
A High Performance Architecture for Rotating
Decimal Coordinates

Jose-Luis Sanchez, Higinio Mora, Jeronimo Mora, Antonio Jimeno

Computer Technology Department
University of Alicante

Alicante, Spain
Email: sanchez@dtic.ua.es, hmora@dtic.ua.es, jeronimo@dtic.ua.es, jimeno@dtic.ua.es

Abstract—Although radix-10 arithmetic has been gaining
renewed importance over the last few years, high performance
decimal systems and techniques are still under development. In
this paper, a modification of the CORDIC method for decimal
arithmetic is proposed so as to produce fast rotations. The
algorithm works with BCD operands and no conversion to binary
is needed. A significant reduction in the number of iterations in
comparison to the original decimal CORDIC method is achieved.
The experiments showing the advantages of the new method are
described. Finally, the results with regard to delay obtained by
means of an FPGA implementation of the method are shown.

I. INTRODUCTION

Numbers are commonly expressed by human beings using
decimal representation; as a consequence, in the early days of
computing, most of the first computers worked with decimal
operands [1]. However, due to the greater simplicity of binary
arithmetic unit and the compactness of binary numbers,
decimal arithmetic fell into disuse and for many years it has
been difficult to find new proposals of radix 10-based
computers. This fact has finally led to a preponderance of
binary systems over decimal ones. In spite of that, some
examples of decimal architectures can be found, such as
Hewlett Packard [2], Texas Instruments [3] and Casio
calculators [4], and some others [4].

In recent years, a renewed interest in decimal arithmetic
computing has arisen, since it is essential for many
applications. For instance, financial calculations are carried out
using decimal arithmetic, as binary operations often imply
rounding up or down the results when working with fractional
operands. Several studies involving financial and business-
oriented applications have revealed that 55% of the numerical
data contained in commercial databases are in decimal format
[5]. The need for high precision engineering and manufacturing
systems is also essential in CAD/CAM. When defining a radix-
10 magnitude for an object, the internal use of radix-2 usually
implies loss of precision, since the equivalent binary number is
likely to have an infinite amount of fractional digits. On the
other hand, there are currently optic and magnetic sensors
which directly provide the output in BCD format, so that the
user can easily monitor the evolution of certain magnitudes and
detect any errors [6]. The same happens with some types of
actuators which use ISO-ASCII as the code for inputting data
to the manufacturing process [7].

Proof of the importance recently given to decimal
representation is the fact that even the IEEE 854 standard uses
a radix-independent generalization of IEEE 754 and supports
decimal floating point operations [8], [9]. Recently the IBM
z900 microprocessor has been developed [10], with a decimal
arithmetic unit. Furthermore, the European Commission
specifies a certain number of decimal digits for calculating
currency conversions [11].

CORDIC (COordinate Rotation Digital Computer) is a
relevant method to approximate mathematical functions [12].
This method basically works as an iterative algorithm for
approximating rotation of a two-dimensional vector using only
add and shift operations. It is particularly suited to hardware
implementations due to the fact that it does not require any
multiplication. Originally, CORDIC was applied to binary
arithmetic, but later its application was proposed for decimal
data [13], [14].

This paper shows new results on the research in decimal
arithmetic carried out by the authors [15]. Thus, a new
CORDIC method for decimal operands is proposed, based on
the use of decimal arithmetic and on the selection of adequate
angles so as to reduce the number of iterations required to
obtain a suitable precision. In section II, both the binary and
the decimal CORDIC method are reviewed. In section III, the
new CORDIC method is proposed. In order for a real system to
operate with our method, an architecture carried out on FPGA
is proposed throughout section IV and the results of a series of
experiments with regard to precision and the required number
of stages are showed. Finally, in section V, the conclusions are
given.

II. THE CORDIC METHOD

A. Reviewing the binary CORDIC method
The rotation of a 2D point (x, y) through an angle θ can be

directly computed by means of the following equations:

 xR = x cos θ - y sin θ (1)
 yR = x sin θ + y cos θ (2)

The above equations imply a high computational cost due to
the fact that some multiplications and the previous calculation
of cos θ and sin θ must be performed.

1757978-1-4244-1666-0/08/$25.00 '2008 IEEE

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE. Downloaded on October 16, 2009 at 04:53 from IEEE Xplore. Restrictions apply.

CORDIC was developed by Volder [12] for computing the
rotation of a 2D vector of circular coordinates expressed as
binary numbers, exclusively using addition and shift
operations. Walther [16] extended the method to hyperbolic
and linear coordinates. CORDIC works in two different modes.
In rotation mode, a vector (x0, y0) is rotated through an angle θ
in order to obtain a new vector (xn, yn). The overall rotation is
divided into micro-rotation such that, in micro-rotation j, an
angle αj = tan-1(2-j) is added to or subtracted from the
remaining angle θj. In this way, this angle approaches zero. In
vectoring mode, the vector (x0, y0) is progressively rotated
towards the x-axis by means of angles such as those previously
mentioned, so that the component y approaches 0. As a result,
the sum of all the angles applied gives the value of the angle of
vector (x0, y0) towards the x-axis, whereas the final component
xn is the vector magnitude. The algorithm is based on the
following equations:

 xj+1 = xj – m σj yj 2-d(j) (3a)
 yj+1 = yj + σj xj 2-d(j) (3b)
 zj+1 = zj – wd(j) (3c)

The values for m are 1 for circular, -1 for hyperbolic, and 0

for linear coordinates. The value for σj determines the direction
of micro-rotation j. In rotation mode, σj is equal to 1 if zj is
positive, and σj is equal to -1 otherwise. The values for d(j)
and wd(j) are shown in Table I, whereas Table II shows the
results provided by the algorithm in rotation mode depending
on the type of coordinates.

The elementary angles αj must fulfil the following
condition [16]:

 0

1

≥+≤ ∑
+=

jn

n

jk

jj ,ααα (4)

With regard to the elementary angles chosen for circular
coordinates, convergence is guaranteed since the following
property is accomplished:

 0)2(tan)2(tan ,
1

11 ≥≤ ∑
+=

−−−− j
n

jk

kj (5)

When working with hyperbolic coordinates, carrying out

each micro-rotation only once is not sufficient. Indeed,
convergence can be achieved by repeating certain iterations
[16], as shown in Table I.

In iteration j, a scaling factor is added to the new coordinates
(xj, yj). This factor is given by the following expression:

 j
jm mK −+= 2 1, (6)

The coordinates obtained after the last iteration have to be

compensated by multiplying them by Km
-1, taking into account

that Km results from the following product:

 jm
j

m KK ,∏= (7)

TABLE I
PARAMETERS FOR DIFFERENT COORDINATE TYPE

Type d(j) wd(j)

Circular j tan-1 (2-j)

Hyperbolic j – k, k is the largest integer such that
3k+1 + 2k - 1 ≤ 2j tanh-1 (2-j)

Linear j 2-j

TABLE II

RESULTS FOR DIFFERENT COORDINATE TYPE

Type Result

Circular
xn = K1 (x cos z – y sin z)

yn = K1 (y cos z + x sin z)

zn = 0

Hyperbolic
xn = K-1 (x cos z + y sin z)

yn = K-1 (y cos z + x sin z)

zn = 0

Linear
xn = x

yn = y + x z

zn = 0

Several methods to avoid performing the final product by

Km
-1 and carry out the scaling compensation in parallel with

each of the iterations have been proposed [17]-[20].

B. Reviewing the Decimal CORDIC Method
The CORDIC method is flexible and simple, so it is suitable

for environments in which a small number of hardware
resources are available. One of these environments is that of
portable calculators [2]. However, these devices usually work
with numbers in decimal format and, therefore, binary
CORDIC cannot be directly used. In [13] and [21] the use of
CORDIC for BCD operands is proposed. The modification of
the method, focusing on the case of circular coordinates, is
expressed by the following iterative equations:

 xj+1 = xj – σj yj 10-j (8a)
 yj+1 = yj + σj xj 10-j (8b)
 zj+1 = zj – tan-1(10-j) (8c)

The drawback of this decimal CORDIC method lies on the

relation between any two consecutive elementary angles in the
form tan-1(10-j). The relation between any two consecutive
angles in the form tan-1(2-j) is approximately 2. This fact
facilitates convergence in binary CORDIC, as expressed in (5).
However, in the case of decimal representation, each angle is
approximately 10 times smaller than the previous one, so
convergence of the method cannot be directly guaranteed. This
is not specific of radix 10 representation. Recall that in binary
CORDIC applied to hyperbolic coordinates, certain iterations
must be repeated so as to guarantee convergence. According to
decimal CORDIC, each iteration but the initial one must be

1758

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE. Downloaded on October 16, 2009 at 04:53 from IEEE Xplore. Restrictions apply.

repeated 9 times so as to achieve convergence [13]. In this
case, the following condition is fulfilled:

0)10(tan9)10(tan ,

1

11 ≥≤ ∑
+=

−−−− j
n

jk

kj

 (9)

References [13] and [21] show that decimal CORDIC can

compute sine and cosine functions with a 5-digit accuracy if at
least 30 angular steps are performed. These results are suitable
in terms of precision. However, this method cannot compete
with binary CORDIC with regard of latency, since the binary
method requires a smaller number of iterations so as to obtain
the same precision. Therefore, the advantages of using the
algorithm with BCD operands would be reduced to omit
conversion between BCD and binary representation and,
consequently, to avoid loss of precision.

III. THE NEW DECIMAL CORDIC METHOD

The proposal for a new decimal CORDIC method is based
on the selection of successive angles αj such that:

 αj = tan-1(z⎣j⎦) (10)

where z⎣j⎦ is the value resulting from truncating zj after the

first digit on the left different from 0. In this way, the z
component for accumulating the remaining angle is calculated
by means of the following expression:

 zj+1 = zj – tan-1(z⎣j⎦) (11)

The angles αj can be alternately determined in the following

way:

 tan(αj) = tan(tan-1(z⎣j⎦) = z⎣j⎦ (12)

As a consequence, the equations for the iterative

computation of x and y are expressed as follows:

 xj+1 = xj – m σj z⎣j⎦ yj (13)
 yj+1 = yj + σj z⎣j⎦ xj (14)

From this point on, the new decimal CORDIC will be
referred to as ND-CORDIC, whereas binary CORDIC and the
previous decimal CORDIC will be referred to as B-CORDIC
and D-CORDIC, respectively. Table III shows an example
where the initial rotating angle is z0 = 0.785398. The different
values for zj, z⎣j⎦, and tan-1(z⎣j⎦) according to each iteration j are
presented. Table IV shows the different values for xj and yj
according to each iteration and the above mentioned rotation
angle, and taking into account the initial values x0 = 0.931420
and y0 = 0.538504.

TABLE III
VALUES FOR ZJ, αJ AND TAN-1(αJ)

Iteration zj z⎣j⎦ tan-1(z⎣j⎦)
j = 0 0.785398 0.7 0.610725
j = 1 0.174672 0.1 0.099668
j = 2 0.075003 0.07 0.069886
j = 3 0.005117 0.005 0.004999
j = 4 0.000117 0.0001 0.0001
j = 5 0.000017 0.00001 0.00001
j = 6 0.000007 0.000007 0.000007
j = 7 0.000000 0.000000 0.000000

TABLE IV

VALUES FOR ZJ, αJ AND TAN-1(αJ)

Iteration xj yj α j = z⎣j⎦
j = 0 0.931420 0.538504 0.7
j = 1 0.554467 1.190498 0.1
j = 2 0.435417 1.245945 0.07
j = 3 0.348201 1.276424 0.005
j = 4 0.341822 1.278165 0.0001
j = 5 0.341694 1.278199 0.00001
j = 6 0.341681 1.278202 0.000007
j = 7 0.341669 1.278205 0

As shown in the last row of Table IV, the final values for the

rotated coordinates are x7 = 0.341669, y7 = 1.278205. The
rotation of the original point, directly computed by means of
(1) and (2), gives as a result the values xR = 0.277834 and yR =
1.039393. The divergence between (x7, y7) and (xR, yR) is
caused by the scaling factor that is incorporated within each
ND-CORDIC iteration. The computation of the factor for
compensating this scaling can be obtained by means of the
following expression:

 KND

-1 = ∏j = 0..n cos(tan-1(z⎣j⎦)) (15)

In Table V, the values for the scaling compensation factor

incorporated within the first iterations are shown. For relatively
small values of z⎣j⎦, the scaling factor can be assumed to be
equal to 1. The last row contains the value for the global
scaling factor KND

-1 as defined in (15).

TABLE V
TERMS DETERMINING THE SCALING FACTOR

Iteration z⎣j⎦ cos(tan-1(z⎣j⎦))
j = 0 0.7 0.81923192
j = 1 0.1 0.99503719
j = 2 0.07 0.99755897
j = 3 0.005 0.9999875
j = 4 0.0001 1
j = 5 0.00001 1
j = 6 0.000007 1
KND

-1 0.81316621

1759

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE. Downloaded on October 16, 2009 at 04:53 from IEEE Xplore. Restrictions apply.

The results of the products x7·KND
-1 and y7·KND

-1 give an error
equal to 4.39821· 10-7 for coordinate x and 1.17566· 10-7 for
coordinate y.

The scale factor compensation by means of multiplication
must be avoided due to the high computational cost of this
operation. In B-CORDIC, compensation without products is
easy to perform due to the fact that the scale factor is a constant
[12]. However, in ND-CORDIC this factor varies depending
on the different angles chosen through the method iterations, as
shown in Table V.

A technique based on LUT (look-up tables) can be used
which allows the compensation to be performed on each
iteration. Equations (13) and (14) can be modified in order to
include the compensation, which results in the following
expression, where the superscript C indicates that the
coordinates are scaling-compensated:

 xj+1

C = (xj – m σj z⎣j⎦ yj) cos(tan-1(z⎣j⎦)) (16)
 yj+1

C = (yj + σj z⎣j⎦ xj) cos(tan-1(z⎣j⎦)) (17)

The above equations can be rewritten in the following way:

 xj+1
C = xj cos(tan-1(z⎣j⎦) – m σj z⎣j⎦ yj cos(tan-1(z⎣j⎦)) (18)

 yj+1
C = yj cos(tan-1(z⎣j⎦) + σj z⎣j⎦ xj cos(tan-1(z⎣j⎦)) (19)

In equations (18) and (19), four different terms appear:

 tx,0 = xj cos(tan-1(z⎣j⎦)) (20a)
 ty,0 = yj cos(tan-1(z⎣j⎦)) (20c)
 tx,1 = z⎣j⎦ yj cos(tan-1(z⎣j⎦)) (20b)
 ty,1 = z⎣j⎦ xj cos(tan-1(z⎣j⎦)) (20d)

The proposed compensation technique consists in storing the

above four terms in four independent blocks of LUT. The
entries for each block of LUT consist of the one-digit mantissa
and the exponent of z⎣j⎦ , and also the value of xj or yj. If each
term was stored on a single LUT, the size of each LUT would
be excessive. For instance, when a precision of 6 fractional
digits is required, 24 bits are needed for each coordinate, 4 for
indicating the mantissa of z⎣j⎦, and 3 for indicating the exponent
of z⎣j⎦ (from 000 to 110). Thus, the size of a monolithic LUT
for each term would be 24·6 + 3 + 4 · 4 · 6 = 6144 MB. Instead,
much smaller LUT can be used. If the different BCD X3 digits
of xj are considered, the term tx0 can be expressed as:

 tx,0 = (xj[5] xj[4] xj[3] xj[2] xj[1] xj[0]) cos(tan-1(z⎣j⎦)) (21)

Therefore, each small LUT will receive as inputs the value
of a single digit of the coordinate and the mantissa and
exponent of z⎣j⎦ . For 6 fractional digits, the size of each LUT
would be 24 + 3 + 4 · 4 · 6 = 6 KB. Since 6 fractional digits and

four terms must be considered, the overall memory size would
be 6 KB · 6 · 4 = 144 KB. In this case, 6 LUT would constitute
the storage block for tx,0, other 6 LUT would compound the
LUT block for tx,1, and so

Therefore, each small LUT will receive as inputs the value
of a single digit of the coordinate and the mantissa and
exponent of z⎣j⎦ . For 6 fractional digits, the size of each LUT
would be 24 + 3 + 4 · 4 · 6 = 6 KB. Since 6 fractional digits and
four terms must be considered, the overall memory size would
be 6 KB · 6 · 4 = 144 KB. In this case, 6 LUT would constitute
the storage block for tx,0, other 6 LUT would compound the
LUT block for tx,1, and so on.

IV. DECIMAL CORDIC ARCHITECTURE. EXPERIMENTATION

A. Some Details on the Architecture Implementation
Addition on BCD operands is more complex than binary

addition since the carry resulting from the sum of two digits
must be propagated to the sum of the following ones [13].
Moreover, the sum of two BCD digits must be corrected
adding the value 6 to this sum if it is greater than 9.

BCD X3 representation allows decimal addition/subtraction
to be more efficiently performed, since only two 4-bit binary
adders are required for each pair of digits. The final result is
directly obtained in BCD X3. More detailed information on
BCD X3 adders can be found in [13]. Conversion from BCD to
BCD X3 requires only 10 gates distributed over 3 level, and
similar resources are needed when transforming BCD X3 into
BCD operands. Therefore, the use of BCD X3 is proposed
since addition, subtraction, and other operations are simpler
than for BCD.

The complete architecture for each of the iterations of the
proposed ND-CORDIC method is shown in Fig 1.

B. Experiments on Precision
Different tests were carried out so as to make a complete

comparison with regard to precision between B-CORDIC, D-
CORDIC, and the ND-CORDIC method proposed in this work.
Values within the range [0, 1) were chosen for the (x, y)
coordinates and also for the rotation angle θ. Original data
were represented in BCD with 6 fractional digits. For D-
CORDIC and ND-CORDIC, a conversion stage from BCD to
BCD X3 was included, whereas for B-CORDIC the BCD
operands were converted into binary numbers. In any case, 28-
bit operands were considered. The experiments were aimed at
comparing the number of iterations required in each method so
as to achieve suitable precision. In the test, 500 random points
were rotated through a random angle. The results for the error
distribution are shown in Fig. 2, whereas the results for the
maximum relative error are shown in Fig. 3.

1760

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE. Downloaded on October 16, 2009 at 04:53 from IEEE Xplore. Restrictions apply.

A decreasing tendency can be observed for every method as

the number of iterations increases. However, the error
decreases much faster for ND-CORDIC. For this method, the
error reaches stability in about 10 iterations, whereas for D-
CORDIC and B-CORDIC much more iterations are required.
In addition, the maximum error is always lower for the ND-
CORDIC method. The mean and maximum relative error for
ND-CORDIC seems to be always lower than those for D-
CORDIC and B-CORDIC.

C. Experiments on Latency and Hardware resources
The proposed architecture was implemented on VHDL using
the Xilinx ISE 7.1i tool. The Virtex4 XC4VLX60 FPGA was
chosen for simulation. The architectures for D-CORDIC
proposed in [13] and [21] and for B-CORDIC were also
implemented. In all cases, a complete stage of the method was
implemented, with the type of adder and shifter, if needed,
being varied according to each method. The global method was
implemented on an unfolded architecture. Conventional
arithmetic was used. In case of B-CORDIC, the scaling factor
was compensated by means of the method proposed in [20],
which allows the compensating product to be transformed into
simple additional shift-add iterations. In case of ND-CORDIC,
the compensation was achieved by means of the LUT
technique previously described. The initial conversion from
BCD to BCD X3 and the final conversion the other way were
also included for the D-CORDIC and the ND-CORDIC
methods. For B-CORDIC, an initial conversion from BCD to
binary and a final conversion the other way were also
implemented. A homogeneous length of 28 bits was used for
every number format, so six fractional digits, corresponding to
24 bits, were considered for the BCD original numbers.

The results for the delays and the FPGA resources used,

when considering a single iteration and including number
format conversions and scaling compensation, are shown in
Table VI for comparison. As it can be observed, the delay for
the proposed ND-CORDIC is less than half the delay for the

yj

z⎣ j ⎦ - Calculator

BCD X3 Adder

xj

Register x Register y

Register z

zj

LUT
x cos(atan(z⎣ j ⎦))

LUT
z⎣ j ⎦ x cos(atan(z⎣ j ⎦))

LUT
atan(z⎣ j ⎦)

LUT
y cos(atan(z⎣ j ⎦))

LUT
z⎣ j ⎦ y cos(atan(z⎣ j ⎦))

ez⎣ j ⎦ & mz⎣ j ⎦

BCD X3 Adder

BCD X3 Adder

yj+1xj+1 zj+1

Fig. 1. The architecture for an ND-CORDIC iteration.

1,00E-07

1,00E-06

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1,00E+01

1,00E+02

1 2 3 4 5 6 7 8 9 10 11 12
Iterations

Er
ro

r (
%

)

Fig. 2. Relative error distribution when calculating the rotation of vectors
within the circumference unit, according to the number of iterations;
logarithmic scale (= D-CORDIC; = B- CORDIC; = ND-CORDIC).

1,00E-06

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1,00E+01

1,00E+02

1 2 3 4 5 6 7 8 9 10 11 12
Iterations

Er
ro

r (
%

)

Fig. 3. Maximum relative error on calculating the rotation of vectors within
the circumference unit, according to the number of iterations; logarithmic
scale (= D-CORDIC; = B- CORDIC; = ND-CORDIC).

1761

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE. Downloaded on October 16, 2009 at 04:53 from IEEE Xplore. Restrictions apply.

conventional D-CORDIC. Although B-CORDIC has the least
delay per iteration, it must be taken into account that a higher
number of iterations must be performed so as to achieve a
precision similar to the one obtained with ND-CORDIC.

An overall comparison between the three methods including
precision and delay, has been performed. The results are shown
in Fig. 4, where the product of the mean relative error and the
delay in nanoseconds is depicted for each architecture. It can
be observed that ND-CORDIC offers better global
performance than D-CORDIC and B-CORDIC for the
considered iterations.

TABLE VI

SINGLE STAGE DELAY FOR DIFFERENT CORDIC ARCHITECTURES

Results B-CORDIC D-CORDIC ND-CORDIC

Delay (ns) 48.413 225.182 103.042

Slices 909 (3%) 5785 (21%) 8585 (32%)

4-input LUT 1626 (3%) 5416 (10%) 9746 (18%)

Bonded IOB 172 (26%) 172 (26%) 172 (26%)

V. CONCLUSIONS

One of the most important tasks in new hardware design is to
achieve high performance rates with a trade-off between
precision and delays of the circuitry that forms these new
embedded architectures. It seems that there is a growing trend
towards developing new systems integrating decimal
arithmetic, which is required in many practical research areas.

In this work a new CORDIC method for performing
rotations on decimal coordinates has been proposed. The tests
performed confirm that the proposed method requires fewer
number of iterations so as to obtain a required precision.
Moreover, the maximum error obtained is always lower for the
proposed method than for binary and decimal CORDIC.

On the other hand, with regard to latency, the experiments
show that the proposed method has a much lower delay than
that for decimal CORDIC. In addition, the indices obtained are
not very far from those obtained by binary CORDIC.

As a future work, an interesting task consists in developing a
hardware implementation of a specific CORDIC-based rotator
embedded on a decimal architecture. At this point, new scaling
compensation techniques must be studied and developed so as
to improve delay and resources utilization.

This work has been supported by the Generalitat Valenciana
(Spain) under Grant No. GV/2007/173.

REFERENCES
[1] H. H. Goldstine and A. Goldstine, “The Electronic Numerical Integrator

and Computer (ENIAC),” IEEE Annals Hist. Comput., vol. 18 #1, pp. 10-
16, 1996.

[2] D. S. Cochran. “Algorithms and Accuracy in the HP-35,” HP Journal,
pp. 10-11, July 1972.

[3] TI-89/TI-92 Plus Developers Guide, Beta Version .02, Texas Instruments,
Jan. 2001.

[4] M. F. Cowlishaw, “Decimal Floating Point: Algorism for Computers,”
Proc. 16th IEEE Symp. Computer Arithmetic, 2003.

[5] A. Tsang and M. Olschanowsky, “A Study of Database 2 Customer
Queries,” IBM Santa Teresa Laboratory, San Jose, CA, Technical Report
TR-03-413, 1991.

[6] S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed Strain Sensor using
Fiber Gratin-Tuned Fiber Laser with a Semiconductor Optical
Amplifier,” IEEE Photonics Technology Letters, vol. 13, no. 4, pp. 350-
351, 2001.

[7] S. McMains, J. Smith, and C. Séquin, “The evolution of a layered
manufacturing interchange format,” Proc. DETC02, ASME Design
Engineering Technical Conferences, pp.945-953, Sept. 2002.

[8] IEEE 854-1987 – IEEE Standard for Radix-Independent Floating-Point
Arithmetic, The Institute of Electrical and Electronics Engineers, Inc.,
New York, 1987.

[9] Draft IEEE Standard for Floating-Point Arithmetic, The Institute of
Electrical and Electronics Engineers, Inc., New York, 2005.

[10] F. Y. Busaba, C. A. Krygowski, W. H. Li, E. M. Schwarz, and S. R.
Carlough, “The IBM z900 Decimal Arithmetic Unit,” Proc.35th
Asilomar Conf. Signals, Systems and Computers, pp. 1335-1339, 2001.

[11] European Commission Directorate General II, “The Introduction of the
Euro and the Rounding of Currency Amounts,” Note II/28/99-EN Euro
Papers no. 22., 32pp, Belgium, 1999.

[12] J. Volder, “The CORDIC Trigonometric Computing Technique,” IRE
Trans. Electron. Comput., vol. EC-8, no. 3, pp. 330-334, 1959.

[13] H. Schmid, Decimal Computation. NY: John Wiley & Sons, 1974.
[14] J. C. Kropa, “Calculator Algorithms,” Mathematics Magazine, vol. 51,

no. 2, pp. 106-109, March 1978.
[15] J. -L. Sanchez, A. Jimeno, H. Mora, J. Mora, and F. Pujol, “A CORDIC-

based Architecture for High Performance Decimal Calculations,” Proc.
2007 International Symposium on Industrial Electronics, pp. 1951-1956,
Jun. 2007.

[16] J. S. Walther, “A unified algorithm for elementary functions,” Proc.
AFIPS Spring Joint Computer Conf., 1971, pp. 379-385.

[17] A. Despain, “Fourier Transform Computers Using CORDIC Iterations,”
IEEE Trans. Comput., vol. C-23, no. 10, pp. 993-1001, Oct. 1974.

[18] E. F. Deprettere, P. Dewilde, and R. Udo, “Pipelined CORDIC
architecture for fast VLSI filtering and array processing,” Proc.
ICASSP’84, 1984, pp. 41.A.6.1-41.A.6.4.

[19] G. Haviland and A. Tuszynski, “A CORDIC Arithmetic Processor Chip,”
IEEE Trans. Comput., vol. C-29, no. 2, pp. 68-79, Feb. 1990.

[20] D. Timmermann, H. Hahn, B. J. Hosticka, and B. Rix, “A new addition
scheme and fast scaling factor compensation methods for CORDIC
algorithms,” INTEGRATION, the VLSI Journal, 11, pp. 85-100, 1991.

[21] H. Schmid and A. Bogacki, “Use decimal CORDIC for generation of
many transcendental functions,” EDN, pp. 64-73, Feb. 1973.

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1,00E+01

1,00E+02

1,00E+03

1,00E+04

1,00E+05

1 2 3 4 5 6 7 8 9 10 11 12
Iterations

Er
ro

r
(%

) ·
 n

s

Fig. 4. Mean relative error × delay for each CORDIC architecture;
logarithmic scale (= D-CORDIC; = B- CORDIC; = ND-CORDIC).

1762

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE. Downloaded on October 16, 2009 at 04:53 from IEEE Xplore. Restrictions apply.

