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In this work, motivated by the fact that higher dimensional theories predict the existence of black
holes which differ from their four dimensional counterpart, we analyse the geodesics and black hole
shadow cast by a general non–extremal five dimensional black hole. The system under consideration
corresponds to the Chong–Cvetič–Lü–Pope (Phys. Rev.Lett.95, 161301 (2005)), which has the
Myers–Perry black hole as a limit.

PACS numbers:

I. INTRODUCTION

Black holes (BHs) are a generic prediction of Einstein’s General Relativity [1] (GR) and other metric theories of
gravity, and they are believed to be formed in the gravitational collapse of massive stars during their final stages.
BHs are the simplest objects in the Universe, characterized entirely by a handful of parameters, namely their mass,
charges and rotation speed, although they are more than mathematical objects.

The first BH solution was found by K. Schwarzschild and describes the spacetime of a non-rotating BH [2]. Later
on, H. Reissner [3] and G. Nordström [4] found a BH solution describing the spacetime of a non-rotating BH with a
possible non-vanishing electrically charge [7]. The first rotating BH solution was found by R. Kerr in 1967 [5] and
further developments on this direction led to obtaining the charged rotating solution by E. Newman and co-workers
in 1965 [6]. As it is well known, the rotating BHs are more important in the astrophysical observations, as the BH
spin plays a critical and key role in any astrophysical process. In this respect, the development on rotating solutions
has increase considerably in recent years (see [8–16], for example). Also, the interest in higher dimensional black hole
physics is constantly increasing (see for instance [17–19] and references therein.)

From the experimental point of view, recent advances have led to the direct observations of BHs. In particular, on
one hand, five years ago the LIGO collaboration directly detected for the first time the gravitational waves emitted
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from a BH merger of ∼ 60 M� [20], but there was no information on the defining property of BHs, which is no
other than their horizon. On the other hand, around one year ago the Event Horizon Telescope (EHT) project [21],
observed a characteristic shadow-like image [22] (see also [23–27] for physical origin of the shadow, data processing
and calibration, instrumentation etc), that is a darker region over a brighter background, via strong gravitational
lensing and photon capture at the horizon. Thus, the observation of the shadow does probe the space-time geometry
in the vicinity of the horizon, and doing so it tests the existence and properties of the latter [28], although one
should keep in mind that other horizon-less objects that possess light rings also cast shadows [29–36], and therefore
the presence of a shadow does not necessarily implies that the object is a BH. Therefore, shadows as well as strong
lensing [37, 38] images provide us with the exciting opportunity a) to detect the nature of a compact object, and b)
to test whether the gravitational field around a compact object is described by a rotating or non-rotating geometry.
For a recent brief review on shadows see [39]. The shadow of the Schwarzschild geometry was considered in [40, 41],
while the shadow cast by the Kerr solution was studied in [42] (see also [43]). For shadows of Kerr BHs with scalar
hair see [44, 45], and for BH shadows in other frameworks see [46–87].

In recent years the study of BHs in five dimensions and the shadow they cast [88–92] has become in an active
research line motivated by ideas in the braneworld, string theory and gauge/gravity duality [93–95]. Kaluza–Klein
theories [96, 97] and Superstring Theory [98, 99] suggest that extra spatial dimensions may exist. What is more,
the remarkable AdS / CFT correspondence [100, 101] motivates the study of theories with a negative cosmological
constant. In supergravity [102], which is the low-energy limit of superstring theory, consistency of supersymmetry
transformations requires a scalar potential for the scalar degrees of freedom, or the presence of a non-vanishing
CC if there are no scalar degrees of freedom. Gauged supergravities [103], where the gravitinos are charged under
the gauge fields, very often admit anti–de Sitter space as a vacuum state, and thus BH solutions of these theories
are of physical relevance to the proposed AdS/CFT correspondence [104]. Contrary to 4D SUGRA, where the
bosonic part of the Lagrangian consists of the Einstein-Maxwell theory, and a single angular momentum for rotating
solutions, in higher dimensions there are several angular momenta Ji equal to the rank of the rotation group
SO(D− 1) [105]. Furthermore, in odd number of dimensions D = 5, 7, ... there is a also a Chern-Simons term, which
although does not affect static (non-rotating) solutions, does affect stationary (rotating) solutions [106]. For charged,
rotating BH solutions in 5D gauged SUGRA see e.g. [89, 104, 106–108] and references therein. In the present
work we propose to study photon orbits via the Hamilton-Jacobi equations, and the shadow cast of the general,
non–extremal rotating BH solution in 5D gauged SUGRA with two–independent rotating parameters, obtained in [89].

In the present work, we will perform a geodesic analysis, and also we compute the black hole shadows of a non-
extremal rotating black hole in five-dimensional gauged supergravity. It should be pointed out that such analysis is
made for the first time due to the complexity of the metric. In particular, although the method used here is not new,
the implementation of that is quite complicated, and an analytical solution, although possible, is highly non-trivial.
We use the well-known celestial coordinates (α, β) to parametrize the black hole shadow.
Our work is organized as follows. In the next section, we briefly summarize the main aspects of the five dimensional
solution in [89]. In section III, we study the separability if the Hamilton–Jacobi equations while in section IV we
deduce the suitable celestial coordinates for the study of the silhouette cast by our 5D-model and plot the associated
shadows. Finally, we conclude our work in the last section.

II. FIVE DIMENSIONAL ROTATING BH SOLUTION

This section is devoted to review the main aspects on the Chong–Cvetič–Lü–Pope (CCLP) general non-extremal
rotating BH in minimal five-dimensional gauged supergravity reported in [89].

In terms of the Boyer–Lindquist like–coordinates, (t, r, θ, φ, ψ), the non–vanishing components of the metric are given
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by

g00 = −∆θ(1 + g2r2)

ΞaΞb
+

∆2
θ(2mρ

2 − q2 + 2abqg2ρ2)

ρ4Ξ2
aΞ2

b

g03 = −∆θ[a(2mρ2 − q2) + bqρ2(1 + a2g2)] sin2 θ

ρ4Ξ2
aΞb

g04 = −∆θ[b(2mρ
2 − q2) + aqρ2(1 + b2g2)] cos2 θ

ρ4Ξ2
bΞa

g33 =
(r2 + a2) sin2 θ

Ξa
+
a[a(2mρ2 − q2) + 2bqρ2] sin4 θ

ρ4Ξ2
a

g44 =
(r2 + b2) cos2 θ

Ξb
+
b[b(2mρ2 − q2) + 2aqρ2] cos4 θ

ρ4Ξ2
a

g34 =
[ab(2mρ2 − q2) + (a2 + b2)qρ2] sin2 θ cos2 θ

ρ4ΞaΞb

g11 =
ρ2

∆r

g22 =
ρ2

∆θ
, (1)

where

∆θ = 1− a2g2 cos2 θ − b2g2 sin2 θ (2)

∆r =
(r2 + a2)(r2 + b2)(1 + g2r2) + q2 + 2abq

r2
− 2m (3)

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ (4)

Ξa = 1− a2g2

Ξb = 1− b2g2, (5)

which solve the equations of motion of minimal gauged five-dimensional supergravity, which follow from the Lagrangian
[89]

L = (R+ 12g2) ∗ 1− 1

2
∗ F ∧ F +

1

3
√

3
F ∧ F ∧A, (6)

with F = dA and g > 0. Note that, the other well known five dimensional Myers–Perry BH solution is recovered in
the limits g → 0 and q → 0, namely

gMP
00 = −1 +

2m

ρ2
(7)

gMP
03 = −2am sin2(θ)

ρ2
(8)

gMP
04 = −2bm cos2(θ)

ρ2
(9)

gMP
33 = sin2 θ

(
2a2m sin2 θ

ρ2
+ a2 + r2

)
(10)

gMP
44 = cos2 θ

(
2b2m cos2 θ

ρ2
+ b2 + r2

)
(11)

gMP
34 =

2abm sin2 θ cos2 θ

ρ2
(12)

gMP
11 =

r2ρ2

r2 (a2 + b2 − 2m) + a2b2 + r4
(13)

gMP
22 = ρ2. (14)
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A particularity of CCLP model is that, under certain considerations, we can ensure both the BPS limit and the
avoidance of naked closed time-like curves (CTC’s) of the solution. To this end the set of parameters {q, a, b, g,m}
must be restricted as

q =
m

1 + (a+ b)g
(15)

gm = (a+ b)(1 + ag)(1 + bg)(1 + ag + bg), (16)

form where the function ∆r has a double root and now is given by

∆r = r−2(r2 − r2
0)2[g2r2 + (1 + ag + bg)], (17)

with r2
0 = g−1(a + b + abg). Note that, at the Killing horizon r = r0, the determinant of the metric in the (θ, φ, ψ)

direction reads

(a+ b)2(a+ b+ abg) sin2 θ

4g3(1− ag)2(1− bg)2
, (18)

which implies that the remaining free parameters must be restricted to

a+ b+ abg > 0, (19)

in order the no apparition of CTC’s is ensured. It is worth noticing that restriction (15) and (16) characterized the
extremal solution.

Another interesting feature to be discussed corresponds to the static limit surface, namely, the region where any
observer cannot remain at rest and cannot be static which requires g00 = 0. The behaviour of the outer ergoregion in
x− z plane is depicted in fig. 1 for both, the CCLP and MP BH solutions. It should be mentioned that although the
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FIG. 1: Ergoregion for the extremal CCLP (black solid line), the non-extremal CCLP case (blue dashed line) and
MP BH (red dashed line). All the figures have been plotted assuming a = 4, b = 1 and m = 100. For the

non–extremal CCLP case we have assume g = 0.1, q = 80.

CCLP and the MP solutions depend on a different set of parameters, in Fig. 1 we have used the same values for the
parameters they share, namely {a, b,m}, with the aim to compare the results. In this regard, the ergoregion defined
by the MP model is greater than both the non–extremal and extremal shown by the CCLP solution.
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III. HAMILTON–JACOBI EQUATIONS AND BH SHADOWS

The Hamilton-Jacobi formalism represents an efficient method to derive the equations of motion for test particles
because instead of solving second order differential equations arising from the geodesic equation, it leads to first
order equations, which significantly simplifies the calculations [7]. In this section we shall follow the Hamilton-Jacobi
formalism to obtain the geodesic equations for the CCLP model. It should be emphasized that, to the best of our
knowledge, this is the first time that the geodesic equations for the CCLP solution is found the manner we show here.

Let us start with the Hamilton–Jacobi equations written in the form

2
∂S

∂τ
= gµν

∂S

∂xµ
∂S

∂xν
, (20)

where S is the Jacobi action and τ is the proper time. By assuming the separability of the Jacobi action, we
propose

S =
ε

2
τ − Et+ Lφφ+ Lψψ + Sr(r) + Sθ(θ) (21)

where ε = 0 for null geodesics and ε = 1 for time-like ones. Furthermore, E,Lφ and Lψ are the conserve energy and
momenta per unit mass. Replacing (21) in (20) we arrive at

ε = g00E2 − 2g03ELφ − 2g04ELψ + g33L2
φ + g44L2

ψ

+2g34LφLψ + g11

(
∂Sr
∂r

)2

+ g22

(
∂Sθ
∂θ

)2

. (22)

For the CCLP solution, gµν components of the metric are given by

g00 =
1

ρ2

(
A(r)

∆r
− 1

g2

(
1

∆θ
− 1

1 + g2r2

)
ΞaΞb

)
(23)

g11 =
∆r

ρ2
(24)

g22 =
∆θ

ρ2
(25)

g33 =
1

ρ2

(
B(r)

∆r
+

(
1

sin2 θ
+
b2 − a2

a2 + r2

)
Ξa

)
(26)

g44 =
1

ρ2

(
C(r)
∆r

+

(
1

cos2 θ
+
a2 − b2

b2 + r2

)
Ξb

)
(27)

g03 =
D(r)

ρ2∆r
(28)

g04 =
E(r)

ρ2∆r
(29)

g34 =
F(r)

ρ2∆r
(30)

where, after a long computation, A,B, C,D, E and F read

A = −
abg2q

(
2a2b2 + 2a2r2 + abq + 2b2r2 + 2r4

)
−
(
a2 + b2 + r2

) (
q2 − 2mr2

)
+ 2a2b2m

(g2r2 + 1)
(31)

B =
a2
(
−b2

(
2g2mr2 − g2q2 + 2m

)
+ g2r2

(
q2 − 2mr2

)
− 2mr2 + q2

)
− 2abq

(
b2 + r2

) (
g2r2 + 1

)
− b2q2

(a2 + r2)
(32)

C =
b2
(
−a2

(
2g2mr2 − g2q2 + 2m

)
+ g2r2

(
q2 − 2mr2

)
− 2mr2 + q2

)
− 2abq

(
a2 + r2

) (
g2r2 + 1

)
− a2q2

(b2 + r2)
(33)

D = −(a2
(
b3g2q + bg2qr2

)
+ a

(
2b2m+ 2mr2 − q2

)
+ b3q + bqr2) (34)

E = −(b2
(
a3g2q + ag2qr2

)
+ b

(
2a2m+ 2mr2 − q2

)
+ a3q + aqr2) (35)

F = −(a2q
(
g2r2 + 1

)
+ ab

(
2g2mr2 − g2q2 + 2m

)
+ b2q

(
g2r2 + 1

)
) (36)
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Replacing (23), (24), (25), (26), (27), (28), (29), (30) in (22) we obtain

∆r

(
∂Sr
∂r

)2

+

(
A+

ΞaΞb∆r

g2(1 + g2r2)

)
E2

∆r
+

(
B +

Ξa(b2 − a2)∆r

r2 + a2

)
L2
φ

∆r
+

(
C +

Ξb(a
2 − b2)∆r

r2 + b2

)
L2
ψ

∆r

+2
FLφLψ

∆r
− 2(DLφ + ELψ)

E

∆r
− εr2 = −Q (37)

∆θ

(
∂Sθ
∂θ

)2

− ΞaΞbE
2

g2∆θ
+ Ξa csc2 θL2

φ + Ξb sec2 θL2
ψ −

ε

g2
(1−∆θ) = Q (38)

with Q the Carter constant [109]. Next, Eqs. (37) and (38) can be formally integrated to yield

Sr =

∫ r
√
R

∆r
dr (39)

Sθ =

∫ θ
√

Θ√
∆θ

dθ, (40)

where

R = −Q∆r −
(
A+

ΞaΞb∆r

g2(1 + g2r2)

)
E2 − 2FLφLψ −

(
B +

Ξa(b2 − a2)∆r

r2 + a2

)
L2
φ −

(
C +

Ξb(a
2 − b2)∆r

r2 + b2

)
L2
ψ

+2(DLφ + ELψ)E + ε∆rr
2 (41)

Θ = Q+
ΞaΞbE

2

g2∆θ
− Ξa csc2 θL2

φ − Ξb sec2 θL2
ψ +

ε

g2
(1−∆θ). (42)

The Jacobi action reads now

S =
ετ

2
− Et+ Lφφ+ Lψψ +∫ r
√
R

∆r
dr +

∫ θ
√

Θ√
∆θ

dθ. (43)

Finally, the complete geodesic equations of the CCLP BH are obtained by taking variations of the Jacobi action
respect to the parameters {ε, E, Lφ, Lψ},

ρ2ṫ =
1

∆r

(
A+

ΞaΞb∆r

g2(1 + g2r2)
− DLφ + ELψ

E

)
E − ΞaΞb

g2∆θ
(44)

ρ2φ̇ = − 1

∆r

(
FLψ +

(
B +

Ξa(b2 − a2)∆r

r2 + a2

)
Lφ −DE

)
− Ξa csc2 θLφ (45)

ρ2ψ̇ = − 1

∆r

(
FLφ +

(
C +

Ξb(a
2 − b2)∆r

r2 + b2

)
Lψ − EE

)
− Ξb sec2 θLψ (46)

ρ4ṙ2 = R (47)

ρ4θ̇2 = ∆θΘ, (48)

where the dot represents derivative with respect to τ . We remark that this is the first time that Eqs. (44), (45), (46),
(47) and (48) are presented accordance to the like–Boyer–Lindquist coordinates.

For ε = 0, the above equations describe the propagation of light around our five dimensional BH. In this respect, the
information about the silhouette of the BH in encoded in the radial motion by Eq. (47) with ε = 0 from where the
effective potential reads

Veff = −Q∆r −
(
A+

ΞaΞb∆r

g2(1 + g2r2)

)
E2 − 2FLφLψ −

(
B +

Ξa(b2 − a2)∆r

r2 + a2

)
L2
φ −

(
C +

Ξb(a
2 − b2)∆r

r2 + b2

)
L2
ψ

+2(DLφ + ELψ)E. (49)
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FIG. 2: Effective potential, Veff as a function of r for a = 0.4, m = 0.1, g = 0.05, Q/E2 = 1 and Lψ = 0. In left
panel we set b = a and Lφ/E = 60 (black), Lφ/E = 60 (blue) and Lφ/E = 70 (red). In the right panel b = 0.1 and

Lφ/E = 150 (black), Lφ/E = 200 (blue) and Lφ/E = 250 (red)

As it is well known, the effective potential for the photon can be though as a barrier with a maximum which comes
from minus infinity (behind the horizon) and to a constant value for r →∞ (see figure 2). Even more, the path taken
by the photons could be of three types depending of their energy, E, as they approach to the maximum of Veff .
The first case corresponds to photons that arrive from infinity with E > VMAX

eff , so that they are scattered by the
BH, penetrate the horizon and fall down into the black hole. The second case corresponds to these photons arriving
to the BH with E < VMAX

eff , so that they are scattered around the BH and come back to infinity. The third case

corresponds to photons with energy E = VMAX
eff , so that this is a unstable orbit with constant radius. Is precisely

the unstable orbits which are the responsible of the shadow observed, namely, observers located far from the BH
associate a silhouette with the information of the photons with energy E ' VMAX

eff . Photons fulfilling that condition
can barely escape from falling into the black hole and focus in a celestial plane.

From the above discussion we can define the condition for unstable orbits as Veff = 0 and ∂Veff/∂r = 0. This
condition leads to expression involving the impact parameters η = Q/E2, ξ1 = Lφ/E and ξ2 = Lψ/E which, given
the nature of the solution, are too long to be shown here. However, in some particular cases the expressions can be
simplified as we shall discuss in what follows.

First, let us define the Lagrangian

L =
1

2
gµν ẋ

µẋν , (50)

from where, given that {t, φ, ψ} are cyclic, it is straightforward to obtain the conserved quantities {E,Lψ, Lφ} as
follows

−E =
∂L

∂ṫ
= g00ṫ+ g03φ̇+ g04ψ̇ (51)

Lφ =
∂L

∂φ̇
= g03ṫ+ g33φ̇+ g34ψ̇ (52)

Lψ =
∂L

∂ψ̇
= g04ṫ+ g34φ̇+ g44ψ̇. (53)

Note that, for θ = 0, Lφ = 0 and for θ = π
2 , Lψ = 0. Without lost of generality, let us consider ξ2 = 0 (θ = π/2) so

the conditions Veff = 0 and ∂Veff/∂r = 0 leads to

aξ2
1 + bξ1 + c = 0 (54)
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with

a = B∆′r − B′∆r +
2r(b2 − a2)Ξa∆2

r

(a2 + r2)2
(55)

b = 2(D′∆r −D∆′r) (56)

c = A∆′r −A′∆r +
2rΞaΞb∆

2
r

(1 + g2r2)2
. (57)

For η, the solution can be written as

η = −
(
B

∆r
+

Ξa(b2 − a2)

r2 + a2

)
ξ2
1 +

2D
∆r

ξ1 −
A
∆r
− ΞaΞb
g2(1 + g2r2)

. (58)

Of course, for θ = 0 (ξ1 = 0) the expressions are formally the same so we will not consider this case separately
here.

IV. CELESTIAL COORDINATES AND SHADOWS

Let us consider an observer far form the black hole at an distance r0 and with certain inclination angle θ0 between
the line of the sight of the observer and the axis of rotation the BH. For this observer, the shadow of the black hole
is projected in a celestial plane which axis we label as (α, β) and that, following [110], can be written as

α = lim
r0→∞

− r0

ϑ+ ϕξ1 + %ξ2

(
ξ1√
g33

+
ξ2√
g44

)
(59)

β = ± lim
r0→∞

r0

ϑ+ ϕξ1 + %ξ2

√
Θ

√
g22E

, (60)

with ϑ =
√
−g00, ϕ =

√
−g03 and % =

√
−g04. Be aware and notice that, similarly to the four-dimensional case,

this case can also be well understood by the above-mentioned standard celestial coordinates (α, β). Thus, such
coordinates define a plane, and the silhouette is embedded in such a plane. What is more, the corresponding shadow
is then obtained whether we take into account equatorial orbits of photon around the 5-dimensional black hole from
the effective potential. For a pictorial representation of the physical situation, see Fig. (3).
However, it is worth noticing that, as the solution is not asymptotically flat but anti–de Sitter, the limit process
should not to be taken to r0 → ∞ but to some finite value. More precisely, as stated in [111] in the context of
shadows of Kerr-Newman-NUT black holes with a cosmological constant, the anti–de Sitter case the domain of outer
communication of the BH, namely, the region between r →∞ and the first horizon corresponds to the region where
we can place observers for observing the shadow of the BH.
In the present case, we have

ϑ ≈

√
ΞaΞb

∆θg2r2
0

(61)

ϕ = % ≈ 0 (62)

g22 ≈
r2
0

∆θ
(63)

g33 ≈
r2
0

Ξa
sin2 θ (64)

g44 ≈
r2
0

Ξb
cos2 θ, (65)

form where the celestial coordinates take the form

α̃ =
ξ1 csc θ√

Ξb
∆θg2

+
ξ2 sec θ√

Ξa
∆θg2

(66)

β̃ =
g∆θ√
ΞaΞb

√
η +

ΞaΞb
g2∆θ

− Ξa csc2 θξ2
1 − Ξb sec2 θξ2

2 , (67)
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FIG. 3: The figure shows a pictorial representation of how the light emitted from specific sources is curved by a
black hole up to be received by the observer finally. Also, the corresponding celestial coordinates are included to

clarify its geometrical meaning.

with α̃ = −α/r0 and β̃ = β/r0 the normalized celestial coordinates. It should be highlighted that, to the best of our
knowledge, this is the first time that celestial coordinates for the CCLP model have been express as Eqs. (66) and
(67). Besides, it is worth mentioning that results (66) and (67) differ from the celestial coordinates usually reported
in the literature. The main reason is that, in our case, the metric depends on Ξa,Ξb,∆θ which appear explicitly in
our expressions. Of course, if we discard one of the angular momentum parameters or consider an extra constraint
between the parameters of the solution as usually done in the literature, we recover the standard expression for the
celestial coordinates. More precisely, if we follow the same procedure with the MP solution, the expressions for α
and β correspond to those previously reported as we demonstrate in what follows.
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In this case, the inverse components of the metric are given by

g00
MP = −1−

2m
(
a2 + r2

) (
b2 + r2

)
∆ρ2

(68)

g11
MP =

∆

r2ρ2
(69)

g22
MP =

1

ρ2
(70)

g33
MP =

b4 − a2b2 − 2b2m− a2r2 + b2r2

∆ρ2
+

csc2 θ

ρ2
(71)

g44
MP =

a4 − a2b2 − 2a2m+ a2r2 − b2r2

∆ρ2
+

sec2 θ

ρ2
(72)

g03
MP = −

2am
(
b2 + r2

)
∆ρ2

(73)

g04
MP = −

2bm
(
a2 + r2

)
∆ρ2

(74)

g34
MP = −2abm

∆ρ2
(75)

∆ = (r2 + a2)(r2 + b2)− 2mr2 (76)

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, (77)

which can be easily obtained after taking the limits q → 0 and g → 0 in Eqs. (23),(24), (25), (26), (28), (29), (30).
Now, it is straightforward to show that, for the MP case, the Hamilton–Jacobi equations can be separated as

1

r

∂S̃r
∂r

=

√
R̃

∆
(78)

∂S̃θ
∂θ

=
√

Θ̃ (79)

with

R̃ = −∆Q+ LEE2 + ε∆r2 − LφL2
φ − LψL2

ψ + 4abmLφLψ

−4am(b2 + r2)ELφ − 4bm(a2 + r2)ELψ (80)

Θ̃ = Q− Lφ csc2 θ − Lψ sec2 θ + (E2 + ε)(ρ2 − r2), (81)

and

LE = r2∆ + 2m(a2 + r2)(b2 + r2) (82)

Lφ = b4 − a2b2 − 2b2m− a2r2 + b2r2 (83)

Lψ = a4 − a2b2 − 2a2m+ a2r2 − b2r2 (84)

For this case the celestial coordinates read

α = −(ξ1 csc θ + ξ2 sec θ) (85)

β = ±
√
η + a2 cos2 θ + b2 sin2 θ − ξ2

1 csc2 θ − ξ2
2 sec2 θ. (86)

In what follows we shall explore the black holes shadow associated to the CCLP solutions for both a = b and a 6= b in
the non–extremal and extremal cases. Given that the mass and the charge can be expressed in terms of the parameters
{a, b, g} the strategy we shall follow here is to set some values for m and q in the non–extremal cases and set the
values given by the constraints (15) and (16) for the extremal solution.

A. Case I: θ = π/2; a = b

In fig. 4 we show the shadow of the non–extremal CCLP BH for a = b. Note that for each panel shown in Fig. 4 the
size of the shadow increases as a does. Furthermore, for the same a, the area of the shadow increases as g increases.
A similar behaviour is observed in the extremal case shown in fig. 5
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FIG. 4: BH shadow for the non extremal CCLP BH for a = 0.4 (black), a = 0.45 (blue) and a = 0.5 (red) for
m = 0.1, q = 6 and g = 0.05 (left), g = 0.07 (middle), and g = 0.09 (right)
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FIG. 5: BH shadow for the extremal CCLP BH for a = 0.4 (black), a = 0.45 (blue) and a = 0.5 (red) and g = 0.05
(left), g = 0.07 (middle), and g = 0.09 (right)

B. Case II: θ = π/2; a 6= b

In fig. 6 we show the shadow of the non–extremal CCLP BH for a 6= b. Note that, in contrast to the previous case
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FIG. 6: BH shadow for the–non extremal CCLP BH for a = 0.4 (black), a = 0.45 (blue) and a = 0.5 (red) for
m = 0.1, q = 6, b = 0.1 and g = 0.05 (left), g = 0.07 (middle), and g = 0.09 (right)

the shadow maintain the same area but the silhouette appears distorted. Besides, as a increases the shadow shift to
left.
In fig. 7 we show the shadow of the extremal CCLP BH. Note that the shadow increases as a and g increases in
accordance to the case a = b. However, all the silhouettes appears to have the same value at (−α̃, 0) but the point
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FIG. 7: BH shadow for the extremal CCLP BH for a = 0.4 (black), a = 0.45 (blue) and a = 0.5 (red) for b = 0.1 and
g = 0.05 (left), g = 0.07 (middle), and g = 0.09 (right)

(α̃, 0) moves to the right as a increases. Besides, although the parameters involved are the same, the size of the
shadow is appreciable more greater than in the previous cases. Indeed, the scale in Fig. (7) is at leas two orders of
magnitude greater than in the rest of the plots.

V. CONCLUSIONS

Shadow cast by black holes in several different contexts has been a very active research field over the last years,
and especially after the first image of a supermassive BH at the center of M87 two years ago by the Event Horizon
Telescope. Moreover, theories with negative cosmological constant can be embedded in a supersymmetric setting
obtaining gauged supergravity theories in various dimensions. Motivated by this fact, in this work we performed a
detailed analysis of the geodesics around the Chong–Cvetič–Lü–Pope general non-extremal rotating BH in minimal
five-dimensional gauged supergravity reported in [89]. In particular we followed the Hamilton-Jacobi formalism to
obtain the geodesic equations of the solution for both massive and massless particles. Then, we analysed the effective
radial potential and imposed the constraint to unstable orbits which allowed us to obtain the parametrical expressions
for the impact parameters. As far as we know, this is the first time this procedure is presented in the literature. Besides,
we deduced the coordinates of the celestial plane and compare this result with the obtained in the Myers-Perry case.
To study the silhouette cast by the Chong–Cvetič–Lü–Pope black hole, we considered equatorial geodesics defined by
the vanishing of one of the angular momentum for both the non–extremal and extremal solutions. All the figures were
plotted using the same set of parameters for a direct comparison, and as a result, we obtained that although the shape
of the shadow appeared distorted in in some cases, their area was of the same order except for the extremal black
hole with different angular parameters which size is around two orders greater that the others studied here.
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