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Abstract 

Nowadays, the emergence of large-scale and highly distributed cyber-physical 

systems (CPSs) in applications including Internet of things (IoT), cloud 

computing, mobility, Big Data, and sensor networks involves that architecture 

models have to work in an open and highly dynamic world. This fact increasingly 

highlights the importance of designing real-time and intelligent CPSs that are 

capable of decision making. In this paper, an Intelligent Architecture model for 

CPS management (IA-CPS) based on online processing is proposed for this 

purpose. Specifically, it can manage simple and complex events based on a 

service-oriented architecture and directed by an event-driven architecture, using 

event processing technology as Complex Event Processing (CEP). The novelty 

of our approach relies on the fact that the proposed architecture is service-

oriented, which models the functionalities of the event-driven system. This gives 

us the possibility to offer a flexible service catalog, allowing us to connect to the 

system on any kind of device and interact in different scenarios. The model has 

been applied to two use cases: processing images from video surveillance 

cameras, and processing of consumption data captured by water and energy 

sensors installed in end-user environments. 

Keywords: Cyber-physical systems, Internet of things, Service-oriented 

architecture, Event-driven architecture, Complex event processing, 

Microservices architecture. 

1 Introduction 

Cyber-physical systems (CPS) are devices that integrate computing, storage, and 

communication capabilities to control and interact with a process in the physical world. 

They are interconnected with each other and to the virtual world by global digital 

networks [1, 2]. In other words, a CPS can be considered as a mechanism controlled or 

monitored by software-based algorithms and linked through the Internet, in which 

physical and software components are deeply integrated. Moreover, each component 

operates at different spatial and temporal scales [3]. Nowadays, the emergence of large-

scale, highly distributed intelligent CPSs in the framework of the internet of things 

(IoT), cloud computing, mobility, Big Data, networks of interconnected devices and 

sensors, involves that software architecture models must work in an open and highly 
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dynamic world [32]. This increasingly highlights the importance of designing real-time 

and intelligent CPS capable of decision making [4, 5].  

Broadly, there are three main aspects to classify the structural units for CPS tasks: a 

component architecture, a service-oriented architecture, and an agent-based 

architecture model [6]. These structural units have different performances in terms of 

their adaptability, autonomy, and interoperability properties [6, 7]. These non-

functional properties were proposed as critical in the challenges identified at the 

National Science Foundation (NSF) Cyber-physical Systems Summit [8].  

To address these challenges, this paper proposes an Intelligent Architecture for CPS 

management (IA-CPS). This is an architectural model for intelligent processing and 

managing simple and complex events base on the Event-driven architecture (EDA) and 

integrated into a Service-oriented architecture (SOA) and microservices (MSA), which 

evolves to the SOA 2.0 concept [9, 10]. EDA allows executing an action when it 

receives one or more event notifications [9, 10], being able to react and make CPS 

devices interact with the environment through events and be processed by complex 

event processing (CEP) technology [11, 12]. The novelty of our proposal relies on the 

fact that the proposed architecture is service-oriented, which models the functionalities 

of the event-driven system. This gives us the possibility to offer a flexible service 

catalog, allowing us to connect to the system on any kind of device and interact in 

different IoT and cloud scenarios.  

The IA-CPS architecture has been applied to two use cases: the processing and 

management of images from video surveillance cameras, and the processing of 

consumption data captured by water and energy sensors installed in end-user 

environments. 

The sections of the paper are organized as follows: Section 2 describes the state of 

the art and background of the software architecture models for real-time CPS tasks; 

Section 3 details the components and specifications of the IA-CPS architecture to 

provide intelligence to the systems; Section 4 presents the application use cases of the 

IA-CPS architecture; finally, the conclusions and future works are presented in Section 

5. 

2 Related works 

The architectures for cyber-physical systems have evolved over time. Consequently, 

several classifications and taxonomies can be found in the literature with the aim of 

supporting model-based architectures. The basic architectures present unique 

characteristics in their functionality. We include in this category the architectures by 

components, by services, and by agents. These will be analyzed under the level of 

compliance with the properties of adaptability, autonomy, and interoperability. 

This section analyzes the research works aimed to provide real-time CPS tasks, 

organizing them in three main approaches of architecture and software engineering for 

CPS mentioned above: components, services, and agents. Jo
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2.1 Architecture for component-based CPS 

Real-time distributed managed systems such as DREMS (Distribute Real-times 

Managed Systems) are typical component-based CPS runtime support models. It is 

conceived for distributed and mobile scenarios, e.g., groups of satellites or swarms of 

unmanned aerial vehicles (UAVs) [13]. The DREMS architecture is composed of two 

subsystems: design-time development platform and run-time support platform [6, 13]. 

In the CPS component model in DREMS, two non-functional elements are highlighted 

that are as important as the main functional characteristics of a system: real-time 

features of CPS components, and independent and decoupled CPS components. 

The RTCCM (Real-Time Container Component Model) [14] and the ARINC-653 

(ACM - Arinc Component Model) [15] support real-time operations. Functionally, they 

are software specifications for space and time partitioning in safety-critical real-time 

air vehicle operating systems [6, 14, 15]. 

On the other hand, the independence of the components and the fact that they are not 

coupled to the system play a fundamental role in a model for CPS based on components. 

For example, DEECo (Dependable Emergent Ensembles of Components) [16] is a 

model aimed at working on the difficulties of large-scale distributed CPS-like dynamics 

or autonomy. A component system such as DEECo is characterized by its great 

independence. Critical technical problems in this type of model usually exist in aspects 

such as the implementation and deployment of CPS tasks based on components, or the 

reconfiguration of CPS tasks. 

The construction of complex CPS systems is implemented through the composition 

of simple blocks (components), previously developed independently of the application 

in which they will be used [15]. In fact, the separation between interface and 

implementation proposed for CPS tasks [16] allows a component to be conceived as a 

black box that encapsulates services. In this way, it is not necessary to know its internal 

details to use it. It is only necessary to characterize its interface. 

Furthermore, the CPS that operate in dynamic and unlimited environments are 

composed of multiple communication networks, controllers, sensors, and actuators that 

involve constant and dynamic changes given the behavior of the physical scenario in 

which they act. That is why aspects such as the reconfiguration of CPS tasks are very 

important and acquires greater relevance in those implementations based on 

components [17]. 

2.2 Architecture for service-based CPS 

Some researchers have designed and implemented frameworks for real-time support of 

service-based CPS containing all the characteristics of the SOA [18]. It is worth 

highlighting the work of Martin et al. [19] who designed the OWL-S model (Web 

ontology Language for services), which is able to develop context- and resource-

sensitive CPS services. Huang et al. [20] extended the model to provide the Context 

Sensitive Service Model (CSSM). This service model, based on the ontology of 

physical entities, is context-sensitive. The physical entities are organized hierarchically 

according to their relationships. In terms of context, it introduces two new constraints: 
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the precondition of context and the effect of context. These are incorporated and treated 

as a traditional complement to the constraints of service provision [20]. 

 

Another important model is Physicalnet [21]. It is a generic framework for the 

management and programming of embedded and distributed sensor and actuator 

resources in a multi-user and multi-network environment. It was designed and 

implemented under a four-layered service-oriented architecture [21, 22]: service 

provider, gateway, negotiator, and application level. 

 

Finally, it is important to highlight RI-MACS (Radically Innovative Mechatronics 

and Advanced Control Systems) [23, 24]. It is a model designed as an industrial 

automation proposal based on SOA and Web services. It is used in systems of new 

factories that automate processes under CPS concepts, which require real-time 

responses [23, 24]. This framework presents a hardware and software infrastructure for 

industrial automation, which takes advantage of open technologies such as SOA, 

Ethernet-based communications, and real-time technologies. The implemented 

architecture is supported in communications that add network capacities of TCP/IP 

protocols with real-time traffic management [23, 24]. 

2.3 Architecture for agent-based CPS. 

Several architectures designed for agent models use the Java library framework for the 

development of a set of agents called JADE (Java Agent Development Framework). 

The objective of JADE is to simplify the implementation of multi-agent systems 

through middleware that complies with the specifications of the Foundation for 

Intelligent Physical Agents (FIPA). It is aimed at defining standards for the interaction 

of agents [25]. 

 

Providing real-time support for CPS is a major challenge. Many models that provide 

tasks for CPS have time constraints and some low-level control tasks can be only 

executed on dedicated hardware. Among the framework for agent-based CPS, the 

following guarantee the real-time CPS: the Holonic Agent Model (HLA) [26] and the 

Rainbow Model (RM) [27]. The HLA is a multi-agent platform composed of three main 

modules: High-Level Control Module (HLC), Low-Level Control Module (LLC), and 

the Control Interface. The RM is a platform that allows the development of relatively 

easy applications for smart cities. It consists of three layers, designed to make 

calculations nearing the physical part: physical layer; distributed middleware, and level 

cloud. 

3 Intelligent architecture for CPS management (IA-CPS) 

The hybrid architectures are built from the basic models incorporating aspects that try 

to improve the shortcomings of the basic architectures (by components, services, and 

agents). With this approach, our proposal is composed of an event-driven architecture 
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and those oriented to services and microservices, incorporating the best properties of 

hybrid architectures. The intelligent software architectures and the properties of 

adaptability, autonomy, and interoperability were proposed as critical to the challenges 

identified at the Cyber-Physical Systems Summit at the National Science Foundation 

NSF. 

 

In this section, we focus on the need for an intelligent, scalable, flexible, and highly 

distributed, adaptable, autonomous, and interoperable architecture in the context of IoT, 

cloud computing, mobility, Big Data, and interconnected sensor networks. 

 

The requirement to design and implement intelligent architectures imposes major 

challenges that exceed the capabilities of the software developed so far, since there are 

no properly intelligent software models that adapt to changes in the physical scenario 

and make decisions in real-time. 

 

To address the intelligence requirements outlined above, we propose an intelligent 

architecture as a reference framework, designed around the implementation of event-

driven services and microservices with the functional ability to process complex events 

that can be configured, parametrized, and addressed, designing patterns that acquire 

intelligence. These patterns are designed and implemented according to a previous 

analysis of the behavioral routines of objects or people in a given scenario. 

 

Intelligence relies on the way to infer new and more complex events, with more 

semantic and ontological meaning, from the sum of simple events. This makes it 

possible to implement relevant behavior patterns detected by sensor devices (video 

surveillance cameras, visual sensors, proximity sensors, etc.) installed in physical 

scenarios. 

 

The specification of the proposed architecture is oriented to the learning of patterns 

so that from this learning, it can analyze the series of events and derive conclusions 

from them. This allows the system to react online and improve decision-making. In our 

case, intelligence is also provided by the software, since the intelligence designed 

through the patterns is recursive in the sum of capabilities of the different behaviors 

that can acquire an event exposed through a microservice. In this way, intelligence is 

due to the joint interaction of the components in each ecosystem in which the 

microservice acts (cyber-physical systems, the cloud, neural networks, artificial 

intelligence, robotics, etc.). Also, intelligence is given in the way services compete for 

the underlying information resources in sensor devices and the needs of competition 

for the infrastructure of the IoT environment and the cloud. 

3.1 Architecture overview 

The technologies for the specified AI-CPS architecture can be very varied and their 

application depends to a large extent on the logic of the use cases to be implemented. 

In any case, although the technologies are very changeable, this paper discusses, with 
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the aim of completeness, a range of technologies that can be used for the 

implementation of AI-CPS. These technologies revolve around providing answers to 

the hybrid architecture between SOA services, MSA microservices and EDA CEP 

event-driven architectures. The technologies also revolve around the fulfilment of the 

best performance for the detailed use cases. 

 

The approach of our IA-CPS proposal is based on the fact that microservice-based 

architectures (MSAs) are a subset of service-based architectures [28]. Furthermore, 

microservice architectures are not necessarily event-driven. While in an event-driven 

architecture (EDA), an agent is triggered by the arrival of an event [28], in 

microservices architecture an event can be triggered by an explicit call from a 

procedure. This implies clear differences. However, we have addressed both 

approaches to design a hybrid architecture taking advantage of the capabilities of them. 

Our proposal provides the necessary data consistency and reactivity to events of interest 

that are processed online to make intelligent decisions. Similarly, events are part of the 

communication model between microservices with the construction of a reactive model 

or the composition of capabilities through choreography and orchestration. The overall 

architecture shown in Figure 3.1 complies with the paradigm and fundamental 

principles of an event-driven MSA and event-driven EDA service-oriented 

architecture, which is considered the state-of-the-art for managing and processing event 

streams. The proposed framework can process event streams from different sources that 

generate complex events. 

 

 
Figure 3.1 Architecture overview EDA – MSA. 
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Figure 3.2 details the proposed architecture for the processing of events captured by the 

sensor devices, which are devices treated as asynchronous sensor services. The central 

axis of the IA-CPS architecture is composed of three main layers: 

 

─ Event producer layer. In the case of microservices, an event producer is responsible 

of generating semantic and ontological information and attending to the information 

captured by the environment's sensors. In short, it is responsible of perceiving and 

adapting the information from the environment. The flow of information goes 

through the event channels. 

─ Event processing layer. It is related to the analysis of the information captured by 

the sensors based on the logic of the microservice chosen by the end user. A database 

is implemented to store information for querying and reporting. Specifically, this is 

the Event Service Bus (ESB), which also hosts the cluster of containers that host 

microservices. It also contains the Complex Event Processing (CEP) [29, 30, 31] 

that is in charge of integrating the inputs and outputs of the data flows in the 

information sequences that enter the system, in addition to discovering and 

processing complex events, among others, related to semantics and ontologies. 

─ Event consumers layer. The event consumer deals with the management of events to 

generate response actions within the system itself and to external entities. In this 

layer the users of the system have an important role to play. 

 

 
Figure 3.2. System components and event flow. 
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The novelty of our proposal relies on the fact that the architecture is service-oriented, 

which models the functionalities of the event-driven system. This gives us the 

possibility to offer a flexible service catalog, allowing us to connect to the system any 

kind of devices and interact in different IoT and cloud scenarios, such as smart cities 

[28, 31]. However, the implementation of a service from the catalog will depend on the 

application area, which would require a prior analysis of the particularities of the new 

process. 

3.2 Architecture specification  

The specified modules are decoupled, managing special data processing when it comes 

to processing complex events captured by sensor devices. The information coming from 

the sensors is translated into events. Therefore, the interaction of the modules can occur 

in different periods and there is only a cause-and-effect relationship between the event 

emitted and the event consumed. 

 

The proposed architecture supports a system that allows the management of open 

and technology-independent services in its operating environment. The logic of the 

architecture is managed around a broker that coordinates communications through 

messages, the microservices (the MSA), all based on event-driven logic (the EDA), and 

intelligent analysis employing patterns (the CEP). 

 

The processing flow is not unique, since it depends on the logic implemented in the 

microservices and on the rule patterns configured in the CEP. The connection between 

modules is guaranteed by allowing a module to consume events from another module. 

This is subjacent to the interoperability and decoupling provided by the microservices. 

3.3 Environment perception 

In the proposed architecture, event sensors are responsible for sensing and obtaining 

information from the environment. The set of sensors in the scenario are the input to 

the event processing system. The broker extracts the information and reads the data 

streams from the sensor devices or some data storage (message queues or storage 

repositories) for subsequent delivery to the microservices. 

 

3.3.1 Event detection 

The higher layer modules (producers) publish messages to the middle layer modules in 

charge of processing. They have the logic to determine whether an event is simple or 

complex (the CEP). Also, they detect important state changes in the analyzed data 

frame, which could generate one or several important events for the system, triggering 

the operation of all the architecture modules, until the event is finally consumed by the 

lower layers (consumers) and reported for action. Events can also be shared with third-

party applications to be processed under another platform or system, as explained 

above, which confers the model as Software as a Service (SaaS). 
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Our proposed architecture is a sensor event reaction model because event-driven 

architectures are event-reactive and with on-line processing. This characteristic is 

provided since they are asynchronous architectures. It must be considered that events 

are not always a single information entity; many events are configured from the 

combination of others. 

 

3.3.2 Event producer module 

From the events producer components, event information is obtained that must be 

processed and correlated to determine situations defined by the specific requirements 

of the system where it is to be implemented. It should be noted that different types of 

event-producing devices could be connected to the system. This is one of the 

advantages of implementing microservices to extract information from sensors in a 

standardized way. It is an important issue for the design and implementation of this 

module. Not all sensors generate events in the same format and must be transformed to 

deliver them to the event channel. 

 

3.3.3 Logging of data sequences 

The logging of the data captured by the sensors is performed by the action of the broker 

and the microservices (Figure 3.3, step 1), which generate a log message queue, from 

which the information and data flows are extracted and sent to the CEP engine to 

analyze the events. The registration process in the message queue is the trigger that sets 

into action the modules that make up the proposed processing architecture (Figure 3.3 

step 2). The sending of information flows from the microservices to the event 

processing module is composed of two sub-processes: 

 

─ Presentation of metadata to the server. This metadata includes attributes such as 

sensor ID, geographic location, text description, date of registration, and time of 

registration. 

─ Sending the sequence of data (Figure 3.3, step 3) through the microservices. Such 

information can be exposed to client applications, i.e., users of the particular systems 

instantiated from the architecture or third-party applications in the cloud, as we 

explained above. The information flow is stored and archived in databases for 

queries by system users (Figure 3.3, step 4). 

If the logging of the data captured by the sensors is successful, it is available in the 

system to be analyzed by the CEP engine, which has the logic to determine whether the 

event is simple or complex and what patterns it should implement and recognize. An 

advantage of our micro-service-oriented and event-driven architecture is that sequences 

of event information can concurrently undergo the process of logging on multiple 

servers, sending the data to cloud structures for processing and analysis. This procedure 

could serve to share the event sequences to several interested institutions, also to store Jo
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the information in other places, and to comply with aspects of continuity, flexibility, 

availability, and security of the information. 

3.4 Information processing 

In a microservices architecture managed by an event-driven architecture, the ESB 

module, which contains the microservices and the CEP event processor, corresponds to 

the main module. It has the full intelligence of the system through the autonomy, 

scalability, flexibility, and portability provided by the microservices, in service of the 

configuration of CEP event patterns that infer complex events with greater semantic 

and ontological meaning. 

 

3.4.1 Communication channel 

The event channel is the data communication channel, which allows linking the 

different modules of the proposed architecture. It delivers the sequences of events 

captured from the sensors through the publication of messages (event publisher) so that 

the processing and consumption modules can subscribe and consume events (event 

subscribers). 

 

3.4.2 Event processing module 

This module is composed of the microservices catalog, which will be provided by the 

particular system where it is implemented (Figure 3.3, step 1) and the complex event 

processing module CEP (Figure 3.3, step 3). The logic of dispatch, exception, update, 

and event detection is managed in this module. It also checks for errors that may occur 

in the parameters that unify an event. When an event message is received at the bus 

level, the publishing services (Figure 3.3, step 5) intercept it and distribute it among the 

various event channels, making it available to consumers or to the subscription services 

component. 

 

The event processor handles the parameterization and combinations of multiple event 

producers, i.e., multiple sensors connected to the system. It is important to highlight the 

transparent communication, the light, and stateless management of the event extracted 

by the broker and passed to the microservices for subsequent forwarding to the complex 

event processing module, in addition to the implementation through the patterns that 

are intelligent features of the system and a critical aspect to process information flows 

and data provided by sensors. 

 

These characteristics make microservices and CEP an intelligent entity and make it the 

core of the proposed event-driven architecture. The intelligence underlies the sum of 

the advantages offered by micro-service-oriented and event-driven architectures. That 

is, our design takes the functional and non-functional characteristics of microservices 

and adds them to the analysis of patterns that operate under online information 

processing. 
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3.4.3 Data flow and processing 

The microservices collect the captured data (Figure 3.3, step 1) in a messages queue 

(Figure 3.3, step 2). The CEP event manager module receives a request to generate an 

event for the sequence of information and data collected (Figure 3.3, step 3).  This 

request enters the rule-based engine for processing complete events. The queries and 

patterns are registered from the beginning of the processing in the CEP rule-based 

engine so that they are executed and act on each of the sequences of events that are 

continuously coming in. As the CEP engine finds the event sequences that match the 

predefined queries and patterns, events are identified in event sequences that will be 

consumed by the lower layers of our design (a graphical user interface or the lower 

layers of consumers). 

 

The above approach allows processing sequences of data (events) as they arrive, 

easily scaling them horizontally so that the processing of complex events occurs in 

parallel to data storage (Figure 3.3, step 4) and consumer or visualization layer. This 

activates all the intelligent processing logic implemented in the engine. 

 

 
Figure 3.3. System modules and data processing flow. 

 

Figure 3.3 describes the components, steps, and flow of data stream processing in the 

ESB, i.e., the interaction between the microservices and the CEP engine. The CEP 

engine contains the logic of the intelligent patterns that allow the analysis of detection, 

tracking, and recognition of events in the data sequences extracted by the broker and Jo
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the microservices from the sensors. The rule base is configured with the intelligence to 

correlate and recognize detected events in data sequences in different spaces and times. 

 

Once the CEP engine has analyzed the events through the analysis of the designed 

patterns, it publishes the sequence of events in the publication services layer, which are 

taken from the subscriptions and notifications services layer by the consumers (Figure 

3.3, step 5). This allows sensor events to be dispatched according to which consumers 

are interested. 

 

The inherent intelligence of the CEP system lies in the way it infers new, more complex 

events with greater semantic meaning from the sum of simple events, which allows it 

to define patterns of detected meaningful behaviors. This allows the pattern to learn, 

and from this learning, to analyze the series of events and derive conclusions from them. 

All the above makes it easier to react, process information online, and improve 

decision-making. 

 

The CEP engine also stores data streams in the database, both as logs of processed 

events and as knowledge files for historical data queries for end-customer consumer 

applications. 

3.5 Action in the environment 

The consumer has the logic to analyze and understand the event, the security scheme, 

and the response to such an event that has been processed online, which may be an 

event of interest to the system. These components react to events received from the 

ESB. The event consumer allows receiving or subscribing events (event subscriber) 

that respond to a pattern of behavior that is under analysis and for which the consumer 

has responsibilities to act and make decisions. 

 

3.5.1 Event consumer module 

Once the event is received, the consumer performs the tasks associated with the event 

(Figure 3.3, step 6) to visualize the data and its appropriate analysis. It is necessary to 

update the processed data from a server that contains the CEP, to understand its values 

and make decisions. Among others, it is necessary to notify the occurrence of the events 

to the relevant instances. 

 

The visualization and management of information through the event consumer module 

is implemented in a web architecture system that offers web services (Figure 3.3, step 

7), which involves the development of a page in a browser that shows a user interface. 

This has the logic of interaction of the users with the system and with the microservices 

they wish to subscribe to. 

 

Figure 3.4 shows the activation sequence diagram of the proposed architecture in the 

steps described in the preceding sections, as well as the data flows through the 
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components of the specified IA-CPS architecture from the service side. In the same 

way, it shows from the client-side the interaction of the latter for the information query, 

allowing to observe the sequences to access the data query. 

 

 
Figure 3.4. Sequence diagram of event flow in IA-CPS specification and data query from client-

side. 

4 IA-CPS applications 

The application of the use cases is developed under the framework of the proposed IA-

CPS architecture. Specifically, we present an event-driven service architecture for 

managing video surveillance systems and a microservice-oriented architecture for 

managing sensors in smart environments connected to the cloud. The most relevant 

components of the system architecture are described below. 

4.1 Use case – Event-driven architecture for video surveillance systems 

Video surveillance cameras can describe observations of remote events. They are 

deployed in cities to monitor people's activity and movements, connected to the 

network to provide the video to a central location or a server for analysis. They serve 

as a deterrent, identification, and analysis tool for required events or events catalogued 

as of interest for a given scenario. 

 

The processing of the images is subject to the patterns designed in the CEP, so that they 

allow correlating features of an image. Patterns are established that contain sections of 

the images with the desired features. 
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It is necessary to perform an intelligent analysis of images and audio to generate 

automatic alarms that strengthen the response time and improve the knowledge of 

different variables necessary to make decisions in real-time. As defined in previous 

sections, our perspective covers the analysis and decision making under on-line 

processing of the input events. In the following sections, we will present the basis of 

our research and proposal for an intelligent architecture for IA-CPS cyber-physical 

systems. 

 

4.1.1 System architecture 

The main components of the designed architecture are shown in Figure 4.1. We will 

detail three modules: the video surveillance cameras as event producers, the ESB, 

which contains the CEP, and the event consumers. The event bus task is integrating the 

inputs and outputs of the in-formation streams in the video and image sequence. Also, 

it can discover and process complex events, among others, related to semantics and 

ontologies. The event consumer manages events to generate response actions within the 

system itself and to external devices, clients, and users of the system. The information 

flows through the event channels. 

 

The system design is conceived to produce, detect, and react to a flow of events in 

which the event producers, processors, and consumers are instantiated. We 

implemented a publish and subscribe communication system, which has the objective 

of sending streams of information and data captured by the video surveillance cameras 

to be received by one or more consumers (previously processed). 
 

The processing flow depends on the logic of the rule patterns configured in the CEP to 

capture the image and video events that need to be analyzed in the case study. The 

connection between modules is ensured by allowing one module to consume events 

from another module through event channels. These are communication or data 

navigation channels that allow linking the different modules of the proposed 

architecture. In other words, it delivers the sequences of events captured from the video 

surveillance cameras (event producers) through the publication of messages (event 

publishers) so that the processing and consumption modules can subscribe and consume 

events (event subscribers). 
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Figure 4.1. Event processing flow for the case study. 

 

The system implements a RabbitMQ broker and the event channel through the AMQP 

tool. It is a tool with good characterization for sending messages, routing, and queuing 

them. It is an open standard that guarantees delivery, order, integrity, uniqueness, and 

security for transferring messages between event producers and receivers. AMQP is an 

open, interoperable, and reliable standard. Next, we will detail the flow of events, the 

sequences of images that navigate through the designed architecture, the functionality 

of the modules, the interaction between the components, and the information that flows 

through the architecture model shown in Figure 4.2, which encompasses the proposed 

system in general. It is composed of the event producer module, the services in charge 

of capturing and recording events, the event bus, which contains the complex event 

processor CEP, and the event consumer. 

 

 Event producer module 

From these components, event information is obtained that must be processed and 

correlated to determine critical situations, according to the logic defined in the case 

study for the video surveillance cameras. It should be noted that different types of event-

producing devices could be connected to the system. Here the conversion or 

transformation of the data collected by the video surveillance cameras in a standardized 

way is an important issue for the design and implementation of this module. Not all 

cameras generate events in the same format and must be transformed to deliver them to 

the broker and the event channel. However, we mitigate this risk by using a messaging 

system and open SOA services. 
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The tool responsible of sending the data captured by the cameras to the event channel 

is RabbitMQ (broker). It is an open-source message sending tool for implementing 

producers and consumers. It fits perfectly with the event processor CEP-Esper, since 

both use Java classes (Plain Old Java Objects - POJO). RabbitMQ handles the 

publisher/subscriber scheme, in which messages are distributed and sent from the video 

surveillance cameras (producers) to all receivers and consumers in the system. 

 

The registration of the images captured by the video surveillance cameras is done 

through the implementation of the CEP-Manager web service, which is installed on the 

Esper EDA server. The registration process is the trigger that sets into action the 

modules that comprise the proposed EDA architecture (Figure 4.2, step 1). 

 

By sending the image stream through RabbitMQ to the Esper EDA server, the data 

streams are exposed to the client applications, i.e., the users of the case study. The video 

stream is also recorded and archived in the image and video registry database. 

 

Metadata is also submitted to the server. This metadata includes attributes such as: 

camera identification, video name, geographic location, text description, recording 

date, and recording time. Similarly, all the information specific to the image is 

submitted to the Esper EDA server, such as PTZ camera control, time, and location 

parameters. 

 

If the recording of video captured by surveillance cameras is satisfactory, then, through 

the CEP-Manager web service, the sequence of images is available in the system to be 

analyzed by the CEP-Esper engine. It has the logic to determine whether the event is 

simple or complex and which patterns to implement and recognize (see event 

processing module). 

 

 Event processing module 

This module manages the logic of event sending, exception, update, and detection. It 

also checks for errors that may occur in the parameters that unify an event. When we 

receive an event message at the bus level, the publishing services intercept it and 

distribute it among the various event channels, making it available to consumers or the 

subscription services component. 

 

The event processor handles the parameterization and combinations of multiple event 

producers. That is, multiple video surveillance cameras are connected to the system. 

We highlight that pattern management is a critical aspect to process the images and 

videos sent from the video surveillance cameras. This feature makes the CEP-Esper 

engine an intelligent tool and makes it the core of our event-driven architecture. 

 

The CEP-Esper engine allows defining simple and complex event patterns using Event 

Processing Languages (EPL). This engine can implement several events in different 

languages and supports the hierarchical creation of event patterns. Inside this module, 
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we defined the tool that processes the complex events and generates the behavioral 

patterns, which engage ontological and semantic aspects. 

 

Figure 4.2 describes the components and the flow of the image sequence processing in 

the implemented register service and in the CEP-Esper engine, which belongs to the 

ESB. Therefore, regarding the flow and processing of images, once the video images 

captured from the video surveillance cameras are registered in the image sequence 

registration module (Figure 4.2, step 1) described in the previous section, the event 

manager module of the CEP-Esper engine receives a request to generate an event for 

the registered image sequence (Figure 4.2, step 2). This request enters the engine based 

on complex event processing rules. 

 
Queries and patterns are registered from the beginning of the processing in the rule-

based CEP-Esper engine, to be executed and applied on each of the image sequences 

that are continuously coming in. If the CEP-Esper engine finds image sequences that 

match the predefined queries and patterns, events are identified in image sequences 

which will be consumed by the lower layers of our design, i.e., a graphical user interface 

or the lower layers of consumers. 

 

 

 
Figure 4.2. Image processing components and flow. 

 

The above approach allows us to process image sequences (events) as they arrive and 

easily scale them horizontally. In this way, the processing of complex events occurs in Jo
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parallel to the historical data storage and the consumer or visualization layer. This 

activates all the intelligent processing logic implemented in the engine. 

 

The CEP-Esper engine contains the logic of intelligent patterns that allows the analysis 

of detection, tracking, and recognition of people in the image sequences captured by 

video surveillance cameras. The rule base has the knowledge to correlate and recognize 

people detected in different image sequences in different spaces and times. 

 
For the case study, cases of abnormal behavior, such as sudden changes of rhythm, must 

be detected in people sharing public or private space. The configuration of patterns for 

the detection, tracking, and behavior of people, and the configuration of abnormal 

behavior parameters are considered. These algorithms implement the patterns in the 

CEP-Esper engine. Once the engine has analyzed the events or image sequences, it 

determines if there is abnormal behavior through the analysis of the stated patterns. In 

that case, it publishes the image sequence (events) in the publication services layer. 

These are taken from the subscriptions and notifications services layer by consumers 

(Figure 4.2, step 3), allowing us to dispatch image events according to which consumers 

are interested. 

 

The intelligence of the system lies in the design of the information capture and 
registration services, and the implementation of rules in the CEP. In this way, CEP 

infers new, more complex events with greater semantic meaning from the sum of simple 

events, which allows defining meaningful patterns of behavior detected in the image 

sequences that are registered in the system. This enables the pattern to learn and, from 

this learning, to analyze the series of events and derive conclusions from them. The 

CEP-Esper engine also stores the image sequences in the knowledge database, as 

records of processed events, and as knowledge archives and historical data queries. 

 

 Event consumer module 

The consumer has the logic for handling the event, the security and response scheme 

under the online processing of an event treated as of interest to the system. These 

components react to events received from the Esper EDA server, where the ESB is 

instantiated. The event consumer allows receiving or subscribing to events (event 

subscriber) that are of interest according to the defined logic and for which the 

consumer has responsibilities to assume.  

 

After receiving the event, the consumer fulfills the tasks associated with the event that 

are related to the visualization of the data and its correct analysis. An update of the data 

processed from the Esper EDA server is necessary to understand the values and to make 

decisions. These include notifying the relevant authorities of the occurrence of events 

of interest. 

 

The visualization and management of the information, through the event consumer 

module for the video surveillance system, can be implemented with web services, Jo
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which involves the development of a browser page that exposes a user interface. This 

has all the logic of user interaction with the system. 

 

In terms of its functionalities and navigation considerations, the system must provide 

searching and querying of image sequences and information by various criteria. For 

example, using the registration date of an image to the system or the name/description 

of that image. It should also be possible to view only live video streams, i.e., images 

that are being generated by the video surveillance cameras and entered into the system 

for online processing. Another functionality would be to view archived image 

sequences in the registry database, which is implemented by the CEP-Manager web 

service, or in the knowledge database, which is implemented by the CEP-Esper engine. 

4.2 Use case – Microservice-oriented architecture for sensor management in 

intelligent and cloud-connected environments. 

This approach leverages microservice-based architectures with publish-and-subscribe 

messaging-oriented protocols, which implement a Messages Queuing Telemetry 

Transport (MQTT) broker. The proposed IA-CPS intelligent architecture uses a cloud 

platform to expose services in the IoT environment. It could be used by utility 

companies and customers to monitor the energy and drinking water consumption 

records in a domestic environment using pre-installed sensing devices. The monitoring 

of the consumption records can be performed on a web server accessed by authorized 

users from a user-oriented web interface application. Moreover, this architecture 

supports other sensor types covering different application areas. 

 

4.2.1 System architecture 

The IA-CPS reference architecture complies with the paradigm and fundamental 

principles of a MSA and EDA, considered as state-of-the-art technologies to manage 

and process information in IoT and cloud environments. The proposed framework can 

process the information captured from a network of sensors. In our case, these are 

sensor nodes connected to indoor meters in water supply connection of homes, 

shopping malls, or industries, which deliver water and energy consumption to the users. 

 

The intelligence lies in the mapping of variables from various alphanumeric data 

delivered by sensors, and from the addition of simple events to form a complex event. 

This allows us to implement relevant behavioral patterns detected by the sensor devices 

installed in water and energy meters according to customer's requirements. The 

specification of the proposed architecture is oriented to the learning of the patterns in 

the CEP, so that from this learning it analyses the series of events and derives 

conclusions from them. All this allows the system to react online and improve decision 

making. 

 

The microservices architecture embedded in IA-CPS extracts information and data 

captured by sensors that measure customer’s water and energy consumption. The smart 
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analysis is performed using a complex event-processing module, which generates 

multivariate analysis patterns of different water and energy consumptions: general 

consumption, peak hours, upstream and downstream consumption, cross-referencing 

consumption variables by stratum, by zone, by contracted service costs, service quality, 

consumption in cubic volumes of water and kilowatts of energy, etc. 
 

In the following sections, we will detail the modules that compose the architecture and 

describe the pipeline. 

 

 Event producer module 

The Message Queuing Telemetry Transport (MQTT) client system corresponds to the 

first module of the IA-CPS framework and is the first layer of the architecture of a CPS 

system interacting in the IoT. This corresponds to the perception or production layer. It 

allows obtaining data from the physical or virtual world using sensors managed by 

microservices. 

 

- Communication protocol. Once the sensors that will deliver information to the 
system are known, it is necessary to know the communications protocol that will 

send the information within the proposed architecture, that is, to the data 

processing module which is in the node or server layer where the database 

persistence takes place. This transport protocol is MQTT, which is an ISO standard 

(ISO/IEC PRF 20922) based on the publish-subscribe paradigm for message 

passing. 

To implement the protocol, we will need a node or central layer that runs a message 

broker. Next, we will describe the MQTT Broker Node. 

 

 Communication and transport module 

One of the main features of MQTT communications is the broker, which is the system 

that will receive the messages sent by the clients in a system with a publication and 

subscription pattern. Among several MQTT brokers, we have chosen Mosquitto as it is 

open-source and multiplatform. The MQTT broker is a translation and data storage 

server. The role of the broker is to be an intermediary node whose function is to receive 

all messages from event-producing clients (see client-client node) and then redirect 

them to the relevant destination consumers or clients. In our case, for a broker, a client 

is an event producer or sensor node, but it can also be a consumer. This depends on the 

message flow direction, with which the broker, designed to receive and send messages 
containing the consumption data captured by the sensor, interacts. The sensor nodes of 

our system are in the IoT environment. 

 

Since the IA-CPS reference architecture is based on microservices, the broker is the 

API gateway layer, which is the interface in charge of publicly exposing the 

microservices. An API gateway is the piece in charge of unifying the publication of 

APIs to be consumed by other applications or by developers. It is an intermediary 

system that provides a REST or WebSocket API interface to act as a router from a 

single-entry point, the API gateway, to a group of microservices and/or third-party 
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APIs. In our architecture, the API gateway distributes the information provided by a 

microservice, which can be information generated by water and energy sensors, or 

information from the intelligent analysis of the CEP complex event processor and the 

management by the end-users of the system. 

 

 Event processing module 

An MQTT client is hosted on this server. This client is subscribed to the topics in which 

the data of measurements of interest made by the sensors are sent from the event 

producer MQTT client node. That is, to transfer the data collected from the sensors 

(MQTT client node) located in the MQTT broker node, it is necessary to implement an 

MQTT client in the MQTT server node (where the CEP engine is instantiated) to expose 

the data to the end clients. It also has the logic to store the information captured from 
the sensors in a database defined for the architecture. 

 

Likewise, the CEP is instantiated in this module, which has defined the rules and 

intelligent action patterns, according to the variation or not of the event flows captured 

from the sensors. The microservices architecture embedded in IA-CPS extracts the 

information and data captured by sensors that measure the water and energy 

consumption of customers in a domestic environment, and the intelligent analysis is 

performed by the complex event processing module. 

 

Also, this server hosts the database and the final client files that form the graphical 

interface web application, accessible to the users of the system. The objective of this 
node is to store and query the data published by the sensors and consumed by the broker 

for further user queries. End-users can access the web application through computers 

or smartphones. 

 

 Event consumer module 

In Figure 4.3, step 4, users have access to information through an interface where they 

can register and log in, with a navigation menu for the required services of each sensor. 

It enables users to interact with the sensor microservice of their choice (water or energy 

service). Its most relevant tasks are to analyze the sensor data and to manage the registry 

of sensors and devices and models that can be executed by creating a catalog of 

elements and programs of the model. In general, service information can be obtained 

from the users and sensors. 

 

Data and information streams can be searched and queried by the registration date of 

an event, the name, or the description of the micro-service of energy and water 
consumption. 

 

Users will be able to capture information on consumption during peak hours, rise and 

fall of consumption, cross-referencing of consumption variables by stratum, by zone, 

by contracted service costs, quality of service, consumption in cubic volumes of water 

and kilowatts of energy, hours of service failure due to damage, maintenance, and 

discount equivalents, etc. The observation of captured consumption data can be done 
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by interacting with the cloud web server discussed in the previous section. They can 

also access the system from smart mobile devices. 

 

Also, this architecture allows connecting other types of sensors and extract the required 

information to cover other application areas such as telemedicine (blood pressure 

sensors, accelerometer, gyroscope, sugar level, or panic button), fire detection 

(temperature sensors, smoke level, or luminosity), etc. 

 

 Information processing flow 

The information processing flow is depicted in Figure 4.3. It shows a general overview 

of the proposed architecture and how system components interact between them. This 

interaction is done through messages that carry the input information captured in the 
sensor nodes. A topic (messaging protocol and language of microservices) corresponds 

to a sensor and a publish is a message from a given sensor, containing the data it has 

previously captured. When a client subscribes to a message, it is because it consumes 

the published microservice delivering the information in that message and storing it in 

a database of the MQTT server node. This is how users, accessing the MQTT server 

node via a web application, see the information. 

 

As defined above, the message broker is implemented using the open-source Mosquitto. 

It receives the publication and subscription requests from the components described in 

the proposed general architecture. These components can be concrete microservices or 

functionalities for web and mobile applications, among others. Mosquitto also performs 
the role of API gateway, i.e., interface that publicly exposes the microservices. It is 

responsible for distributing the information provided by a given microservice, such as 

the information generated by the water and energy sensors, or information obtained 

from the analysis and management of the end-users. 

 

The information flow and data generated by sensors are addressed in all the nodes 

through a request to which clients subscribe to consume the exposed information. Next, 

we describe the information flow that activates the system of the proposed architecture 

(see Figure 4.3). 

 

- The event producer – MQTT client node at step 1 of the proposed architecture, 
captures data from the sensor and publishes a message with consumption statistics. 

Moreover, it sends a topic identifying the sensor type in the IoT. This is sent to the 

MQTT broker node.  
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Figure 4.3. General architecture of the proposed system. 

 

- MQTT broker node at step 2 in the proposed architecture publishes the sent 
message to the event processing module – MQTT server node. As described above, 

the MQTT broker has the goal to publish and subscribe messages to and from 

clients who may need them (publish-subscribe). 

 

- Event processing – MQTT server node at step 3 in the proposed architecture has 

implemented an MQTT client of the same type as the client described at step 1. 

This is implemented to be able to subscribe or consume the microservices exposed 

from the MQTT client and to be able to give a response to the MQTT broker in 

step 2. Moreover, it also processes the information sent from the event producer – 

MQTT client node at step 1. 

In the MQTT event processing server in step 3, the CEP is instantiated. This module 

manages the events sending logic, exception, update, and detection. It also verifies 

errors that may occur in the parameters that unify an event. When we receive an event 

message at the bus level, the publishing services intercept and distribute it among the 

various event channels, making it available to consumers or the subscription service 

components. 
 

The event processor handles the parameterization and combination of multiple event 

producers, i.e., multiple water and energy consumption sensors connected to the 

system. We emphasize that pattern management is a critical aspect for processing the 

data streams sent from the sensors. Likewise, in this module the final client applications 
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are instantiated. A database has been implemented in the server to ensure recording, 

storing, and updating sensor data which travels through all the components of the 

architecture in the message format. Also, in this processing module, a web server is 

implemented to expose the data to the users of the system. 

5 Conclusions 

Nowadays, the importance of the architecture lies in the fact that the result of this 

practice will guide the construction of a system (a CPS system in our case). In this 

context, the concepts of architecture and design are completely related. From this 

perspective, a generic intelligent architecture IA-CPS (Intelligent Architecture for CPS 

management) has been proposed as an adaptive, autonomous, and interoperable EDA 

event-driven architecture for capturing event-driven data streams emitted by different 

types of sensors installed in the IoT. IA-CPS leverages the properties and principles of 

SOA, MSA, and CEP, interacting with components of these models. 

 

The CEP module is the core of the proposed architecture, which is based on the 

definition of patterns that support the intelligent analysis of events in information flows 

and data captured by networks of sensors. It also performs the online detection and 

processing of interesting or unusual events of the physical scenario where the CPS and 

the sensor devices act. 

 

Given the importance that cyber-physical systems acquire in all application domains, 

from IoT environments to cloud and smart cities, event-oriented architectures and the 

techniques applied to manage them provide motivations for future works in two areas. 

First, the detection on complex events in sensor devices subjected to the analysis of 

online and real-time processing. Secondly, the design of intelligent software that allows 

the integration to the changing dynamics and the behavior of the environment variables 

that make up the physical scenario where the CPS interacts. 
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