreover, it holds that
\[
\frac{\partial L}{\partial \theta_2} = m_2 (h_20 - l \sin(\theta_2))(-l \cos(\theta_2)) \dot{\theta}_1 - m_2 g(-l \cos(\theta_2)) \sin(\theta_1)
\]
(19)

Thus, the second equation of motion of the robotic system becomes
\[
ml^2 \ddot{\theta}_2 + m_2 (h_20 - l \sin(\theta_2))(-l \cos(\theta_2)) \dot{\theta}_1 - m_2 g(l \cos(\theta_2)) \sin(\theta_1) = u
\]
(20)

The following state variables are defined: \(x_1 = \theta_1, x_2 = \dot{\theta}_1, x_3 = \theta_2, \) and \(x_4 = \dot{\theta}_2.\) Consequently, one can obtain the following state-space description:
\[
\begin{align*}
\{m_1 h_1^2 + m_2 [(h_20 - l \sin(x_3))^2 + d_1^2]\} \ddot{x}_1 + m_2 [2(h_20 - l \sin(x_3))(-l \cos(x_3))] x_2 x_4 - m_1 g h_1 \cos(x_1) + m_2 g [(h_20 - l \sin(x_3)) \cos(x_1) + d_1 \sin(x_1)] = 0 \\
m_2 l^2 \ddot{x}_3 + m_2 (h_20 - l \sin(x_3)) \cos(x_3) \dot{x}_2^2 - m_1 g(l \cos(x_3)) \sin(x_1) = u
\end{align*}
\]
(21)

The previous state-space model can be also written as:
\[
\ddot{x}_1 = \frac{m_2 [2(h_20 - l \sin(x_3)) l \cos(x_3)] x_2 x_4}{\{m_1 h_1^2 + m_2 [(h_20 - l \sin(x_3))^2 + d_1^2]\} + m_1 g h_1 \cos(x_1) + m_2 g [(h_20 - l \sin(x_3)) \cos(x_1) + d_1 \sin(x_1)]}
\]
\[
- \frac{m_1 g h_1 \cos(x_1) + m_2 g [(h_20 - l \sin(x_3)) \cos(x_1) + d_1 \sin(x_1)]}{m_2 l^2 + m_2 [(h_20 - l \sin(x_3))^2]}
\]
(23)

Additionally, the state-space model of the system can be written as
\[
\ddot{x}_1 = x_2
\]
(24)

\[
\ddot{x}_3 = \frac{-m_2 (h_20 - l \sin(x_3)) l \cos(x_3) \dot{x}_2^2 + m_1 g(l \cos(x_3)) \sin(x_1)}{m_2 l^2} + \frac{u}{m_2 l^2}
\]
(25)
\[\dot{x}_2 = \frac{m_2[2(h_{20} - \sin(x_3))(\cos(x_1))x_2x_4]}{m_1h_1 + m_2(h_{20} - \sin(x_3))^2} + \frac{m_1gh_1\cos(x_1) + m_2g(h_{20} - \sin(x_3))\cos(x_1) + d_1\sin(x_1)}{m_1h_1 + m_2(h_{20} - \sin(x_3))^2} \]
(26)

\[\dot{x}_3 = x_4 \]
(27)

\[\dot{x}_4 = -\frac{m_2(h_{20} - \sin(x_3))\cos(x_1)x_2^2 + m_1g(\cos(x_3))\sin(x_1)}{m_2I} + \frac{u}{m_2I} \]
(28)

Furthermore, one can consider the following concise description of the system in vector fields form

\[\dot{x} = f(x) + g(x)u \]
(29)

where \(x \in \mathbb{R}^{4 \times 1}, f(x) \in \mathbb{R}^{4 \times 1} \) and \(g(x) \in \mathbb{R}^{4 \times 1} \) while \(u \in \mathbb{R} \), or equivalently

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3 \\
\dot{x}_4
\end{bmatrix} =
\begin{bmatrix}
f_1(x) \\
f_2(x) \\
f_3(x) \\
f_4(x)
\end{bmatrix} +
\begin{bmatrix}
g_1(x) \\
g_2(x) \\
g_3(x) \\
g_4(x)
\end{bmatrix} u
\]
(30)

where

\[
f_1(x) = x_2, \quad f_2(x) = \frac{m_2[2(h_{20} - \sin(x_3))(\cos(x_1))x_2x_4]}{m_1h_1 + m_2(h_{20} - \sin(x_3))^2} + \frac{m_1gh_1\cos(x_1) + m_2g(h_{20} - \sin(x_3))\cos(x_1) + d_1\sin(x_1)}{m_1h_1 + m_2(h_{20} - \sin(x_3))^2},
\]

\[
f_3(x) = x_4, \quad f_4(x) = \frac{m_2(h_{20} - \sin(x_3))\cos(x_1)x_2^2 + m_1g(\cos(x_3))\sin(x_1)}{m_2I} + \frac{u}{m_2I},
\]

and \(g_1(x) = 0, g_2(x) = 0, g_3(x) = 0 \) and \(g_4(x) = \frac{1}{m_3I}. \)

3 Approximate linearization of the power line inspection robot

3.1 Approximately linearized model

The dynamic model of the power line inspection robot \(\dot{x} = f(x) + g(x)u \) undergoes approximate linearization around the time-varying operating point \((x^*, u^*)\), where \(x^* \) is the present value of the system’s state vector and \(u^* \) is the most recent value of the control inputs vector that was applied to it. The linearization relies on first order Taylor series expansion and on the computation of the related Jacobian matrices.

This concept results into the approximately linearized model of the robotic system in the form:

\[\dot{x} = Ax + Bu + \tilde{d} \]
(31)

where \(\tilde{d} \) is the cumulative perturbations’ vector which comprises (i) the modelling error due to truncation of higher-order terms in the Taylor series expansion, (ii) external disturbances, (iii) measurement noise of any distribution.

The Jacobian matrices of the robotic system are

\[
A = \nabla_x[f(x) + g(x)u] \big|_{(x^*, u^*)} \Rightarrow A = \nabla_x f(x) \big|_{(x^*, u^*)} + \nabla_x g(x)u \big|_{(x^*, u^*)} \Rightarrow \nabla_x f(x) \big|_{(x^*, u^*)}
\]
(32)

\[
B = \nabla_u [f(x) + g(x)u] \big|_{(x^*, u^*)} \Rightarrow B = g(x) \big|_{(x^*, u^*)}
\]
(33)

Next, the elements of the Jacobian matrix \(\nabla_x f(x) \big|_{(x^*, u^*)} \) are computed.
First row of the Jacobian matrix $\nabla_x[f(x)]|_{(x^*,u^*)}$: $\frac{\partial f_1}{\partial x_1} = 0$, $\frac{\partial f_1}{\partial x_2} = 1$, $\frac{\partial f_1}{\partial x_3} = 0$ and $\frac{\partial f_1}{\partial x_4} = 0$.

Second row of the Jacobian matrix $\nabla_x[f(x)]|_{(x^*,u^*)}$: for $i = 1, \cdots, 4$

\[
\frac{\partial f_2}{\partial x_i} = \frac{\partial f_2(x_i) - f_2(0)}{f_2(0)} \frac{\partial f_2(x_i)}{\partial x_i}
\]

where

\[
\frac{\partial f_2}{\partial x_1} = m_1 g \sin(x_1) + m_2 g \sin(x_2) + m_2 g \sin(x_3),
\frac{\partial f_2}{\partial x_2} = m_1 g + m_2 g \cos(x_2),
\frac{\partial f_2}{\partial x_3} = m_1 g + m_2 g \cos(x_3),
\frac{\partial f_2}{\partial x_4} = m_2 g \cos(x_4),
\]

and also $\frac{\partial f_2}{\partial x_2} = 0$, $\frac{\partial f_2}{\partial x_4} = 0$, $\frac{\partial f_3}{\partial x_2} = 0$ and $\frac{\partial f_3}{\partial x_4} = 1$.

Third row of the Jacobian matrix $\nabla_x[f(x)]|_{(x^*,u^*)}$: $\frac{\partial f_3}{\partial x_1} = 0$, $\frac{\partial f_3}{\partial x_2} = 0$, $\frac{\partial f_3}{\partial x_3} = 0$ and $\frac{\partial f_3}{\partial x_4} = 1$.

Fourth row of the Jacobian matrix $\nabla_x[f(x)]|_{(x^*,u^*)}$: $\frac{\partial f_4}{\partial x_1} = \frac{1}{m_2 l^2} (m_2 g \cos(x_2) \cos(x_1))$, $\frac{\partial f_4}{\partial x_2} = -\frac{2 x_2}{m_2 l^2}$, $\frac{\partial f_4}{\partial x_3} = \frac{1}{m_2 l^2} (m_2 g \cos(x_3) \cos(x_1))$, and $\frac{\partial f_4}{\partial x_4} = 0$.

3.2 Stabilizing feedback control

After linearization around its current operating point, the dynamic model of the power line inspection robot is written as

\[
\dot{x} = Ax + Bu + d_1
\]

Parameter d_1 stands for the linearization error in the power line inspection robot's dynamic model appearing previously in Eq. (31). The reference setpoints for the power line inspection robot's state vector are denoted by $x_d = [x_1, \cdots, x_4]$. Tracking of this trajectory is achieved after applying the control input u^*.

At every time instant the control input u^* is assumed to differ from the control input u appearing in Eq. (35) by an amount equal to Δu, that is $u^* = u + \Delta u$.

\[
\dot{x}_d = Ax_d + Bu^* + d_2
\]

The dynamics of the controlled system described in Eq. (35) can be also written as

\[
\dot{x} = Ax + Bu + Bu^* + d_1
\]

and by denoting $d_3 = -Bu^* + d_1$ as an aggregate disturbance term one obtains

\[
\dot{x} = Ax + Bu + Bu^* + d_3
\]

By subtracting Eq. (36) from Eq. (38) one has

\[
\dot{x} - \dot{x}_d = A(x - x_d) + Bu + d_3 - d_2
\]

By denoting the tracking error as $e = x - x_d$ and the aggregate disturbance term as $\tilde{d} = d_3 - d_2$, the tracking error dynamics becomes

\[
\dot{e} = Ae + Bu + \tilde{d}
\]
Figure 3: Diagram of the control scheme for the power line inspection robot (the figure of the PLI robot comes from [1])

For the approximately linearized model of the system a stabilizing feedback controller is developed. The controller has the form

\[u(t) = -K e(t) \]

(41)

with \(K = \frac{1}{r} B^T P \) where \(P \) is a positive definite symmetric matrix which is obtained from the solution of the Riccati equation [25]

\[A^T P + PA + Q - P \left(\frac{1}{r} B B^T - \frac{1}{\rho^2} L L^T \right) P = 0 \]

(42)

where \(Q \) is a positive semi-definite symmetric matrix. The diagram of the considered control loop is depicted in Fig. 3. Clear metrics can be provided about the robustness properties of the proposed nonlinear optimal (H-infinity) control scheme for power-line inspection robots. The solution of the H-infinity feedback control problem for the underactuated power-line inspection robot and the computation of the worst case disturbance that the related controller can sustain, comes from superposition of Bellman’s optimality principle when considering that the robot is affected by two separate inputs (i) the control input \(u \) (ii) the cumulative disturbance input \(d(t) \). Solving the optimal control problem for \(u \), that is for the minimum variation (optimal) control input that achieves elimination of the state vector’s tracking error, gives \(u = -\frac{1}{r} B^T P e \). Equivalently, solving the optimal control problem for \(d \), that is for the worst case disturbance that the control loop can sustain gives \(d = \frac{1}{\rho^2} L^T P e \). The attenuation coefficient \(\rho \) can be given a small value up to the point that the method’s algebraic Riccati equation still returns a valid solution in the form of the positive definite and symmetric matrix \(P \). The smallest value of \(\rho \) for which a valid solution of the method’s algebraic Riccati equation can be obtained (in the form of a positive definite and symmetric matrix \(P \)) is the one that provides maximum robustness to the control loop.

The present article provides one of the few existing solutions to the nonlinear optimal control problem of power-line inspection robots which is of proven global stability while also remaining computationally efficient. Preceding results on the use of H-infinity control to nonlinear dynamical systems were limited
to the case of affine-in-the-input systems with drift-only dynamics and considered that the control inputs gain matrix is not dependent on the values of the system’s state vector. Moreover, in these approaches the linearization was performed around points of the desirable trajectory whereas in the present article’s control method the linearization points are related with the value of the state vector at each sampling instance as well as with the last sampled value of the control inputs vector. The Riccati equation which has been proposed for computing the feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov analysis.

The article’s scientific contribution is outlined as follows: (i) the presented nonlinear optimal control method has improved performance when compared against other nonlinear control schemes that one can consider for the dynamic model of the power-line inspection robots (such as Lie algebra-based control, differential flatness theory-based control, Model-based Predictive Control, Nonlinear Model-based Predictive Control, Sliding-mode control, Backstepping control), etc., (ii) it achieves fast and accurate tracking of all reference setpoints for the power-line inspection robots under moderate variations of the control inputs, (iii) it minimizes the consumption of energy by the actuators of the power-line inspection robots, thus improving the functioning cost and efficiency in tasks’ execution by such robotic systems.

4 Differential flatness properties of the power-line inspection robot

4.1 Proof of differential flatness properties for the PLI robot

The dynamic model of the power-line inspection robot was shown to be consisting of the state-space equations given in Eq. (25) to Eq. (28). In its initial nonlinear state-space form this robotic system is not differentially flat [25, 37]. However, for the dynamic model which is obtained after partial linearization around the operating point \(x^* = [x_1^*, 0, 0, 0]^T \) where \(x_1^* \) is piecewise constant, it can be shown that differential flatness properties hold. Following, the previously explained procedure about the computation of the robot’s Jacobian matrices at the operating point \(x^* \), and the approach presented in [1], one gets:

\[
\begin{pmatrix}
\dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4
\end{pmatrix} = \begin{pmatrix}
0 & 1 & 0 & 0 \\ \frac{\partial f_2}{\partial x_1} |_{x^*} & 0 & \frac{\partial f_2}{\partial x_3} |_{x^*} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{\partial f_4}{\partial x_1} |_{x^*} & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
x_1 \\ x_2 \\ x_3 \\ x_4
\end{pmatrix} + \begin{pmatrix}
0 \\ 0 \\ 0 \\ u
\end{pmatrix}
\] (43)

or equivalently, the state-space equations of the power-line inspection robot are written as

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= \frac{\partial f_2}{\partial x_1} |_{x^*} x_1 + \frac{\partial f_2}{\partial x_3} |_{x^*} x_3 \\
\dot{x}_3 &= x_4 \\
\dot{x}_4 &= \frac{\partial f_4}{\partial x_1} |_{x^*} x_1 + g_4 u
\end{align*}
\] (44)

where \(\frac{\partial f_2}{\partial x_1} |_{x^*} \) which is a function of \(x_1 \), \(\frac{\partial f_2}{\partial x_3} |_{x^*} \) which is a function of \(x_1 \) and \(\frac{\partial f_4}{\partial x_1} |_{x^*} = \frac{1}{m_2 g} (m_2 g \cos(x_1)) \).

with \(\frac{\partial f_2}{\partial x_1} |_{x^*} = m_1 g h_1 (-\sin(x_1)) + m_2 g [h_20 \sin(x_1) + d_1 \cos(x_1)] \), \(\frac{\partial f_3}{\partial x_1} |_{x^*} = 0 \), \(\frac{\partial f_3}{\partial x_2} |_{x^*} = m_2 g \cos(x_1) \), \(\frac{\partial f_4}{\partial x_2} |_{x^*} = m_2 g \cos(x_1) \), \(\frac{\partial f_4}{\partial x_3} |_{x^*} = m_1 h_1^2 + m_2 h_20 \).

It can be proven that the model of Eq. (44) is differentially flat, with flat output \(y = x_1 \) [37], [25].

From the first row of the state-space model of Eq. (44) one has that
\[x_2 = \dot{x}_1 \Rightarrow x_2 = h_2(y, \dot{y}) \] (45)

which signifies that state variable \(x_2 \) is a differential function of the flat output of this robotic system.

From the second row of the state-space model of Eq. (44) one has that
\[x_3 = \frac{\partial f_2}{\partial x_1} |_{x^*} x_1 \Rightarrow x_3 = h_3(y, \dot{y}, \ddot{y}) \] (46)

which signifies that state variable \(x_3 \) is a differential function of the flat output of this robotic system.

From the third row of the state-space model of Eq. (44) one has that
\[x_4 = \dot{x}_3 \Rightarrow x_4 = h_4(y, \dot{y}, \ddot{y}, y^{(3)}) \] (47)

which signifies that state variable \(x_4 \) is a differential function of the flat output of this robotic system.

Finally, from the fourth row of the state-space model of Eq. (44) one has that
\[u = \frac{1}{g} \left[\dot{x}_4 - \frac{\partial f_4}{\partial x_1} |_{x^*} x_1 \right] \Rightarrow x_4 = h_4(y, \dot{y}, \ddot{y}, y^{(3)}, y^{(4)}) \] (48)

which signifies that the control input \(u \) is a differential function of the flat output of this robotic system. Therefore, all state variables and the control inputs of the power-line inspection robot can be written as differential functions of the system’s flat output and this confirms that the robotic system is differentially flat.

4.2 Design of a flatness-based controller for the PLI robot

Next, it will be shown that the differentially flat state-space model of the power-line inspection robot can be written in the input-output linearized form and in the associated canonical Brunovsky form. In the second row of Eq. (44) one defines
\[\tilde{f}_2 = \frac{\partial f_2}{\partial x_1} |_{x^*} x_1 + \frac{\partial f_2}{\partial x_3} |_{x^*} x_3 \] (49)

or equivalently
\[\tilde{f}_2 = \frac{-m_1 g h_1 + m_2 g h_{20} \sin(x_1) + m_2 g \cos(x_1)}{m_1 h^2_1 + m_2 h^2_{20}} x_1 + \frac{m_2 g \cos(x_1)}{m_1 h^2_1 + m_2 h^2_{20}} (m_1 h_1^2 + m_2 h_{20}^2) x_3 \] (50)

In the fourth row of the state-space model of Eq. (44) one defines
\[\tilde{f}_4 = \frac{\partial f_4}{\partial x_1} |_{x^*} x_1 \] (51)

or equivalently
\[\tilde{f}_4 = \frac{1}{m_2 l^2} (m_2 g l \cos(x_1)) x_1 \] (52)

Next, successive differentiations of the flat output \(y = x_1 \) are performed until the control input \(u \) appears. It holds that
\[\dot{x}_1 = x_2 \Rightarrow \ddot{x}_1 = \dddot{x}_1 = \tilde{f}_2 \Rightarrow x_1^{(3)} = \tilde{f}_2 \] (53)

which in turn gives
Consequently, one obtains
\[
x_1^{(3)} = -(m_1gh_1 + m_2gh_2) \cos(x_1)x_2 - m_2gsin(x_1)x_2 \dot{x}_2 + \frac{m_1h_1^2 + m_2h_2^2}{m_1h_1^2 + m_2h_2^2} + \frac{-(m_1gh_1 + m_2gh_2)_2}{(m_1h_1^2 + m_2h_2^2)}x_2 + \frac{m_2sin(x_1)x_2(m_1h_1^2 + m_2h_2^2)}{m_1h_1^2 + m_2h_2^2} + \frac{[(m_1gh_1 + m_2gh_2)(-sin(x_1)x_2) + d_1\cos(x_1)x_2][m_2h_2]}{(m_1h_1^2 + m_2h_2^2)}x_4
\]

Next, using Eq. (54) the following functions are defined
\[
f_a(x_1, x_2) = -(m_1gh_1 + m_2gh_2) \cos(x_1)x_2 - m_2gsin(x_1)x_2 \frac{m_1h_1^2 + m_2h_2^2}{m_1h_1^2 + m_2h_2^2}
\]
\[
f_b(x_1, x_2) = -(m_1gh_1 + m_2gh_2) \sin(x_1) + m_2gcos(x_1) \frac{m_1h_1^2 + m_2h_2^2}{m_1h_1^2 + m_2h_2^2}
\]
\[
f_c(x_1, x_2) = -m_2g \sin(x_1)x_2(m_1h_1^2 + m_2h_2^2) + [(m_1gh_1 + m_2gh_2)(-sin(x_1)x_2) + d_1\cos(x_1)x_2][m_2h_2] \frac{m_1h_1^2 + m_2h_2^2}{m_1h_1^2 + m_2h_2^2}
\]
\[
f_d(x_1) = m_2g \cos(x_1)(m_1h_1^2 + m_2h_2^2) + [(m_1gh_1 + m_2gh_2) \cos(x_1) + d_1\sin(x_1)][m_2h_2] \frac{m_1h_1^2 + m_2h_2^2}{m_1h_1^2 + m_2h_2^2}
\]

Besides, one computes the following time-derivatives of functions \(f_a(x_1, x_2), f_b(x_1), f_c(x_1, x_2) \) and \(f_d(x_1) \)
\[
\dot{f}_a(x_1, x_2) = -(m_1gh_1 + m_2gh_2)(-\sin(x_1)x_2^2 + \cos(x_1)\dot{x}_2) - m_2g \cos(x_1)x_2^2 + \sin(x_1)\dot{x}_2 \frac{m_1h_1^2 + m_2h_2^2}{m_1h_1^2 + m_2h_2^2}
\]
\[
\dot{f}_b(x_1, x_2) = -(m_1gh_1 + m_2gh_2) \cos(x_1)x_2 + m_2g(-\sin(x_1)x_2) \frac{m_1h_1^2 + m_2h_2^2}{m_1h_1^2 + m_2h_2^2}
\]
\[
\dot{f}_c(x_1, x_2) = -m_2g(\cos(x_1)x_2^2 + \cos(x_1)\dot{x}_2)(m_1h_1^2 + m_2h_2^2) + \frac{[(m_1gh_1 + m_2gh_2)(-\cos(x_1)x_2^2 + \sin(x_1)\dot{x}_2) + d_1(-\sin(x_1)x_2^2 + \cos(x_1)\dot{x}_2)][m_2h_2] \frac{m_1h_1^2 + m_2h_2^2}{m_1h_1^2 + m_2h_2^2}}
\]
\[
\dot{f}_d(x_1, x_2) = m_2g(-\sin(x_1)x_2^2)(m_1h_1^2 + m_2h_2^2) + [(m_1gh_1 + m_2gh_2)(-\sin(x_1)x_2) + d_1\cos(x_1)x_2][m_2h_2] \frac{m_1h_1^2 + m_2h_2^2}{m_1h_1^2 + m_2h_2^2}
\]

Consequently, one obtains
\[
x_1^{(3)} = f_a(x_1, x_2)x_1 + f_b(x_1)\dot{x}_2 + f_c(x_1, x_2)x_3 + f_d(x_1)x_4
\]

By differentiating once again with respect to time one obtains
\[
x_1^{(4)} = f_a(x_1, x_2)x_1 + f_a(x_1, x_2)x_2 + f_b(x_1)x_2 + f_b(x_1)\dot{x}_2 + f_c(x_1, x_2)x_3 + f_c(x_1, x_2)x_4 + f_d(x_1)x_4 + f_d(x_1)[\dot{f}_1 + \dot{g}_{1u}]
\]

The previous equation is rewritten in the concise form
\[
x_1^{(4)} = \tilde{f} + \tilde{g}u
\]

where functions \(\tilde{f} \) and \(\tilde{g} \) are differential functions of the flat output of the robotic system and are defined as
\[
\bar{f} = \{ \dot{f}_d(x_1, x_2)x_1 + f_a(x_1, x_2)x_2 + \dot{f}_b(x_1)x_2 + f_b(x_1)\dot{x}_2 + \\
\dot{f}_c(x_1, x_2)x_3 + f_c(x_1, x_2)x_4 + \dot{f}_d(x_1)x_4 + f_d(x_1)\dot{x}_4 \} \\
\bar{g} = f_d(x_1)g_4
\]

Next, the cumulative control input \(v = \bar{f} + \bar{g}u \) is defined. It holds that

\[\dot{x}_1^{(4)} = v\] (67)

while one can also arrive at the following canonical Brunovsky form

\[
\begin{pmatrix}
\dot{y} \\
\ddot{y} \\
y^{(3)} \\
y^{(4)}
\end{pmatrix} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
y \\
\dot{y} \\
y^{(3)} \\
y^{(4)}
\end{pmatrix} + \begin{pmatrix}
0 \\
0 \\
0 \\
1
\end{pmatrix} v
\] (68)

The stabilizing feedback control is

\[v = x_1^{(4)} - \hat{k}_1(x_1^{(3)} - \hat{x}_1^{(3)}) - \hat{k}_2(x_1^{(2)} - \hat{x}_1^{(2)}) - \hat{k}_3(x_1^{(1)} - \hat{x}_1^{(1)}) - k_4(x_1 - x_1,d)\] (69)

which results into the following tracking error dynamics

\[\dot{e}^{(4)} + k_1\dot{e}^{(3)} + k_2\dot{e} + k_3\ddot{e} + k_4\dot{e} = 0\] (70)

The associated characteristic polynomial is

\[p(s) = s^4 + k_1s^3 + k_2s^2 + k_3s + k_4\] (71)

The stabilizing feedback control gains \(k_1, k_2, k_3, k_4\) are selected according to the requirement the above noted characteristic polynomial to be Hurwitz stable, that is to have poles in the left complex semiplane.

The state-estimation problem for the system of Eq. (68) is solved using Kalman Filtering. The Kalman Filter’s recursion followed by the previously defined differential flatness transformations in Eq. (45), Eq. (46), and Eq. (47) is known as Derivative-free nonlinear Kalman Filter [25], [37].

The flatness-based control input which is applied to the real nonlinear dynamics of the PLI robot is

\[v = \bar{f} + \bar{g}u \Rightarrow u = \bar{g}^{-1}[v - \bar{f}]\] (72)

5 Lyapunov stability analysis

5.1 Stability proof

Through Lyapunov stability analysis it will be shown that the proposed nonlinear optimal control scheme, that was formulated in Section 3, assures \(H_\infty\) tracking performance for the underactuated power line inspection robot, and that in case of bounded disturbance terms asymptotic convergence to the reference setpoints is achieved. The tracking error dynamics for the power line inspection robot is written in the form [25]

\[\dot{e} = Ae + Bu + L\ddot{d}\] (73)

where in the power line inspection robot’s case \(L = I \in R^4\) with \(I\) being the identity matrix. Variable \(\ddot{d}\) denotes model uncertainties and external disturbances of the power line inspection robot’s model. The following Lyapunov equation is considered
The following substitutions are carried out:

\[e = x - x_d \]

By differentiating with respect to time one obtains

\[\dot{V} = \frac{1}{2} \dot{e}^T Pe + \frac{1}{2} e \dot{P} \dot{e} \Rightarrow \]

\[\dot{V} = \frac{1}{2} e^T A^T + u^T B^T + \tilde{d} L T^T P e + \frac{1}{2} e^T P [A e + B u + \tilde{d} L] \Rightarrow \]

\[\dot{V} = \frac{1}{2} e^T A^T + u^T B^T + \tilde{d} L T^T P e + \frac{1}{2} e^T P A e + \frac{1}{2} e^T P B u + \frac{1}{2} e^T P L \tilde{d} \]

The previous equation is rewritten as

\[\dot{V} = \frac{1}{2} e^T (A^T P + P A) e + (\frac{1}{2} e^T B^T P e + \frac{1}{2} e^T P B u) + \]

\[+ (\frac{1}{2} \tilde{d} L T^T P e + \frac{1}{2} e^T P L \tilde{d}) \]

Assumption: For given positive definite matrix \(Q \) and coefficients \(r \) and \(\rho \) there exists a positive definite matrix \(P \), which is the solution of the following matrix equation

\[A^T P + P A = -Q + P(\frac{1}{2} BB^T - \frac{1}{\rho^2} LL^T) P \]

Moreover, the following feedback control law is applied to the system

\[u = -\frac{1}{2} B^T P e \]

By substituting Eq. (79) and Eq. (80) one obtains

\[\dot{V} = \frac{1}{2} e^T [\frac{1}{2} - Q + P(\frac{1}{2} BB^T - \frac{1}{\rho^2} LL^T) P] e + \]

\[+ e^T P B (\frac{1}{2} B^T P e) + e^T P L \tilde{d} \Rightarrow \]

\[\dot{V} = -\frac{1}{2} e^T Q e + \frac{1}{2} e^T P B B^T P e - \frac{1}{\rho^2} e^T P L L^T P e \]

\[- \frac{1}{\rho^2} e^T P B B^T P e + e^T P L \tilde{d} \]

which after intermediate operations gives

\[\dot{V} = -\frac{1}{2} e^T Q e - \frac{1}{\rho^2} e^T P L L^T P e + e^T P L \tilde{d} \]

or, equivalently

\[\dot{V} = -\frac{1}{2} e^T Q e - \frac{1}{\rho^2} e^T P L L^T P e + \]

\[+ \frac{1}{2} e^T P L \tilde{d} + \frac{1}{2} \tilde{d} L^T P e \]

Lemma: The following inequality holds

\[\frac{1}{2} \tilde{d} L T^T P e \leq \frac{1}{\rho^2} e^T P L L^T P e \leq \frac{1}{\rho^2} \tilde{d} T \tilde{d} \]

Proof: The binomial \((\rho a - \frac{1}{\rho} b)^2\) is considered. Expanding the left part of the above inequality one gets

\[\rho^2 a^2 + \frac{1}{\rho^2} b^2 - 2ab \geq 0 \Rightarrow \frac{1}{\rho^2} a^2 + \frac{1}{\rho^2} b^2 - ab \geq 0 \Rightarrow \]

\[ab - \frac{1}{\rho^2} b^2 \leq \frac{1}{2} \rho^2 a^2 \Rightarrow \frac{1}{2} \rho^2 a^2 \leq \frac{1}{\rho^2} b^2 \leq \frac{1}{2} \rho^2 a^2 \]

The following substitutions are carried out: \(a = \tilde{d} \) and \(b = e^T P L \) and the previous relation becomes

\[\frac{1}{2} \tilde{d} L T^T P e + \frac{1}{2} e^T P L \tilde{d} - \frac{1}{\rho^2} e^T P L L^T P e \leq \frac{1}{\rho^2} \tilde{d} T \tilde{d} \]
Eq. (87) is substituted in Eq. (84) and the inequality is enforced, thus giving
\[\dot{V} \leq -\frac{1}{2}e^T Q e + \frac{1}{2}\rho^2 \bar{d}^T \bar{d} \] (88)

Eq. (88) shows that the H_{∞} tracking performance criterion is satisfied. The integration of \dot{V} from 0 to T gives
\[\int_0^T \dot{V}(t) dt \leq -\frac{1}{2} \int_0^T ||e||^2 Q dt + \frac{1}{2} \rho^2 \int_0^T ||\bar{d}||^2 dt \Rightarrow 2V(T) + \int_0^T ||e||^2 Q dt \leq 2V(0) + \rho^2 \int_0^T ||\bar{d}||^2 dt \] (89)

Moreover, if there exists a positive constant $M_d > 0$ such that
\[\int_0^\infty ||\bar{d}||^2 dt \leq M_d \] (90)

then one gets
\[\int_0^\infty ||e||^2 Q dt \leq 2V(0) + \rho^2 M_d \] (91)

Thus, the integral $\int_0^\infty ||e||^2 Q dt$ is bounded. Moreover, $V(T)$ is bounded and from the definition of the Lyapunov function V in Eq. (74) it becomes clear that $e(t)$ will be also bounded since $e(t) \in \Omega_e = \{e ||e^T P e \leq 2V(0) + \rho^2 M_d\}$. According to the above and with the use of Barbalat’s Lemma one obtains $\lim_{t \to \infty} e(t) = 0$.

The outline of the global stability proof is that at each iteration of the control algorithm the state vector of the power line inspection robot converges towards the temporary equilibrium and the temporary equilibrium in turn converges towards the reference trajectory. Thus, the control scheme exhibits global asymptotic stability properties and not local stability. Assume the i-th iteration of the control algorithm and the i-th time interval about which a positive definite symmetric matrix P is obtained from the solution of the Riccati Equation appearing in Eq. (79). By following the stages of the stability proof one arrives at Eq. (88) which shows that the H_{∞} tracking performance criterion holds. By selecting the attenuation coefficient ρ to be sufficiently small and in particular to satisfy $\rho^2 < ||e||^2 Q / ||\bar{d}||^2$ one has that the first derivative of the Lyapunov function is upper bounded by 0. Therefore for the i-th time interval it is proven that the Lyapunov function defined in Eq (74) is a decreasing one. This signifies that between the beginning and the end of the i-th time interval there will be a drop of the value of the Lyapunov function and since matrix P is a positive definite one, the only way for this to happen is the Euclidean norm of the state vector error e to be decreasing. This means that comparing to the beginning of each time interval, the distance of the state vector error from 0 at the end of the time interval has diminished. Consequently as the iterations of the control algorithm advance the tracking error will approach zero, and this is a global asymptotic stability condition.

5.2 Robust state estimation with the use of the H_{∞} Kalman Filter

The control loop has to be implemented with the use of information provided by a small number of sensors and by processing only a small number of state variables. To reconstruct the missing information about the state vector of the power-line inspection robot it is proposed to use a filtering scheme and based on it to apply state estimation-based control [37]. The recursion of the H_{∞} Kalman Filter, for the model of the power line inspection robot, can be formulated in terms of a measurement update and a time update part

Measurement update:
\[
D(k) = [I - \theta W(k)P^{-}(k) + CT(k)R(k)^{-1}C(k)P^{-}(k)]^{-1}
\]
\[
K(k) = P^{-}(k)D(k)CT(k)R(k)^{-1}
\]
\[
\dot{\hat{x}}(k) = \dot{\hat{x}}^{-}(k) + K(k)[y(k) - C\dot{\hat{x}}^{-}(k)]
\] (92)
Time update:

\[
\begin{align*}
\dot{x}^{-}(k + 1) &= A(k)x(k) + B(k)u(k) \\
P^{-}(k + 1) &= A(k)P^{-}(k)D(k)A^{T}(k) + Q(k)
\end{align*}
\]

(93)

where it is assumed that parameter θ is sufficiently small to assure that the covariance matrix $P^{-}(k)^{-1} - \theta W(k) + C^{T}(k)R(k)^{-1}C(k)$ will be positive definite. When $\theta = 0$ the H_{∞} Kalman Filter becomes equivalent to the standard Kalman Filter. One can measure only a part of the state vector of the power line inspection robot, for instance state variables x_1 (the tilt angle of the robot’s body with reference to its vertical position), and x_3 (the angle between the initial and active positions of the actuator’s bar), and can estimate through filtering the rest of the state vector elements. Moreover, the proposed Kalman filtering method can be used for sensor fusion purposes.

6 Simulation tests

6.1 Results on nonlinear optimal control of the PLI robot

The tracking performance of the proposed nonlinear optimal (H-infinity) control method for power-line inspection robots was tested through simulation experiments. Indicative values for the parameters of the model of the robotic mechanism are: $l = 0.5m$, $d_1 = 0.5m$, $g = 10m/sec^{2}$, $m_1 = 63Kgr$, $m_2 = 27Kgr$, $h_1 = 0.18m$ and $h_20 = 0.42m$ [1]. The sampling period was $T_s = 0.01$ sec. The obtained results are given in Fig. 4 to Fig. 9. The state variables of the power line inspection robot are printed in blue color, the estimated state variables which were provided by the H-infinity Kalman Filter are printed in green, while the related setpoints plotted in red. The measurement units of angles θ_1 and θ_2 are in rad, while the measurement units of the angular velocities $\dot{\theta}_1$ and $\dot{\theta}_2$ are in rad/sec. The control input u is a torque measured in Ntm. It can be noticed that the tracking error for all state variables of the robotic mechanism has been eliminated, while the transient performance of the control loop was good. Actually, there were neither abrupt variations of the state variables nor excessive values of the control inputs. The transient performance of the control loop depends on the selection of values for parameters r, ρ and Q which appear in the algebraic Riccati equation given in Eq. (79). Actually, the smallest value of ρ for which one can obtain a valid solution of the previously noted Riccati equation, is the one that provides the control loop with maximum robustness.

Comparing to other nonlinear control methods for the model of the power line inspection robot, the proposed nonlinear optimal (H-infinity) control approach exhibits specific advantages (i) unlike global linearization-based control methods (such as Lie algebra-based control or differential flatness theory-based control), the article’s optimal control scheme does not need complicate state variables transformations (diffeomorphisms). Besides, in the article’s approach the control inputs are applied directly on the initial nonlinear state-space model of the power line inspection robot and not on its linearized equivalent description. Thus the inverse transformations and the related singularity problems that may appear in global linearization-based control methods can be avoided. (ii) unlike popular approaches to optimal control met in industry, such as Model Predictive Control (MPC) and Nonlinear Model Predictive Control (NMPC) the stability and convergence of the article’s nonlinear optimal control scheme is assured. MPC is a linear control method and its use in the nonlinear dynamic model of the power line inspection robot will result into loss of stability. Besides, the convergence to an optimum for NMPC is dependent on initialization and parameter values selection and in general cannot be ascertained. (iii) unlike sliding-mode control and backstepping control, the application of the article’s control method does not require the state-space description of the system to be found in a specific form. In the case of sliding-mode control, one has to define the sliding surface however there is no systematic procedure about this unless the system is found in the input-output linearized (canonical) form. In the case of backstepping control the system has to be
found in the backstepping integral (triangular) form. For the state-space model of the power line inspection robot, none of the above two conditions holds, therefore the use of the article’s nonlinear optimal control approach provides the only feasible solution. (iv) unlike PID control the article’s control method is of proven global stability, assures reliable functioning of the power-line inspection robot at all changes of operating points and does not involve any heuristics in the selection of the controller’s gains, (v) unlike multiple models-based control, the article’s control method is computationally more efficient because it performs linearization only around one time-varying setpoint, and involves the solution of only one Riccati equation.

To elaborate on the tracking performance and on the robustness of the proposed nonlinear optimal control method for the power-line inspection robot, the following Tables are given: (i) Table I which provides information about the accuracy of tracking of the reference setpoints by the state variables of the power-line inspection robot under an exact model, (ii) Table II which provides information about the robustness of the control method to parametric changes in the model of the power-line inspection robot (change in drift term \(f_2 \) in the second row of the state-space model, up to 60%). Equivalent results, showing robustness of the control loop have been obtained for changes of the counter-weight mass \(m_2 \) of up to 20%. (iii) Table III which provides information about the precision in state variables’ estimation that is achieved by the H-infinity Kalman Filter, (iv) Table IV which provides the tracking precision of the power-line inspection robot under variable levels (variance) of sensors’ measurement noise.

<table>
<thead>
<tr>
<th>Table I: Nonlinear optimal control</th>
<th>RMSE for the PLI robot without disturbances</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE (x_1)</td>
<td>RMSE (x_2)</td>
</tr>
<tr>
<td>setpoint_1</td>
<td>0.78e-6</td>
</tr>
<tr>
<td>setpoint_2</td>
<td>0.18e-6</td>
</tr>
<tr>
<td>setpoint_3</td>
<td>0.16e-6</td>
</tr>
<tr>
<td>setpoint_4</td>
<td>0.48e-6</td>
</tr>
<tr>
<td>setpoint_5</td>
<td>0.21e-6</td>
</tr>
<tr>
<td>setpoint_6</td>
<td>0.38e-6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table II: Nonlinear optimal control</th>
<th>RMSE for the PLI robot under disturbances</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \alpha)</td>
<td>RMSE (x_1)</td>
</tr>
<tr>
<td>0%</td>
<td>0.1810e-6</td>
</tr>
<tr>
<td>10%</td>
<td>0.1843e-6</td>
</tr>
<tr>
<td>20%</td>
<td>0.1909e-6</td>
</tr>
<tr>
<td>30%</td>
<td>0.1980e-6</td>
</tr>
<tr>
<td>40%</td>
<td>0.2047e-6</td>
</tr>
<tr>
<td>50%</td>
<td>0.2222e-6</td>
</tr>
<tr>
<td>60%</td>
<td>0.2393e-6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table III: Nonlinear optimal control</th>
<th>RMSE for the estimation performed by the H-infinity KF</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE (x_1)</td>
<td>RMSE (x_2)</td>
</tr>
<tr>
<td>setpoint_1</td>
<td>0.0215e-6</td>
</tr>
<tr>
<td>setpoint_2</td>
<td>0.0184e-6</td>
</tr>
<tr>
<td>setpoint_3</td>
<td>0.0179e-6</td>
</tr>
<tr>
<td>setpoint_4</td>
<td>0.0205e-6</td>
</tr>
<tr>
<td>setpoint_5</td>
<td>0.0161e-6</td>
</tr>
<tr>
<td>setpoint_6</td>
<td>0.0197e-6</td>
</tr>
</tbody>
</table>
Figure 4: Nonlinear optimal control of the power-line inspection robot when tracking setpoint 1 (a) state variables $x_i = 1, \ldots, 4$ (blue lines), their estimated values (green lines) and the associated reference setpoints (red lines) (b) tracking errors e_1 (state variable x_1) and e_2 (state variable x_3) and control input u of the power line inspection robot.

Figure 5: Nonlinear optimal control of the power-line inspection robot when tracking setpoint 2 (a) state variables $x_i = 1, \ldots, 4$ (blue lines), their estimated values (green lines) and the associated reference setpoints (red lines) (b) tracking errors e_1 (state variable x_1) and e_2 (state variable x_3) and control input u of the power line inspection robot.
Figure 6: Nonlinear optimal control of the power-line inspection robot when tracking setpoint 3 (a) state variables $x_i = 1, \cdots, 4$ (blue lines), their estimated values (green lines) and the associated reference setpoints (red lines) (b) tracking errors e_1 (state variable x_1) and e_2 (state variable x_3) and control input u of the power line inspection robot.

Figure 7: Nonlinear optimal control of the power-line inspection robot when tracking setpoint 4 (a) state variables $x_i = 1, \cdots, 4$ (blue lines), their estimated values (green lines) and the associated reference setpoints (red lines) (b) tracking errors e_1 (state variable x_1) and e_2 (state variable x_3) and control input u of the power line inspection robot.
Figure 8: Nonlinear optimal control of the power-line inspection robot when tracking setpoint 5 (a) state variables $x_i i = 1, \ldots, 4$ (blue lines), their estimated values (green lines) and the associated reference setpoints (red lines) (b) tracking errors e_1 (state variable x_1) and e_2 (state variable x_3) and control input u of the power line inspection robot.

Figure 9: Nonlinear optimal control of the power-line inspection robot when tracking setpoint 6 (a) state variables $x_i i = 1, \ldots, 4$ (blue lines), their estimated values (green lines) and the associated reference setpoints (red lines) (b) tracking errors e_1 (state variable x_1) and e_2 (state variable x_3) and control input u of the power line inspection robot.
The measurable state variable was the turn angle θ_1 of the first joint of the robot. State estimation has been performed with the use of Kalman Filtering. This filtering approach is also known as Derivative-free nonlinear Kalman Filter (DKF). It consists of the Kalman Filter’s recursion being applied to the linearized state-space description of the power-line inspection robot and is followed by inverse transformations which provide finally the state estimates of the initial nonlinear model of the PLI robot [34]. The obtained results are shown in Fig. 10 to Fig. 15. It can be noticed that the differential flatness theory-based control method had also satisfactory performance. The tracking accuracy of the flatness-based control scheme was at the same order of the one achieved by the above-noted nonlinear optimal control scheme (this accuracy is dependent also on the selection of the feedback control gains).

The comparison between the two control methods has shown that: (i) nonlinear optimal control does not require new state variables definitions and transformation of the state-space representation of the power-line inspection robot, whereas flatness-based control is based on diffeomorphisms that is changes of the state-variables of the robot’s model. (ii) nonlinear optimal control, although being based on an approximate linearization concept achieves comparable tracking performance to the flatness-based control approach which is based on exact modelling of the robot’s dynamics and a global linearization transformation, (iii) nonlinear optimal control is applied directly on the initial nonlinear state-space model of the power-line inspection robot whereas flatness-based control computes control inputs for the linearized equivalent model of the robot and next uses an inverse transformation to obtain the control inputs which should be applied to the real dynamics of the power-line inspection robot. Thus, in the first case, singularities which are related to the inverse transformations are avoided. Despite its conceptual simplicity, the nonlinear optimal control approach is reliable. Besides, it is the only method that assures optimality with respect to the minimization of the energy dissipation by the robot’s actuators.

6.2 Results on flatness-based control of the PLI robot

Control of the power-line inspection robot was also performed by applying differential flatness theory. The sampling period was $T_s = 0.01$ sec. The input-output linearized state-space model of the power-line inspection robot has been written in the canonical Brunvosky form. The design of a stabilizing feedback controller has been based on the pole-placement (eigenvalues assignment) technique) that was described in Section 4. The measurable state variable was the turn angle $x_1 = \theta_1$ of the first joint of the robot. State estimation has been performed with the use of Kalman Filtering. This filtering approach is also known as Derivative-free nonlinear Kalman Filter (DKF). It consists of the Kalman Filter’s recursion being applied to the linearized state-space description of the power-line inspection robot and is followed by inverse transformations which provide finally the state estimates of the initial nonlinear model of the PLI robot [34]. The obtained results are shown in Fig. 10 to Fig. 15. It can be noticed that the differential flatness theory-based control method had also satisfactory performance. The tracking accuracy of the flatness-based control scheme was at the same order of the one achieved by the above-noted nonlinear optimal control scheme (this accuracy is dependent also on the selection of the feedback control gains).

The comparison between the two control methods has shown that: (i) nonlinear optimal control does not require new state variables definitions and transformation of the state-space representation of the power-line inspection robot, whereas flatness-based control is based on diffeomorphisms that is changes of the state-variables of the robot’s model. (ii) nonlinear optimal control, although being based on an approximate linearization concept achieves comparable tracking performance to the flatness-based control approach which is based on exact modelling of the robot’s dynamics and a global linearization transformation, (iii) nonlinear optimal control is applied directly on the initial nonlinear state-space model of the power-line inspection robot whereas flatness-based control computes control inputs for the linearized equivalent model of the robot and next uses an inverse transformation to obtain the control inputs which should be applied to the real dynamics of the power-line inspection robot. Thus, in the first case, singularities which are related to the inverse transformations are avoided. Despite its conceptual simplicity, the nonlinear optimal control approach is reliable. Besides, it is the only method that assures optimality with respect to the minimization of the energy dissipation by the robot’s actuators.

7 Conclusions

A nonlinear optimal (H-infinity) control method has been developed for the dynamic model of a power lines inspection robot. Control and stabilization of this type of robot is a non-trivial problem because of the nonlinear dynamics of the robotic mechanism, as well as because of underactuation. Actually, the considered robotic system has two degrees of freedom while receiving only one control input. To achieve a solution for this control problem, the dynamic model of the power line inspection robot has undergone first approximate linearization around a time-varying operating point which was updated at each time-step of the control method. The linearization process relied on first-order Taylor series expansion and on the computation of the related Jacobian matrices.
Figure 10: Flatness-based control of the power-line inspection robot when tracking setpoint 1: (a) state variables x_i, $i = 1, \cdots, 4$ (blue lines), their estimated values (green lines) and the associated reference setpoints (red lines) (b) tracking errors e_1 (state variable x_1) and e_2 (state variable x_3) and control input u of the power line inspection robot.

Figure 11: Flatness-based control of the power-line inspection robot when tracking setpoint 2: (a) state variables x_i, $i = 1, \cdots, 4$ (blue lines), their estimated values (green lines) and the associated reference setpoints (red lines) (b) tracking errors e_1 (state variable x_1) and e_2 (state variable x_3) and control input u of the power line inspection robot.
Figure 12: Flatness-based control of the power-line inspection robot when tracking setpoint 3: (a) state variables x_i, $i = 1, \cdots, 4$ (blue lines), their estimated values (green lines) and the associated reference setpoints (red lines) (b) tracking errors e_1 (state variable x_1) and e_2 (state variable x_3) and control input u of the power line inspection robot.

Figure 13: Flatness-based control of the power-line inspection robot when tracking setpoint 4: (a) state variables x_i, $i = 1, \cdots, 4$ (blue lines), their estimated values (green lines) and the associated reference setpoints (red lines) (b) tracking errors e_1 (state variable x_1) and e_2 (state variable x_3) and control input u of the power line inspection robot.
Figure 14: Flatness-based control of the power-line inspection robot when tracking setpoint 5: (a) state variables $x_i = 1, \cdots, 4$ (blue lines), their estimated values (green lines) and the associated reference setpoints (red lines) (b) tracking errors e_1 (state variable x_1) and e_2 (state variable x_3) and control input u of the power line inspection robot.

Figure 15: Flatness-based control of the power-line inspection robot when tracking setpoint 6: (a) state variables $x_i = 1, \cdots, 4$ (blue lines), their estimated values (green lines) and the associated reference setpoints (red lines) (b) tracking errors e_1 (state variable x_1) and e_2 (state variable x_3) and control input u of the power line inspection robot.
For the approximately linearized model of the power lines inspection robot an H-infinity feedback controller was designed. To compute the controller’s gains an algebraic Riccati equation was repetitively solved at each iteration of the control algorithm. The global asymptotic stability properties of the control scheme were proven through Lyapunov analysis. The proposed nonlinear optimal (H-infinity) control method retains the advantages of linear optimal control, that is fast and accurate tracking of reference setpoints under moderate variations of the control inputs. The benefit from the application of the proposed control method is in assuring the precise functioning of the power line inspection robot under minimal dissipation of energy by its actuators. Such a type of robots can release the power grid’s maintenance personnel from dangerous tasks related with the inspection of overhead cables of the power transmission and distribution system.

References

