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Abstract—Although radix-10 arithmetic has been gaining 
renewed importance over the last few years, high performance 
decimal systems and techniques are still under development. In 
this paper, a modification of the CORDIC method for decimal 
arithmetic is proposed so as to produce fast rotations. The 
algorithm works with BCD operands and no conversion to binary 
is needed. A significant reduction in the number of iterations in 
comparison to the original decimal CORDIC method is achieved. 
The experiments showing the advantages of the new method are 
described. Finally, the results with regard to delay obtained by 
means of an FPGA implementation of the method are shown. 

I. INTRODUCTION 

Numbers are commonly expressed by human beings using 
decimal representation; as a consequence, in the early days of 
computing, most of the first computers worked with decimal 
operands [1]. However, due to the greater simplicity of binary 
arithmetic unit and the compactness of binary numbers, 
decimal arithmetic fell into disuse and for many years it has 
been difficult to find new proposals of radix 10-based 
computers. This fact has finally led to a preponderance of 
binary systems over decimal ones. In spite of that, some 
examples of decimal architectures can be found, such as 
Hewlett Packard [2], Texas Instruments [3] and Casio 
calculators [4], and some others [4]. 

In recent years, a renewed interest in decimal arithmetic 
computing has arisen, since it is essential for many 
applications. For instance, financial calculations are carried out 
using decimal arithmetic, as binary operations often imply 
rounding up or down the results when working with fractional 
operands. Several studies involving financial and business-
oriented applications have revealed that 55% of the numerical 
data contained in commercial databases are in decimal format 
[5]. The need for high precision engineering and manufacturing 
systems is also essential in CAD/CAM. When defining a radix-
10 magnitude for an object, the internal use of radix-2 usually 
implies loss of precision, since the equivalent binary number is 
likely to have an infinite amount of fractional digits. On the 
other hand, there are currently optic and magnetic sensors 
which directly provide the output in BCD format, so that the 
user can easily monitor the evolution of certain magnitudes and 
detect any errors [6]. The same happens with some types of 
actuators which use ISO-ASCII as the code for inputting data 
to the manufacturing process [7]. 

Proof of the importance recently given to decimal 
representation is the fact that even the IEEE 854 standard uses 
a radix-independent generalization of IEEE 754 and supports 
decimal floating point operations [8], [9].  Recently the IBM 
z900 microprocessor has been developed [10], with a decimal 
arithmetic unit. Furthermore, the European Commission 
specifies a certain number of decimal digits for calculating 
currency conversions [11]. 

CORDIC (COordinate Rotation Digital Computer) is a 
relevant method to approximate mathematical functions [12]. 
This method basically works as an iterative algorithm for 
approximating rotation of a two-dimensional vector using only 
add and shift operations. It is particularly suited to hardware 
implementations due to the fact that it does not require any 
multiplication. Originally, CORDIC was applied to binary 
arithmetic, but later its application was proposed for decimal 
data [13], [14].  

This paper shows new results on the research in decimal 
arithmetic carried out by the authors [15]. Thus, a new 
CORDIC method for decimal operands is proposed, based on 
the use of decimal arithmetic and on the selection of adequate 
angles so as to reduce the number of iterations required to 
obtain a suitable precision. In section II, both the binary and 
the decimal CORDIC method are reviewed. In section III, the 
new CORDIC method is proposed. In order for a real system to 
operate with our method, an architecture carried out on FPGA 
is proposed throughout section IV and the results of a series of 
experiments with regard to precision and the required number 
of stages are showed. Finally, in section V, the conclusions are 
given.  

 

II. THE CORDIC METHOD 

A. Reviewing the binary CORDIC method 
The rotation of a 2D point (x, y) through an angle θ can be 

directly computed by means of the following equations: 
 

 xR = x cos θ - y sin θ (1) 
 yR = x sin θ + y cos θ (2)
   

The above equations imply a high computational cost due to 
the fact that some multiplications and the previous calculation 
of cos θ and sin θ  must be performed. 
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CORDIC was developed by Volder [12] for computing the 
rotation of a 2D vector of circular coordinates expressed as 
binary numbers, exclusively using addition and shift 
operations. Walther [16] extended the method to hyperbolic 
and linear coordinates. CORDIC works in two different modes. 
In rotation mode, a vector (x0, y0) is rotated through an angle θ 
in order to obtain a new vector (xn, yn). The overall rotation is 
divided into micro-rotation such that, in micro-rotation j, an 
angle αj = tan-1(2-j) is added to or subtracted from the 
remaining angle θj. In this way, this angle approaches zero. In 
vectoring mode, the vector (x0, y0) is progressively rotated 
towards the x-axis by means of angles such as those previously 
mentioned, so that the component y approaches 0. As a result, 
the sum of all the angles applied gives the value of the angle of 
vector (x0, y0) towards the x-axis, whereas the final component 
xn is the vector magnitude. The algorithm is based on the 
following equations: 

 
 xj+1 =  xj – m σj yj 2-d(j) (3a) 
 yj+1 = yj + σj xj 2-d(j) (3b) 
 zj+1 =  zj – wd(j) (3c) 

 
The values for m are 1 for circular, -1 for hyperbolic, and 0 

for linear coordinates. The value for σj determines the direction 
of micro-rotation j. In rotation mode, σj is equal to 1 if zj is 
positive, and σj  is equal to -1 otherwise. The values for d(j) 
and wd(j) are shown in Table I, whereas Table II shows the 
results provided by the algorithm in rotation mode depending 
on the type of coordinates. 

The elementary angles αj must fulfil the following 
condition [16]: 
 
 0

1
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With regard to the elementary angles chosen for circular 
coordinates, convergence is guaranteed since the following 
property is accomplished: 
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When working with hyperbolic coordinates, carrying out 

each micro-rotation only once is not sufficient. Indeed, 
convergence can be achieved by repeating certain iterations 
[16], as shown in Table I.  

In iteration j, a scaling factor is added to the new coordinates 
(xj, yj). This factor is given by the following expression: 
 

 j
jm mK −+= 2 1,  (6) 

 
The coordinates obtained after the last iteration have to be 

compensated by multiplying them by Km
-1, taking into account 

that Km results from the following product: 
 

 jm
j

m KK ,∏=  (7) 

TABLE I 
PARAMETERS FOR DIFFERENT COORDINATE TYPE 

Type d(j) wd(j) 

Circular j tan-1 (2-j) 

Hyperbolic j – k, k is the largest integer such that  
3k+1 + 2k - 1 ≤ 2j tanh-1 (2-j) 

Linear j 2-j 

 
TABLE II 

RESULTS FOR DIFFERENT COORDINATE TYPE 

Type Result 

Circular 
xn = K1 (x cos z – y sin z) 

yn = K1 (y cos z + x sin z) 

zn = 0 

Hyperbolic 
xn = K-1 (x cos z + y sin z) 

yn = K-1 (y cos z + x sin z) 

zn = 0 

Linear 
xn = x 

yn = y + x z 

zn = 0 
 
Several methods to avoid performing the final product by 

Km
-1 and carry out the scaling compensation in parallel with 

each of the iterations have been proposed [17]-[20].  

B. Reviewing the Decimal CORDIC Method 
The CORDIC method is flexible and simple, so it is suitable 

for environments in which a small number of hardware 
resources are available. One of these environments is that of 
portable calculators [2]. However, these devices usually work 
with numbers in decimal format and, therefore, binary 
CORDIC cannot be directly used. In [13] and [21] the use of 
CORDIC for BCD operands is proposed. The modification of 
the method, focusing on the case of circular coordinates, is 
expressed by the following iterative equations: 

 
 xj+1 =  xj – σj yj 10-j (8a) 
 yj+1 =   yj + σj xj 10-j (8b) 
 zj+1 =   zj – tan-1(10-j) (8c) 

 
The drawback of this decimal CORDIC method lies on the 

relation between any two consecutive elementary angles in the 
form tan-1(10-j). The relation between any two consecutive 
angles in the form tan-1(2-j) is approximately 2. This fact 
facilitates convergence in binary CORDIC, as expressed in (5). 
However, in the case of decimal representation, each angle is 
approximately 10 times smaller than the previous one, so 
convergence of the method cannot be directly guaranteed. This 
is not specific of radix 10 representation. Recall that in binary 
CORDIC applied to hyperbolic coordinates, certain iterations 
must be repeated so as to guarantee convergence. According to 
decimal CORDIC, each iteration but the initial one must be 
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repeated 9 times so as to achieve convergence [13]. In this 
case, the following condition is fulfilled: 

 

 
0)10(tan9)10(tan , 

1
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References [13] and [21] show that decimal CORDIC can 

compute sine and cosine functions with a 5-digit accuracy if at 
least 30 angular steps are performed. These results are suitable 
in terms of precision. However, this method cannot compete 
with binary CORDIC with regard of latency, since the binary 
method requires a smaller number of iterations so as to obtain 
the same precision. Therefore, the advantages of using the 
algorithm with BCD operands would be reduced to omit 
conversion between BCD and binary representation and, 
consequently, to avoid loss of precision. 

 

III. THE NEW DECIMAL CORDIC METHOD 

The proposal for a new decimal CORDIC method is based 
on the selection of successive angles αj such that:  

 
 αj  = tan-1(z⎣j⎦) (10) 

 
where z⎣j⎦ is the value resulting from truncating zj after the 

first digit on the left different from 0. In this way, the z 
component for accumulating the remaining angle is calculated 
by means of the following expression: 

 
 zj+1 =  zj – tan-1(z⎣j⎦) (11) 

 
The angles αj can be alternately determined in the following 

way: 
 

 tan(αj)  = tan(tan-1(z⎣j⎦) = z⎣j⎦ (12) 
 
As a consequence, the equations for the iterative 

computation of x and y are expressed as follows: 
 

 xj+1 =  xj – m σj z⎣j⎦ yj (13) 
 yj+1 = yj + σj z⎣j⎦ xj (14) 
  

From this point on, the new decimal CORDIC will be 
referred to as ND-CORDIC, whereas binary CORDIC and the 
previous decimal CORDIC will be referred to as B-CORDIC 
and D-CORDIC, respectively. Table III shows an example 
where the initial rotating angle is z0 = 0.785398. The different 
values for zj, z⎣j⎦, and tan-1(z⎣j⎦) according to each iteration j are 
presented. Table IV shows the different values for xj and yj 
according to each iteration and the above mentioned rotation 
angle, and taking into account the initial values x0 = 0.931420 
and y0 = 0.538504. 

 
 
 

TABLE III 
VALUES FOR ZJ, αJ AND TAN-1(αJ) 

Iteration zj z⎣j⎦ tan-1(z⎣j⎦) 
j = 0 0.785398 0.7 0.610725 
j = 1 0.174672 0.1 0.099668 
j = 2 0.075003 0.07 0.069886 
j = 3 0.005117 0.005 0.004999 
j = 4 0.000117 0.0001 0.0001 
j = 5 0.000017 0.00001 0.00001 
j = 6 0.000007 0.000007 0.000007 
j = 7 0.000000 0.000000 0.000000 

 
TABLE IV 

VALUES FOR ZJ, αJ AND TAN-1(αJ) 

Iteration xj yj α j = z⎣j⎦ 
j = 0 0.931420 0.538504 0.7 
j = 1 0.554467 1.190498 0.1 
j = 2 0.435417 1.245945 0.07 
j = 3 0.348201 1.276424 0.005 
j = 4 0.341822 1.278165 0.0001 
j = 5 0.341694 1.278199 0.00001 
j = 6 0.341681 1.278202 0.000007 
j = 7 0.341669 1.278205 0 

 
As shown in the last row of Table IV, the final values for the 

rotated coordinates are x7 = 0.341669, y7 = 1.278205. The 
rotation of the original point, directly computed by means of  
(1) and (2), gives as a result the values xR = 0.277834 and yR = 
1.039393. The divergence between (x7, y7) and (xR, yR) is 
caused by the scaling factor that is incorporated within each 
ND-CORDIC iteration. The computation of the factor for 
compensating this scaling can be obtained by means of the 
following expression: 

 
 KND

-1 = ∏j = 0..n cos(tan-1(z⎣j⎦)) (15) 
 
In Table V, the values for the scaling compensation factor 

incorporated within the first iterations are shown. For relatively 
small values of z⎣j⎦, the scaling factor can be assumed to be 
equal to 1. The last row contains the value for the global 
scaling factor KND

-1  as defined in (15). 
 

TABLE V 
TERMS  DETERMINING THE SCALING FACTOR 

Iteration z⎣j⎦ cos(tan-1(z⎣j⎦)) 
j = 0 0.7 0.81923192 
j = 1 0.1 0.99503719 
j = 2 0.07 0.99755897 
j = 3 0.005 0.9999875 
j = 4 0.0001 1 
j = 5 0.00001 1 
j = 6 0.000007 1 
KND

-1  0.81316621 
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The results of the products x7·KND
-1 and y7·KND

-1 give an error 
equal to 4.39821· 10-7 for coordinate x and 1.17566· 10-7 for 
coordinate y. 

The scale factor compensation by means of multiplication 
must be avoided due to the high computational cost of this 
operation. In B-CORDIC, compensation without products is 
easy to perform due to the fact that the scale factor is a constant 
[12]. However, in ND-CORDIC this factor varies depending 
on the different angles chosen through the method iterations, as 
shown in Table V. 

A technique based on LUT (look-up tables) can be used 
which allows the compensation to be performed on each 
iteration. Equations (13) and (14) can be modified in order to 
include the compensation, which results in the following 
expression, where the superscript C indicates that the 
coordinates are scaling-compensated: 

 
 xj+1

C =  (xj – m σj z⎣j⎦ yj) cos(tan-1(z⎣j⎦)) (16) 
 yj+1

C = (yj + σj z⎣j⎦ xj) cos(tan-1(z⎣j⎦)) (17) 
 
The above equations can be rewritten in the following way: 
 

 xj+1
C =  xj cos(tan-1(z⎣j⎦) – m σj z⎣j⎦ yj cos(tan-1(z⎣j⎦)) (18) 

 yj+1
C = yj cos(tan-1(z⎣j⎦) + σj z⎣j⎦ xj cos(tan-1(z⎣j⎦)) (19) 

 
In equations (18) and (19), four different terms appear: 

 
 tx,0  = xj cos(tan-1(z⎣j⎦)) (20a) 
 ty,0 = yj cos(tan-1(z⎣j⎦)) (20c) 
 tx,1 =  z⎣j⎦ yj cos(tan-1(z⎣j⎦)) (20b) 
 ty,1 =  z⎣j⎦ xj cos(tan-1(z⎣j⎦)) (20d) 

 
The proposed compensation technique consists in storing the 

above four terms in four independent blocks of LUT. The 
entries for each block of LUT consist of the one-digit mantissa 
and the exponent of z⎣j⎦ , and also the value of xj or yj. If each 
term was stored on a single LUT, the size of each LUT would 
be excessive. For instance, when a precision of 6 fractional 
digits is required, 24 bits are needed for each coordinate, 4 for 
indicating the mantissa of z⎣j⎦, and 3 for indicating the exponent 
of z⎣j⎦  (from 000 to 110). Thus, the size of a monolithic LUT 
for each term would be 24·6 + 3 + 4 · 4 · 6 = 6144 MB. Instead, 
much smaller LUT can be used. If the different BCD X3 digits 
of xj are considered, the term tx0 can be expressed as: 

 
 tx,0  = (xj[5] xj[4] xj[3] xj[2] xj[1] xj[0]) cos(tan-1(z⎣j⎦)) (21) 
 

Therefore, each small LUT will receive as inputs the value 
of a single digit of the coordinate and the mantissa and 
exponent of z⎣j⎦ . For 6 fractional digits, the size of each LUT 
would be 24 + 3 + 4 · 4 · 6 = 6 KB. Since 6 fractional digits and 

four terms must be considered, the overall memory size would 
be 6 KB · 6 · 4 = 144 KB. In this case, 6 LUT would constitute 
the storage block for tx,0, other 6 LUT would compound the 
LUT block for tx,1, and so 

Therefore, each small LUT will receive as inputs the value 
of a single digit of the coordinate and the mantissa and 
exponent of z⎣j⎦ . For 6 fractional digits, the size of each LUT 
would be 24 + 3 + 4 · 4 · 6 = 6 KB. Since 6 fractional digits and 
four terms must be considered, the overall memory size would 
be 6 KB · 6 · 4 = 144 KB. In this case, 6 LUT would constitute 
the storage block for tx,0, other 6 LUT would compound the 
LUT block for tx,1, and so on.  

 

IV. DECIMAL CORDIC ARCHITECTURE. EXPERIMENTATION 

A. Some Details on the Architecture Implementation 
Addition on BCD operands is more complex than binary 

addition since the carry resulting from the sum of two digits 
must be propagated to the sum of the following ones [13]. 
Moreover, the sum of two BCD digits must be corrected 
adding the value 6 to this sum if it is greater than 9. 

BCD X3 representation allows decimal addition/subtraction 
to be more efficiently performed, since only two 4-bit binary 
adders are required for each pair of digits. The final result is 
directly obtained in BCD X3. More detailed information on 
BCD X3 adders can be found in [13]. Conversion from BCD to 
BCD X3 requires only 10 gates distributed over 3 level, and 
similar resources are needed when transforming BCD X3 into 
BCD operands. Therefore, the use of BCD X3 is proposed 
since addition, subtraction, and other operations are simpler 
than for BCD. 

The complete architecture for each of the iterations of the 
proposed ND-CORDIC method is shown in Fig 1. 

B. Experiments on Precision 
Different tests were carried out so as to make a complete 

comparison with regard to precision between B-CORDIC, D-
CORDIC, and the ND-CORDIC method proposed in this work. 
Values within the range [0, 1) were chosen for the (x, y) 
coordinates and also for the rotation angle θ. Original data 
were represented in BCD with 6 fractional digits. For D-
CORDIC and ND-CORDIC, a conversion stage from BCD to 
BCD X3 was included, whereas for B-CORDIC the BCD 
operands were converted into binary numbers. In any case, 28-
bit operands were considered. The experiments were aimed at 
comparing the number of iterations required in each method so 
as to achieve suitable precision. In the test, 500 random points 
were rotated through a random angle. The results for the error 
distribution are shown in Fig. 2, whereas the results for the 
maximum relative error are shown in Fig. 3. 
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A decreasing tendency can be observed for every method as 

the number of iterations increases. However, the error 
decreases much faster for ND-CORDIC. For this method, the 
error reaches stability in about 10 iterations, whereas for D-
CORDIC and B-CORDIC much more iterations are required. 
In addition, the maximum error is always lower for the ND-
CORDIC method. The mean and maximum relative error for 
ND-CORDIC seems to be always lower than those for D-
CORDIC and B-CORDIC. 

C. Experiments on Latency and Hardware resources 
The proposed architecture was implemented on VHDL using 
the Xilinx ISE 7.1i tool. The Virtex4 XC4VLX60 FPGA was 
chosen for simulation. The architectures for D-CORDIC 
proposed in [13] and [21] and for B-CORDIC were also 
implemented. In all cases, a complete stage of the method was 
implemented, with the type of adder and shifter, if needed, 
being varied according to each method. The global method was 
implemented on an unfolded architecture. Conventional 
arithmetic was used. In case of B-CORDIC, the scaling factor 
was compensated by means of the method proposed in [20], 
which allows the compensating product to be transformed into 
simple additional shift-add iterations. In case of ND-CORDIC, 
the compensation was achieved by means of the LUT 
technique previously described. The initial conversion from 
BCD to BCD X3 and the final conversion the other way were 
also included for the D-CORDIC and the ND-CORDIC 
methods. For B-CORDIC, an initial conversion from BCD to 
binary and a final conversion the other way were also 
implemented. A homogeneous length of 28 bits was used for 
every number format, so six fractional digits, corresponding to 
24 bits, were considered for the BCD original numbers. 

 
 

 
The results for the delays and the FPGA resources used, 

when considering a single iteration and including number 
format conversions and scaling compensation, are shown in 
Table VI for comparison. As it can be observed, the delay for 
the proposed ND-CORDIC is less than half the delay for the 
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Fig. 1.  The architecture for an ND-CORDIC iteration. 
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Fig. 2. Relative error distribution when calculating the rotation of vectors 
within the circumference unit, according to the number of iterations; 
logarithmic scale (  = D-CORDIC;  = B- CORDIC;  = ND-CORDIC). 
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Fig. 3. Maximum relative error on calculating the rotation of vectors within
the circumference unit, according to the number of iterations; logarithmic
scale (  = D-CORDIC;  = B- CORDIC;  = ND-CORDIC). 
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conventional D-CORDIC. Although B-CORDIC has the least 
delay per iteration, it must be taken into account that a higher 
number of iterations must be performed so as to achieve a 
precision similar to the one obtained with ND-CORDIC. 

An overall comparison between the three methods including 
precision and delay, has been performed. The results are shown 
in Fig. 4, where the product of the mean relative error and the 
delay in nanoseconds is depicted for each architecture. It can 
be observed that ND-CORDIC offers better global 
performance than D-CORDIC and B-CORDIC for the 
considered iterations. 

 
TABLE VI 

SINGLE STAGE DELAY FOR DIFFERENT CORDIC ARCHITECTURES 

Results B-CORDIC D-CORDIC ND-CORDIC 

Delay (ns) 48.413 225.182 103.042 

Slices 909 (3%) 5785 (21%) 8585 (32%) 

4-input LUT 1626 (3%) 5416 (10%) 9746 (18%) 

Bonded IOB 172 (26%) 172 (26%) 172 (26%) 

 

 

V. CONCLUSIONS 

One of the most important tasks in new hardware design is to 
achieve high performance rates with a trade-off between 
precision and delays of the circuitry that forms these new 
embedded architectures. It seems that there is a growing trend 
towards developing new systems integrating decimal 
arithmetic, which is required in many practical research areas. 

In this work a new CORDIC method for performing 
rotations on decimal coordinates has been proposed. The tests 
performed confirm that the proposed method requires fewer 
number of iterations so as to obtain a required precision. 
Moreover, the maximum error obtained is always lower for the 
proposed method than for binary and decimal CORDIC. 

On the other hand, with regard to latency, the experiments 
show that the proposed method has a much lower delay than 
that for decimal CORDIC. In addition, the indices obtained are 
not very far from those obtained by binary CORDIC. 

As a future work, an interesting task consists in developing a 
hardware implementation of a specific CORDIC-based rotator 
embedded on a decimal architecture. At this point, new scaling 
compensation techniques must be studied and developed so as 
to improve delay and resources utilization. 

This work has been supported by the Generalitat Valenciana 
(Spain) under Grant No. GV/2007/173. 
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Fig. 4.  Mean relative error × delay for each CORDIC architecture; 
logarithmic scale (  = D-CORDIC;  = B- CORDIC;  = ND-CORDIC ).
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