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Abstract. We characterize approximation order and density order of those

Parseval wavelet frames obtained from Oblique Extension Principle. These
notions are closely related to approximation order and density order by a

quasi-projection operator. To give our characterizations, we shall explain the

behavior on a neighborhood of the origin of the Fourier transform of a refinable
function. In particular, we invoke the classical notion of approximate continu-

ity. We write our results in the multivariate context of Parseval wavelet frames

associated to A, an expansive linear map preserving the integer lattice.

1. Introduction, notation and basic definitions

We are interested in approximation properties of wavelet frames. The aim of this
paper is to give a characterization of approximation order and density order of those
Parseval wavelet frames that can be constructed from Oblique Extension Princi-
ple. We also emphasis on approximation properties of a quasi-projection operator.
Approximation order of shift invariant subspaces, quasi-projections operators and
wavelet frames play a major role in the ability of wavelets and framelets to describe
functions and in efficiency of some algorithm in applications as, for instance, signal
processing and data compression. See e.g. the discussions in [13] and [18].

As far as the author knows, the notion of approximation order provided by
wavelet frames has been firstly studied in [14], where the context is both classi-
cal on dimension one with the dyadic dilation and in the multivariate case with
wavelet frames associated to isotropic dilation matrices. See also [15]. Approxima-
tion order provided by a Parseval wavelet frame from Oblique Extension Principle
is closely related to approximation properties of a quasi-projection operator. Ap-
proximation properties of quasi-projection operators in L2 have been obtained in
[23], [24] and [3]. Here we give a characterization of approximation order provided
by a Parseval wavelet frame constructed from Oblique Extension Principle and by
a quasi-projection operator in the multivariate case where the dilation is given by
an expansive linear map preserving the integer lattice. When the expansive linear
map is not isotropic, we shall write the corresponding definitions and results in an
adequate context using potential spaces associated to a pseudo-norm as an approx-
imate subspace. Note that in the Lebesgue spaces Lp, related results have been
proved in [28], [27], [8], [26] and [18], in weighted Lp spaces, see [29]. Furthermore,
approximation properties in Fourier algebras appeared in [16], in Besov spaces see
[25] and in distribution spaces we refer to [31] and [30]. Often, approximation order
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2 DENSITY ORDER OF PARSEVAL WAVELET FRAMES

of shift-invariant spaces is related to polynomial reproduction properties, this is
discussed, for instance, in [21].

Perhaps, our main advance in this paper is our characterization of density order
provided by a Parseval wavelet frame constructed from Oblique Extension Principle,
and density order provided by a quasi-projection operator. These notions have been
motivated by the corresponding definition for a shift-invariant subspace given in [4].
For more results on best approximation of a shift invariant subspace in L2, see e.g.
[3], [5], [36] and [11]. Let us mention that approximation properties of nonstationary
wavelet frames are studied in [22]. Although the main results we prove here are
new in the classical setting, we will work on the multivariate context.

Let us first write some notation. The sets of strictly positive integers, inte-
gers, real and complex numbers will be denoted by N, Z, R and C respectively.
Td = Rd/Zd, d ≥ 1, and with some abuse of the notation we consider also that Td
is the unit cube [0, 1)d.

Given r > 0, we will denote Br(y) = {x ∈ Rd : |x − y| < r}, and will write Br
if y is the origin. For a set E ⊂ Rd we will denote Ec = Rd \ E and if we write
χE , we mean the characteristic function of the set E, i.e. χE(t) = 1 if t ∈ E and

χE(t) = 0 if t ∈ Ec. Moreover, for a point y ∈ Rd, y+E = {y+x : for x ∈ E}.
We will consider that the sets E ⊂ Rd are (Lebesgue) measurable and the Lebesgue

measure of E ⊂ Rd will be denoted as |E|. The spaces Lp(Rd), 1 ≤ p ≤ ∞
will be the corresponding standard Lebesgue spaces of complex–valued measurable
functions. Moreover, if we write f ∈ Lp(Td) we will also mean that f is defined on
the whole space Rd as an Zd-periodic function.

Let us consider f, g ∈ L2(Rd). The bracket product of functions f and g is
defined by

[f, g](x) =
∑
k∈Zd

f(x + k)g(x + k),

where it makes sense. We will denote

Nf = {x ∈ Rd : [f, f ](x) = 0}.

The sets are defined modulo a null measurable set and we understand some
equations as almost everywhere on Rd or Td. Moreover we consider 0

0 = 0 or

0 1
0 = 0 in the expressions where such indeterminacy appear.

A key tool in the study of wavelet frames is the Fourier transform. Here, our
convention is that if f ∈ L1(Rd),

f̂(x) :=

∫
Rd
f(t)e−2πit·xdt,

where t ·x denotes the usual inner product of vectors t and x in Rd. The definition
of Fourier transform is extended as usual to functions in L2(Rd).

With some abuse in the notation, given a linear invertible map A : Rd −→ Rd
we will also denote by A the corresponding matrix associated with the canonical
basis. Moreover, we write dA = |detA| and the adjoint of the linear map A will
be denoted by A∗. Given a measurable set E ⊂ Rd, then A(E) = {A(x) : x ∈ E}
and the volume of E changes under A according to |A(E)| = dA|E|. Recall that
a linear map A is said to be expansive if the modulus of all (complex) eigenvalues
of A is greater than 1. If A is a corresponding matrix of an expansive linear map,
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then obviously dA > 1. When the modulus of all the eigenvalues of A is the same,
then A is usually called an isotropic linear map.

For a given linear invertible map A : Rd → Rd consider the unitary operator
DA : L2(Rd)→ L2(Rd) defined by

DAf(·) = d
1/2
A f(A·), for any f ∈ L2(Rd).

It can be easily verified that

D−1
A = DA−1 .

For any u ∈ Rd, let τu : L2(Rd) → L2(Rd) be the operator of translation by the
vector u defined by

τuf(·) = f(· − u), for any f ∈ L2(Rd).

In addition, given j ∈ Z and a set S of L2(Rd),

Dj
A(S) = {dj/2A f(Aj ·) : f ∈ S} and τ(S) = {f(· − k) : f ∈ S, k ∈ Rd}.

If A : Rd → Rd is an expansive linear map such that A(Zd) ⊂ Zd, then the

quotient groups Zd/A(Zd) and (A∗)−1(Zd)/Zd are well defined. Recall that there

are exactly dA cosets of Zd/A(Zd) (see [17]). Thus there are exactly dA cosets of

(A∗)−1(Zd)/Zd.
Let A : Rd → Rd be an expansive linear map such that A(Zd) ⊂ Zd. Let

Ψ = {ψ(1), . . . , ψ(N)} ⊂ L2(Rd) be a set of functions, we call

XΨ : = {Dj
Aτkψ

(`) : j ∈ Z, k ∈ Zd, 1 ≤ ` ≤ N}

the affine system generated by Ψ. The set of functions Ψ is called a Parseval wavelet
frame or a Parseval framelet associated to A for L2(Rd) when

f(x) =

N∑
`=1

∑
j∈Z

∑
k∈Zd
〈f,Dj

Aτkψ
(`)〉Dj

Aτkψ
(`)(x)

where the convergence is in L2(Rd). Here 〈·, ·〉 denotes the inner product on L2(Rd).
The functions ψ(`), ` = 1, . . . , N are called the generators of the Parseval wavelet
frame. When the context is clear we do not write “associated to A”.

Wavelet frames have been widely studied in the literature, see e.g. the book [9].
In the multivariate case, we refer the extensive study done in [30] and [18].

The following definitions have been introduced in [10].

Definition 1. Let A : Rd → Rd be an expansive linear map. It is said that x ∈ Rd
is a point of A-density for a measurable set E ⊂ Rd, |E| > 0, if for any r > 0

lim
j→∞

|E ∩ (A−jBr + x)|
|A−jBr|

= 1.

Definition 2. Let A : Rd → Rd be an expansive linear map. Let f : Rd −→ C be a
measurable function. It is said that x ∈ Rd is a point of A-approximate continuity
of the function f if there exists E ⊂ Rd, |E| > 0, such that x is a point of A-density
for the set E and

lim
y → x
y ∈ E

f(y) = f(x).
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Remark 1. If A is isotropic, the notion of A-approximate continuity coincide with
the classical notion of approximate continuity, see e.g. [33] and [6].

This paper is organized as follows: In Section 2 we introduce the notion of
approximation order and density order for a Parseval wavelet frame associated to a
general dilation A as well as for quasi-projections operators. In addition, we recall
a version of Oblique Extension Principle. The main results of this paper can be
found in Section 3 while their proofs are postponed to Section 4.

2. Density order of a Parseval wavelet frame

In this section, we introduce the definition of A-approximation order and A-
density order provided by quasi-projection operators and by a Parseval wavelet
frame associated to a dilation A. These generalize the well–known notions given in
[14]. Afterwards, we recall those Parseval wavelet frame constructed from Oblique
Extension Principle.

2.1. Approximation order and density order. We start writing an adequate
context. For this purpose, we need the following definition introduced in [12]. A
measurable mapping ρ : Rd → [0,∞) is a pseudo-norm associated to the expansive
linear map A : Rd → Rd if

(i) ρ is C∞ on Rd \ {0};
(ii) ρ(x) = 0⇐⇒ x = 0;
(iii) ρ(−x) = ρ(x);

(iv) ρ(Ax) = d
1/d
A ρ(x).

Moreover, the authors of [12] build one of them and observe that pseudo-norms for
an A are unique up to equivalence.

For A : Rd → Rd an expansive linear map, ρ a pseudo-norm associated to A∗

and α ≥ 0, we will consider the Hilbert space

Wα,2
A (Rd) = {f ∈ L2(Rd) : ‖ (1 + ρ)αf̂ ‖L2(Rd)<∞}.

with norm defined by

‖ f ‖Wα,2
A (Rd)=‖ (1 + ρ)αf̂ ‖L2(Rd) .

Note that for any two pseudo-norms associated to A∗ the corresponding spaces are
equivalents.

From here to the end of this paper, we fix A : Rd → Rd , an expansive linear map
such that AZd ⊂ Zd, ρ a pseudo-norm associated to A∗ and α ≥ 0. Addition, we fix
ΩA = {pk}dA−1

k=0 a full collection of representatives of the cosets of (A∗)−1(Zd)/Zd.
We need the following operators. For a given φ ∈ L2(Rd) such that [φ̂, φ̂] is

essentially bounded, the quasi-projection operator at level n ∈ N is defined by

Pφ,A,n(f) =
∑
k∈Zd
〈f,Dn

Aτkφ〉Dn
Aτkφ, f ∈ L2(Rd).

Since [φ̂, φ̂] ∈ L∞(Td), it is not hard to see that Pφ,A,n defines a bounded linear

operator from L2(Rd) to L2(Rd) with norm ‖Pφ,A,n‖ ≤ ‖[φ̂, φ̂]‖L∞(Td). For explicit
computations, we refer to [30, Lemma 2.2.3].
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If we consider a set of functions Ψ = {ψ(`) : ` = 1, . . . , N} ⊂ L2(Rd) where XΨ

is a Parseval wavelet frame of L2(Rd), the truncated representation at level n ∈ N,
is defined by

QΨ,A,n(f) =

N∑
`=1

∑
k∈Zd

n−1∑
j=−∞

〈f,Dj
Aτkψ

(`)〉Dj
Aτkψ

(`), f ∈ L2(Rd),

where the convergence is in L2(Rd) and 〈·, ·〉 denotes the inner product in L2(Rd).
We introduce the notions of linear approximation order and density order with

a dilation matrix of the operators Pφ,A,n. In dimension one and with the dyadic
dilation, we refer to [24].

Definition 3. Let φ ∈ L2(Rd) such that [φ̂, φ̂] ∈ L∞(Td). The operators Pφ,A,n,
n ∈ N, provide A-approximation order α, if there exists a constant C > 0 such that

‖f − Pφ,A,n(f)‖L2(Rd) ≤ Cd
−nα/d
A ‖ f ‖Wα,2

A (Rd), ∀f ∈Wα,2
A (Rd), ∀n ∈ N.

Definition 4. Let φ ∈ L2(Rd) such that [φ̂, φ̂] ∈ L∞(Td). The operators Pφ,A,n,
n ∈ N, provide A-density order α, if

lim
n→∞

d
nα/d
A ‖f − Pφ,A,n(f)‖L2(Rd) = 0 ∀f ∈Wα,2

A (Rd).

Now, we introduce the notions of approximation order and density order of a
Parseval wavelet frame associated to a dilation matrix. See [14] for isotropic dilation
matrices.

Definition 5. A Parseval wavelet frame Ψ = {ψ(`) : ` = 1, . . . , N} ⊂ L2(Rd),
provides A-approximation order α, if there exists a constant C > 0 such that

‖f −QΨ,A,n(f)‖L2(Rd) ≤ Cd
−nα/d
A ‖ f ‖Wα,2

A (Rd), ∀f ∈Wα,2
A (Rd), ∀n ∈ N.

Definition 6. A Parseval wavelet frame Ψ = {ψ(`) : ` = 1, . . . , N} ⊂ L2(Rd),
provides A-density order α, if

lim
n→∞

d
nα/d
A ‖f −QΨ,A,n(f)‖L2(Rd) = 0 ∀f ∈Wα,2

A (Rd).

Remark 2. Note that when Pφ,A,n provides A-density order α, this implies that
Pφ,A,n provides A-approximation order α. This is a consequence of the Banach-
Steinhaus Theorem. By the same argument, that a Parseval wavelet frame Ψ pro-
vides A-density order α implies that Ψ provides A-approximation order α.

2.2. Parseval wavelet frames from OEP. Unitary Extension Principle (UEP)
and Oblique Extension Principle (OEP), a more flexible method based on the UEP,
are very useful tools for constructing wavelet frames. References on different ver-
sions of these principles are e.g. [34], [2], [7], [14], [20, 19, 18], [1], [32] and [35].

To prove our main result, we need the following version of Oblique Extension
Principle, see [35].

Theorem A. Let φ ∈ L2(Rd) such that

φ̂(A∗t) = H0(t)φ̂(t), a.e.,

where H0 ∈ L∞(Td). Moreover, let S be a non-negative Zd-periodic measur-

able function such that S[φ̂, φ̂] ∈ L∞(Td), and also, the origin is a point of A∗-

approximate continuity for S|φ̂|2, assumed S(0)|φ̂(0)|2 = 1. Let H1, . . . ,HN ∈
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L∞(Td) such that

S(A∗t)|H0(t)|2 +

N∑
`=1

|H`(t)|2 = S(t) a.e. t ∈ Rd \ Nφ̂;

and the equality

S(A∗t)H0(t)H0(t + pk) +

N∑
`=1

H`(t)H`(t + pk) = 0

holds for a.e. t ∈ Rd \ Nφ̂ and for any pk, k = 1, . . . , dA − 1, such that t + pk ∈
Rd \ Nφ̂.

Define ψ1, . . . , ψN ∈ L2(Rd) by

ψ̂`(A
∗t) = H`(t)φ̂(t) a.e., ` = 1, . . . , N.

Then the set of functions Ψ = {ψ(`) : ` = 1, . . . , N} is a Parseval wavelet frame

of L2(Rd).

3. Main Results

In this section we collect the main results of this paper. The proofs are postponed
to the next section.

Our results on approximation order and density order depend on the behavior
near the origin of two functions as the following. For a ϕ ∈ L2(Rd) such that
[ϕ̂, ϕ̂] ∈ L∞(Rd), we define

Γϕ,A,α(t) :=

{
ρ(t)−α

∣∣1− |ϕ̂(t)|2
∣∣ if t ∈ Rd \ {0}

0 t = 0

and

Λϕ,A,α(t) :=

{
ρ(t)−α

∣∣∣1− |ϕ̂(t)|2
[ϕ̂,ϕ̂](t)

∣∣∣1/2 if t ∈ Rd \ {0}
0 t = 0

Observe that always Γϕ,A,α(0) = Λϕ,A,α(0) = 0.

The following is a characterization of approximation order provided by quasi-
projection operators.

Theorem 1. Let φ ∈ L2(Rd) such that [φ̂, φ̂] is essentially bounded. The operators
Pφ,A,n, n ∈ N, provide A-approximation order α if and only if both

Λφ,A,α and Γφ,A,α are in L∞(Rd).

As a consequence, we have the following characterization of approximation order
provided by a Parseval wavelet frame constructed from Oblique Extension Principle.

Corollary 1. With the same hypotheses as in Theorem A. The Parseval wavelet
frame Ψ = {ψ(`) : 1 ≤ ` ≤ N} provides A-approximation order α if and only if both

Λ√Sφ,A,α and Γ√Sφ,A,α are in L∞(Rd).

Perhaps, our characterizations of density order of quasi-projection operators and
of a Parseval wavelet frame from the OEP are the main novelty of this paper.

The following result is a characterization of density order provided by the oper-
ators Pφ,A,n.
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Theorem 2. Let φ ∈ L2(Rd) such that [φ̂, φ̂] is essentially bounded. The operators
Pφ,A,n, n ∈ N, provide A-density order α if and only if the two following conditions
hold:

(i) Λφ,A,α and Γφ,A,α are in L∞(Rd);
(ii) the origin is a point of A∗-approximate continuity of both Λφ,A,α and of

Γφ,A,α.

With respect to density order provided by a Parseval wavelet frame, we prove
the following consequence.

Corollary 2. With the same hypotheses as in Theorem A. The Parseval wavelet
frame {ψ(`) : 1 ≤ ` ≤ N} provides A-density order α if and only if the two following
conditions hold:

(i) Λ√Sφ,A,α and Γ√Sφ,A,α are in L∞(Rd);

(ii) the origin is a point of A∗-approximate continuity of Λ√Sφ,A,α and of
Γ√Sφ,A,α.

The function Λφ,A,α appears in our results in order to use the same notation in
the characterization of approximation order and density order provided by a shift
invariant subspace given in [4].

4. Proofs of the main results.

Mainly, ideas for our proofs have been developed in [23], [24] and [14].

4.1. Proof of Theorem 1 and Corollary 1. For the proof of Theorem 1, we
need two previous lemmas to estimate the difference between f and Pφ,A,n(f) in

L2(Rd) norm.
We consider the same notation as in the statement of Theorem 1. Define the

set IA :=
⋃∞
l=0A

∗−lBr0 with a fixed r0 > 0 for which IA ⊂ (−1/2, 1/2)d. This r0

exists because A∗ is expansive. Let fn ∈ L2(Rd) such that f̂n = f̂χA∗nIA . Then

‖f − Pφ,A,n(f)‖L2(Rd)

≤ ‖f − fn‖L2(Rd) + ‖fn − Pφ,A,n(fn)‖L2(Rd) + ‖Pφ,A,n(fn)− Pφ,A,n(f)‖L2(Rd)

≤ K‖f − fn‖L2(Rd) + ‖fn − Pφ,A,n(fn)‖L2(Rd),(1)

where K is a non negative constant. The last inequality is true because Pφ,A,n
is linear and bounded. Indeed, K may be taken as K = 1 + ‖Pφ,A,n‖ ≤ 1 +

‖[φ̂, φ̂]‖L∞(Td).
In the two following lemmas, we estimate the sum in the right hand of (1). First,

we need a version of [11, Lemma 5.1].

Lemma B. There exists C > 0 such that for any f ∈Wα,2
A (Rd) and n ∈ N

‖(1− χA∗nIA)f̂‖L2(Rd) ≤ Cκn,f d
−nα/d
A ‖ f ‖Wα,2

A (Rd),

where 0 ≤ κn,f ≤ 1 is constant depending of n and f . In addition, limn→∞ κn,f = 0.

We also need the lemma below.
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Lemma 1. Let f ∈ L2(Rd) and n ∈ N, then

‖fn − Pφ,A,n(fn)‖2L2(Rd)

=

∫
A∗nIA

|f̂(t)|2
∣∣∣1− |φ̂(A∗−nt)|2

∣∣∣2 dt
+

∫
A∗nIA

|f̂(t)φ̂(A∗−nt)|2
∣∣∣[φ̂, φ̂](A∗−nt)− |φ̂(A∗−nt)|2

∣∣∣ dt.
Proof. By Parseval equality,

̂Pφ,A,n(fn)(t) =
∑
k∈Zd
〈Dn

A∗ f̂nφ̂, e
−2πik·〉 e−2πik·(A∗)−ntD−nA∗ φ̂(t)

= [Dn
A∗ f̂n, φ̂](A∗−nt)D−nA∗ φ̂(t)

=
∑
k∈Zd

d
n/2
A f̂n(t + (A∗)nk)φ̂(A∗−nt + k)D−nA∗ φ̂(t),

where the second equality holds because [Dn
A∗ f̂n, φ̂] ∈ L2(Td). Thus, we have

‖fn − Pφ,A,n(fn)‖2L2(Rd) = ‖f̂n − ̂Pφ,A,n(fn)‖2L2(Rd)(2)

=

∫
Rd
|f̂n(t)− [Dn

A∗ f̂n, φ̂](A∗−nt)D−nA∗ φ̂(t)|2 dt

=

∫
Rd
|f̂n(t)|2 dt−

∫
Rd
f̂n(t)[Dn

A∗ f̂n, φ̂](A∗−nt)D−nA∗ φ̂(t) dt

−
∫
Rd
f̂n(t)[Dn

A∗ f̂n, φ̂](A∗−nt)D−nA∗ φ̂(t) dt

+

∫
Rd
|[Dn

A∗ f̂n, φ̂](A∗−nt)D−nA∗ φ̂(t)|2 dt.

Since [Dn
A∗ f̂n, φ̂](A∗−nt) is (A∗)nZd-periodic, we can write∫

Rd
f̂n(t)[Dn

A∗ f̂n, φ̂](A∗−nt)D−nA∗ φ̂(t) dt(3)

=
∑

m∈Zd

∫
(A∗)n[− 1

2 ,
1
2 ]d+(A∗)nm

f̂n(t)[Dn
A∗ f̂n, φ̂](A∗−nt)D−nA∗ φ̂(t) dt

= d−nA

∫
(A∗)n[− 1

2 ,
1
2 ]d
|[Dn

A∗ f̂n, φ̂](A∗−nt)|2 dt

=

∫
(A∗)nIA

|f̂(t)φ̂(A∗−nt)|2 dt,

where the last equality is true because f̂n = f̂χ(A∗)nIA and IA ⊂ [− 1
2 ,

1
2 ]d.

In an analogous way, we obtain∫
Rd
|[Dn

A∗ f̂n, φ̂](A∗−nt)|2|D−nA∗ φ̂(t)|2 dt(4)

=

∫
(A∗)nIA

|f̂(t)φ̂(A∗−nt)|2[φ̂, φ̂](A∗−nt) dt
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By (2), (3) and (4), we conclude that

‖fn − Pφ,A,n(fn)‖2L2(Rd)

=

∫
(A∗)nIA

|f̂(t)|2 dt− 2

∫
(A∗)nIA

|f̂(t)φ̂(A∗−nt)|2 dt

+

∫
(A∗)nIA

|f̂(t)φ̂(A∗−nt)|2[φ̂, φ̂](A∗−nt) dt

=

∫
(A∗)nIA

|f̂(t)|2
∣∣∣1− |φ̂(A∗−nt)|2

∣∣∣2 dt
+

∫
(A∗)nIA

|f̂(t)φ̂(A∗−nt)|2
∣∣∣[φ̂, φ̂](A∗−nt)− |φ̂(A∗−nt)|2

∣∣∣ dt.
�

Proof of Theorem 1. First, observe that when α = 0 the result is trivial. Assume

that α > 0. Let us prove the sufficient condition. Bearing in mind that [φ̂, φ̂] ∈
L∞(Td), the functions Γφ,A,α,Λφ,A,α ∈ L∞(Rd) and Lemma 1, we obtain

‖fn − Pφ,A,n(fn)‖2L2(Rd) =

∫
A∗nIA

|ĥ(t)|2

∣∣∣1− |φ̂(A∗−nt)|2
∣∣∣2(

1 + d
n/d
A ρ(A∗−nt)

)2α dt

+

∫
(A∗)nIA

|ĥ(t)|2|φ̂(A∗−nt)|2

∣∣∣[φ̂, φ̂](A∗−nt)− |φ̂(A∗−nt)|2
∣∣∣(

1 + d
n/d
A ρ(A∗−nt)

)2α dt

≤ d
−2nα/d
A

(
‖ Γφ,A,α ‖2L∞(Rd) +‖[φ̂, φ̂]‖2L∞(Td) ‖ Λφ,A,α ‖2L∞(Rd)

)
‖ f ‖2

Wα,2
A (Rd)

,

where ĥ = (1 + ρ)
α
f̂ . Therefore, according to (1) and Lemma B, we get that Pφ,A,n

provides A-approximation order α.
Now, let us prove the necessity condition. By hypothesis, there exists C > 0

such that for any f ∈Wα,2
A (Rd) and n ∈ N we have

‖fn − Pφ,A,n(fn)‖2L2(Rd) ≤ C
2d
−2nα/d
A ‖ fn ‖2Wα,2

A (Rd)
.

Observe that when f ranges over all functions in Wα,2
A (Rd), |ĥ|2 = | (1 + ρ)

α
f̂ |2

runs over all non negative functions in L1(Rd). According to Lemma 1, the last
inequality implies that

∫
A∗nIA

|ĥ(t)|2

∣∣∣1− |φ̂(A∗−nt)|2
∣∣∣2

(1 + ρ(t))2α
dt

≤ ‖fn − Pφ,A,n(fn)‖2L2(Rd) ≤ C
2d
−2nα/d
A ‖ fn ‖2Wα,2

A (Rd)

≤ C2d
−2nα/d
A ‖ |ĥ|2 ‖L1(Rd) .

Thus

d
2nα/d
A χA∗nIA(t)

∣∣∣1− |φ̂(A∗−nt)|2
∣∣∣2

(1 + ρ(t))2α
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may be considered as a continuous linear functional on L1(Rd) with norm bounded
by C2. Then

C ≥ ‖ dnα/dA χA∗nIA(·)

∣∣∣1− |φ̂(A∗−n·)|2
∣∣∣

(1 + d
n/d
A ρ(A∗−n·))α

‖L∞(Rd)

= ‖ χA∗nIA(·)

∣∣∣1− |φ̂(A∗−n·)|2
∣∣∣

(d
−n/d
A + ρ(A∗−n·))α

‖L∞(Rd)

Rescaling and having in mind that dA > 1 we get that Γφ,A,α is in L∞(Rd) by
taking n→∞.

It remains to check that Λφ,A,α is in L∞(Rd). Since Γφ,A,α is in L∞(Rd), we

have that there exists U ⊂ Rd, a neighborhood of the origin such that |φ̂(t)| ≥ 1
2

for t ∈ U . Now we proceed similarly as above to get that

C ≥ ‖ |φ̂(·)|2

∣∣∣[φ̂, φ̂](·)− |φ̂(·)|2
∣∣∣

ρ(·)α
‖L∞(U)≥

1

24
‖

∣∣∣1− |φ̂(·)|2

[φ̂,φ̂](·)

∣∣∣
ρ(·)α

‖L∞(U),

for some C > 0. Hence the proof is finished. �

To prove Corollary 1, we will use the following result which is implicit in different
proofs of the Unitary Extension Principle. When the dilation matrix is the dyadic,
see e.g. [14, Lemma 2.4],[9, pag. 322], [15, pag. 36]. For more general dilation, see
[14, Lemma 5.5] and [1].
Lemma C. With the same notation as in Theorem A. Then

P√Sφ,A,n(f) = Qφ,A,n(f), ∀ f ∈W 2,α
A (Rd),

where the equality holds in L2(Rd) sense.

Proof of Corollary 1. Let f ∈ Wα,2
A (Rd) and n0 ∈ N. According to Lemma C, we

have

‖f −QΨ,A,n0
(f)‖L2(Rd) = ‖f − P√Sφ,A,n0

(f)‖L2(Rd).

It means that Ψ provides A-approximation order α is equivalent to the operators
P√Sφ,A,n, n ∈ N, provide A-approximation order α. Hence, by Theorem 1 we get
the statement of Corollary 1. �

4.2. Proof of Theorem 2 and Corollary 2. For the proof of Theorem 2 we need
the following proposition that is a version of [11, Proposition 5.3].
Proposition D. Let f : Rd → R be a measurable function such that f(0) = 0 and

0 ≤ f(x) ≤ M for a.e. x ∈ Rd and some M > 0. The following conditions are
equivalent:

i) The origin is a point of A∗-approximate continuity of f .
ii) There exists K ⊂ Rd a bounded and measurable set containing a neighbor-

hood of the origin such that

(5) lim
j→∞

1

|A∗−jK|

∫
A∗−jK

f(x)dx = 0.

iii) For all K ⊂ Rd bounded and measurable (5) holds.

We are ready to prove the second theorem of this paper.
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Proof of Theorem 2. Let us prove the sufficiency. For any given n ∈ N, we set

Πn(t) = d
2nα/d
A χA∗nIA(t)

∣∣∣1− |φ̂(A∗−nt)|2
∣∣∣2

(1 + ρ(t))2α
, t ∈ Rd.

Since Γφ,A,α ∈ L∞(Rd), we have 0 ≤ Πn(t) ≤ ‖Γ2
φ,A,α‖L∞(Rd) a.e. So, Πn may

be considered as an element of the dual space of L1(Rd).
Let K ⊂ Rd be a compact set. Since A∗ is expansive, there exists n0 ∈ N such

that if n ≥ n0, then A∗−nK ⊂ IA. Therefore, for those n, we have

Πn(χK) = d
2nα/d
A

∫
K

∣∣∣1− |φ̂(A∗−nt)|2
∣∣∣2

(1 + ρ(t))2α
dt

= d
2nα/d
A dnA

∫
A∗−nK

∣∣∣1− |φ̂(s)|2
∣∣∣2

(1 + ρ(A∗ns))2α
ds

= dnA

∫
A∗−nK

∣∣∣1− |φ̂(s)|2
∣∣∣2

(d
−n/d
A + ρ(s))2α

ds.(6)

By hypotheses we know that origin is a point of A∗-approximate continuity of
Γφ,A,α, then Proposition D and (6) deal to

0 ≤ lim
n→∞

Πn(χK) ≤ lim
n→∞

|K|
|A∗−nK|

∫
A∗−nK

Γ2
φ,A,α(t)dt = 0.

Thus, by linearity, limj→∞Πj(u) = 0 for any simple function u. Furthermore by a
density argument,

(7) lim
n→∞

Πn(g) = 0, ∀g ∈ L1(Rd).

On other hand, we consider

Υn(t) = d
2nα/d
A χA∗nIA(t)|φ̂(A∗−nt)|2

∣∣∣[φ̂, φ̂](A∗−nt)− |φ̂(A∗−nt)|2
∣∣∣

(1 + ρ(t))2α
, t ∈ Rd.

Since Λφ,A,α ∈ L∞(Rd), we have 0 ≤ Υn(t) ≤ ‖[φ̂, φ̂]‖2L∞(Td)‖Λ
2
φ,A,α‖L∞(Rd) a.e.

So, Υn may be considered as an element of the dual space of L1(Rd).
Following the same argument to obtain (7), we get

(8) lim
n→∞

Υn(g) = 0, ∀g ∈ L1(Rd).

By Lemma 1 and (8),

lim
n→∞

d
2nα/d
A ‖fn − Pφ,A,n(fn)‖2L2(Rd)

= lim
n→∞

(
Πn((1 + ρ)2α|f̂ |2) + Υn((1 + ρ)2α|f̂ |2)

)
= 0, ∀ f ∈Wα,2

A (Rd).

This together (1) and Lemma B conclude that the linear operators Pφ,A,n provide
A-density order α, as we wanted to see.

Now we prove the necessity condition. We assume that the linear operators
Pφ,A,n provide A-density order α. By Remark 2, they also provide A-approximation
order α. Thus, according to Theorem 1, we have that Γφ,A,α and Λφ,A,α are in

L∞(Rd).
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Let us fix a particular f ∈ Wα,2
A (Rd) defined by f̂(t) = χIA(t)(1 + ρ(t))−α.

Using that IA ⊂ A∗nIA, n ∈ N, and Lemma 1, we obtain

(9) 0 = lim
n→∞

d
2nα/d
A

|IA|
‖f − Pφ,A,n(f)‖2L2(Rd) = lim

n→∞
M(n),

where

M(n) =
1

|A∗−nIA|

∫
A∗−nIA

∣∣∣1− |φ̂(t)|2
∣∣∣2

(d
−n/d
A + ρ(t))2α

+ |φ̂(t)|2

∣∣∣[φ̂, φ̂](t)− |φ̂(t)|2
∣∣∣

(d
−n/d
A + ρ(t))2α

dt.

On other hand, let n, ` ∈ N. Since there exists a constant C > 0 such that
ρ(t)−2α ≤ C(1 + ρ(t))−2α, ∀t ∈ IA \A∗−1IA, we obtain the following estimation

1

|A∗−n−`IA|

∫
A∗−(n+`)(IA\A∗−1IA)

Γ2
φ,A,α(t)dt(10)

=
1

|IA|

∫
IA\A∗−1IA

∣∣∣1− |φ̂(A∗−(n+`)s)|2
∣∣∣2

(d
−(n+`)/d
A ρ(s))2α

ds

≤ C

|A∗−n−`IA|

∫
A∗−(n+`)(IA\A∗−1IA)

∣∣∣1− |φ̂(t)|2
∣∣∣2

(d
−(n+`)/d
A + ρ(t))2α

dt.

By (10) and (9), we get

0 ≤ lim
n→∞

1

|A∗−nIA|

∫
A∗−nIA

Γ2
φ,A,α(t)dt

= lim
n→∞

∞∑
`=0

d−`A
|A∗−n−`IA|

∫
A∗−(n+`)(IA\A∗−1IA)

Γ2
φ,A,α(t)dt

≤ lim
n→∞

∞∑
`=0

Cd−`A
|A∗−n−`IA|

∫
A∗−(n+`)(IA\A∗−1IA)

∣∣∣1− |φ̂(t)|2
∣∣∣2

(d
−(n+`)/d
A + ρ(t))2α

dt

≤ lim
n→∞

C

∞∑
`=0

M(n+ `)d−`A = 0.

By Proposition D, we conclude that the origin is a point of A∗-approximate conti-
nuity of Γφ,A,α.

Similarly, we have

lim
n→∞

1

|A∗−nIA|

∫
A∗−nIA

|φ̂(t)|2[φ̂, φ̂](t)Λ2
φ,A,α(t) dt = 0.

Again by Proposition D, we have that the origin is a point of A∗-approximate

continuity of |φ̂(t)|2[φ̂, φ̂](t)Λ2
φ,A,α(t), provided |φ̂(0)|2 = 1 and [φ̂, φ̂](0) = 1. Now,

since the origin is a point of A∗-approximate continuity of Γφ,A,α, then the origin

is a point of A∗-approximate continuity of |φ̂(t)|2. Hence the origin is a point of
A∗-approximate continuity of Λφ,A,α. This finishes the proof. �
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We are ready to prove Corollary 2.

Proof of Corollary 2. Let f ∈ Wα,2
A (Rd) and n0 ∈ N. According to Lemma C, we

have

‖f −QΨ,A,n0(f)‖L2(Rd) = ‖f − P√Sφ,A,n0
(f)‖L2(Rd).

It means that Ψ provides A-density order α is equivalent to the operators P√Sφ,A,n,
n ∈ N, provide A-density order α. Thus, by Theorem 1, the proof is finished. �
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[7] C.K. Chui, W. He, J. Stöckler Compactly supported tight and sibling frames with maximum

vanishing moments, Appl. Comput. Harmonic Anal. 13 (2002) 224–262.
[8] D. R. Chen, X. Zheng; Stability implies convergence of cascade algorithms in Sobolev space,

J. Math. Anal. Appl. 268 (2002), no. 1, 41–52..
[9] O. Christensen; An Introduction to frames and Riesz bases, Birkhäser, Boston, 2003.
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Departamento de Matemáticas, Universidad de Alicante, 03080 Alicante, Spain.

E-mail address: angel.sanantolin@ua.es


