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ABSTRACT: 12 

Granite boulders are characteristic geomorphological structures formed in granitic terrains.  13 
Due to their formation process associated with typical spheroidal weathering phenomena, 14 
they tend to show more or less ellipsoidal shapes prone to instability, and they often lie on 15 
small contact surfaces. Analyzing the stability of these boulders is not a straightforward 16 
task. First, these boulders may topple or slide. Additionally, their typically irregular 17 
geometry and uneven contact with the surface where they lie makes the analysis more 18 
complex. The authors have identified some critical issues that are relevant to characterize 19 
these boulders from a rock mechanics point of view, with the aim of estimating the stability 20 
of boulders. In particular, an accurate description of the geometry of the boulder is necessary 21 
to perform accurate toppling calculations. Additionally, the contact area and the features of 22 
the contact plane need to be known in detail. The study is intended to serve as a guideline 23 
to address the stability of these granite boulders in a rigorous way, since standard rock 24 
mechanics approaches (planar failure, toppling stability, standard rock joint strength criteria, 25 
etc...) may not be directly applicable to these particular cases. 26 
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1. Introduction34 

Large granite boulders are typical geomorphological structures formed in granitic terrains 35 
and are most common in temperate regions that are or have been humid on all continents. 36 
Accordingly, they can be found in the western part of Europe (Galicia in Spain, northern 37 
Portugal, UK), in southern Africa (Zimbabwe, Kenya or Namibia), in southern Asia 38 
including India or Thailand, Brazil, Australia and the USA (e.g. Yosemite or Joshua Tree 39 
National Parks), for example. 40 
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Due to their formation process, associated to differential weathering, they tend to show more 42 
or less ellipsoidal shapes, which in turn means that they often lie on a small contact surface, 43 
making these boulders prone to instability. Instability of these boulders can put people or 44 
property at risk, meaning this phenomenon should be studied in detail. Furthermore, the 45 
geometry of these blocks tends to be irregular, which contributes to making rigorous 46 
analyses of their stability difficult. 47 
 48 
The authors have been involved in the stability analysis of some of these structures in the 49 
past and have developed approaches to analyze their stability (Alejano et al., 2010; Pérez-50 
Rey et al., 2019a), either against sliding or toppling/overturning. At the same time, they 51 
have identified some critical issues that are relevant in order to characterize these boulders 52 
from a rock mechanics perspective to help quantify their stability. 53 
 54 
Characterization of the contact surfaces of the boulders with the rock where they rest shows 55 
that they cannot typically be considered standard unfilled rough joints, in contrast to most 56 
of the joints usually found in rock masses. Their behavior is best represented by so-called 57 
mismatched joints, where the two contact surface roughness profiles differ. 58 
 59 
It is also important to note that boulders are usually not regular or symmetric solids. 60 
Accordingly, to compute their stability against overturning, one has to analyze the projection 61 
of the center of gravity of the boulder on the resting plane in relation to the contact base. 62 
Rounded corners also play a role in stability computations.  63 
 64 
In this paper, relevant features concerning the stability of these boulders against sliding and 65 
toppling based on practical experience will be briefly reviewed and illustrated with the help 66 
of physical models and actual case studies. Based on previous applied studies (Alejano et 67 
al., 2010; Pérez-Rey et al., 2019), some improvements were incorporated and new analyses 68 
area provided to insight granite boulder stability behavior. This paper is ultimately intended 69 
to be of help in addressing the stability of granitic and other type of boulders for rock 70 
mechanics practitioners dealing with this type of problems, since standard rock mechanics 71 
approaches may not be directly applied to this particular type of stability analyses. 72 
 73 
 74 
2. Granite boulder formation and occurrence 75 

This study addresses instability phenomena associated with irregular stone boulders in 76 
granitic terrains, illustrated in the context of the conditions encountered in the northwest of 77 
the Iberian Peninsula. These phenomena also take place in other regions of the globe where 78 
granitic basements are subjected (now or in the past) to intense weathering. A survey of 79 
granite landforms from a geomorphologic perspective was produced by Twidale (1982), 80 
where the author refers to four main groups of landform types including boulders, 81 
inselbergs, all-slopes topography and plains. 82 
 83 
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Disregarding the stable plains, three types of potentially unstable slope environments can 84 
be identified among these landforms, including typically large ellipsoidal individual granite 85 
boulders areas, whose stability is the main focus of this study, mid-slope regions formed by 86 
groups of medium-size granitic boulders in decomposed granite matrix (which can produce 87 
rockfall phenomena; Pérez-Rey et al., 2019b) and, finally, mild slopes formed by highly or 88 
completely decomposed granite (HDG or CDG) (Jiao et al., 2005; Alejano & Carranza-89 
Torres, 2011; Jiao et al., 2012; Ohtsu et al., 2018)  (Figure 1). In all these cases, weathering 90 
of granitic materials plays an important role. 91 
 92 
FIGURE 1 93 
 94 
Boulders are one of the most common and characteristic landforms of granitic terrains and 95 
they originate due to weathering (Durgin, 1977; Fletcher et al., 2006). These structures form 96 
through the mechanism of spheroidal weathering and forward erosion of decomposed 97 
granite. Spheroidal weathering is a physical-chemical process that affects uniform rock 98 
masses with regular joint patterns, typical of granitic rocks, but also in volcanic tuffs or 99 
basaltic rock.  100 
 101 
Weathering is the process by which rock deteriorates until it eventually breaks down to a 102 
soil. This process is highly dependent on climatic influences (Selby, 1993). Often, 103 
weathering works from free surfaces where chemicals in water attack the parent rock 104 
(Figures 2 and 3). Eventually it may leave a framework or core-stones of more or less fresh 105 
rock separated by weathered zones that can be easily eroded (Ollier, 1975; Hack, 2009; Md 106 
Dan et al., 2016). Often, joint sets found in rock masses are orthogonal; two sets occur 107 
perpendicular to one another and perpendicular to some planar fabric such as bedding, 108 
foliation or flow banding in an igneous pluton (Taboada et al., 2005; Hencher, 2015).  109 
 110 
Linton (1955) theorized a two-stage process of formation (Figure 2). The first stage involves 111 
deep penetration of weathering along joint surfaces, which produces a thick saprolite or 112 
completely decomposed granite (CDG) mantle interspersed with non-weathered core-113 
stones. The second stage is brought on by exhumation either by tectonic uplift of these 114 
boulders or lowering of base level accompanied by erosive processes. 115 
 116 
FIGURE 2 117 
 118 
FIGURE 3 119 
 120 
In the case of granites, rock erosion tends to produce boulder fields or the so-called tors or 121 
inselbergs, which are residual rock masses that display as isolated piles of boulders (Twidale 122 
& Vidal Romaní, 2005). This is consistent with the formation process suggested by Linton 123 
(1955).  124 
 125 
Following weathering, granular saprolite or completely decomposed granite (CDG) is 126 
quickly eroded or removed by wind and water leaving behind the rounded core-stones or 127 
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boulders. An example of one of these processes is illustrated in Figure 3, where a structure 128 
of some granitic boulders eventually remains after weathering of a jointed rock granitic 129 
mass. 130 
 131 
If these erosive processes persist until they reach the entire rock mass, a phenomenon typical 132 
of granite plains, the granite becomes completely decomposed, behaving like a soil material 133 
(HDG or CDG); this is also known in the NW of the Iberian Peninsula as “jabre” (Alejano 134 
& Carranza-Torres, 2011), but has other local names according to geography (GEO, 1988; 135 
Onitsuka et al., 1985). One defining aspect of CDGs in the context of geotechnical 136 
engineering is their heterogeneous spatial distribution and natural variability (Figure 1.c). 137 
 138 
Since the original joints of a granitic mass are not necessarily orthogonal (though they tend 139 
to be), granite boulders occur in different shapes and sizes, from almost perfect spheres to 140 
ellipsoidal bodies, but also slender or irregular slabs. As previously noted, these boulders 141 
are common all over the world, but particularly in temperate humid regions (Figure 4). 142 
 143 

FIGURE 4 144 
 145 
 146 
3. Granite boulder instability mechanisms  147 

Granite boulders are effectively rock blocks with complex geometry lying on approximately 148 
planar resting surfaces. In the field of rock slope engineering, the stability of a rock block 149 
lying on an inclined plane should be studied against the two types of instability mechanisms 150 
hypothetically observable in these cases, namely, sliding and toppling/overturning 151 
(Sagaseta, 1986). If we consider that a granite boulder is a block lying on such an inclined 152 
plane, both types of mechanisms should be considered (Figure 5) in order to quantify its 153 
stability level. 154 
 155 

FIGURE 5 156 
 157 
Traditional rock slope engineering studies (Hoek & Bray, 1974; Goodman & Bray, 1976; 158 
Wyllie & Mah, 2004) developed methodologies for analyzing the stability of rock blocks 159 
with simple shapes delimited by pre-existing rock joints or discontinuities, such as rock 160 
slabs, prisms, wedges or columns. These potentially unstable blocks tend to form when 161 
excavating man-made slopes or rock cuts. Stability against sliding or toppling of complex 162 
geometry boulders or blocks is not a straightforward task since adapting calculations to the 163 
observed geometries can be difficult. Additionally, contact zones between boulders and 164 
resting planes do not tend to behave like standard unfilled rough rock joints (further 165 
explained in section 4.6), so traditional rock joint strength approaches may not be 166 
appropriate. 167 
 168 
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The stability against sliding, in case the contact plane is cohesionless (as is normally the 169 
case), is controlled by the plane dip (α) and the friction angle (φ) of the contact between the 170 
boulder and the basal plane according to Eq. 1:   171 

                             
tan
tanslidingFoS φ

α
=                                    (1) 172 

 173 
In the case of rough unfilled rock joints, the Barton-Bandis approach (Barton & Choubey, 174 
1977; Barton & Bandis, 1982) can be used to compute the friction of the contact, but the 175 
authors’ experience is that the boulder-rock contact does not behave like this type of joint 176 
(Alejano et al., 2012).  177 
 178 
The basic equation controlling the stability against toppling of a rigid block is presented in 179 
Eq. 2 and can be used to estimate the factor of safety, and accordingly, the stability of a 180 
block against toppling.  181 

                          
stabilising

toppling
overturning

M
FoS

M
= ∑

∑                             (2) 182 

 183 
This simple equation just considers the ratio of the stabilizing and overturning moments in 184 
relation to the corresponding rotation axis. In the simplest case, where the only driving force 185 
is the weight of the specimen, the factor of safety against toppling (FoStoppling) can be 186 
computed according to the forces acting along x and y-axes, in relation to a rotation axis 187 
located at the lower corner of the block in the direction of tilting (Figure 5.a).  188 
 189 
The forces involved in the analysis of each specimen result only from its own weight (and 190 
other external forces) and are typically applied at the center of gravity of the specimens. For 191 
slabs with simple geometry, the rotating axis is easily identified as the lower external corner, 192 
but when the corners of the slab or boulder are rounded or the boulder has complex 193 
geometry, the rotation axis should be chosen with care. Indeed, for boulders with an 194 
irregular base, the rotation point varies according to the projection of the center of gravity 195 
on this base. 196 
 197 
The most likely failure mechanism (sliding or toppling) will be the one theoretically 198 
occurring at a lower tilting angle. Typically, slender boulders will be more prone to topple, 199 
whereas rounded blocks tend to slide, if the basal plane dip is larger than the apparent 200 
friction angle of the contact (Figure 6).  201 
 202 

FIGURE 6 203 
 204 
With the aim of studying the stability of rock elements, it is possible to carry out simple tilt 205 
tests under controlled environmental conditions and constant lifting velocities to estimate 206 
analytically predicted angles in the laboratory (Alejano et al., 2015 & 2018).  207 
 208 
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 209 

4. Relevant issues affecting stability calculations  210 

In this section, the authors address a number of relevant issues to be considered when 211 
estimating boulder stability, adapting classic rock mechanics approaches to the types of 212 
cases under scrutiny. 213 
 214 
 215 
4.1. Detailed boulder geometry 216 
 217 
One of the reasons that has made it difficult in the past, if not impossible, to compute boulder 218 
stability was the unavailability of a detailed knowledge of the geometry of the boulders.  219 
 220 
Advanced surveying techniques such as Terrestrial Laser Scanning (TLS) and close range 221 
or drone (remotely piloted aircraft systems, RPAS) photogrammetry permits a very detailed 222 
record of the land geometry in the form of 3D point clouds (3DPC) (Armesto et al., 2009; 223 
Ferrero et al, 2008; Riquelme et al., 2014).  224 
 225 
Our experience is that it is better to apply TLS (generally more accurate) and RPAS 226 
photogrammetry together, since due to the shape and size of the boulders, their upper part 227 
is usually hidden from terrestrial views and their lower parts and contact zones are shadowed 228 
in top views typical of RPAS photogrammetry. By combining information recovered from 229 
both in-situ non-contact surveys, an accurate 3DPC can be obtained. This 3DPC can be 230 
processed using software like MeshLab or CloudCompare (Girardeau-Montaut, 2018) 231 
 232 
Figure 7.a illustrates the ‘Pena do Equilibrio’ boulder studied by Pérez-Rey et al. (2019a) 233 
and Figure 7.b shows the 3D point cloud derived from TLS and UAS imagery obtained for 234 
this boulder, where also its center of gravity and the relatively very small contact area are 235 
depicted. This information is critical for further sufficiently accurate calculations. Figure 236 
7.c. represents the top view of the boulder together with the contact zone and center of 237 
gravity (cog) projections (also enlarged). This projection is needed to compute stability 238 
against toppling of this block, as explained below.  239 
 240 

FIGURE 7 241 
 242 
 243 
4.2. Stability against toppling 244 
 245 
Using detailed geometry data (e.g. a 3DPC) including contact area, the stability of the 246 
boulder against toppling can be reliably computed. FoStoppling is computed according to Eq. 247 
2. Application of this formula to an idealized slab geometry is straightforward as shown in 248 
Figure 8, derived from the seminal Goodman & Bray (1976) approach.  249 
 250 
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The location of the rotation axis is easily identified, as it is located on the lower outer corner 251 
of the rectangular-shaped slab. If the projection of the center of gravity (cog) falls within 252 
the base of the block, it will not topple, whereas when it falls out of this base, the block will 253 
topple. 254 
 255 
To analyze the stability of a slab with rounded or eroded corners (Figure 9), the situation 256 
becomes slightly more complicated. However, if the rounding corner radius (r) is known, 257 
computations can be performed according to Alejano et al. (2015) and the formulation 258 
presented in Figure 9. Rounding of the corners contributes to making boulders more prone 259 
to toppling. 260 
 261 

FIGURE 8 262 
 263 

FIGURE 9 264 
 265 

To illustrate this effect of rounding corners, a slab-like solid with side lengths of 3, 4 and 266 
5 cm and rounded corners with 1 cm curvature radius have been printed in a heavy plastic 267 
by means of a 3D printer (Figure 10). This small block has been tilted in the 12 possible 268 
positions (4 corresponding to the slenderness ratio 5/3, 4 for 4/3 and 4 for 5/4). The average 269 
tilt angles obtained for every three groups of four tests, together with the theoretical value 270 
obtained applying the equations of Figure 9 are compiled in Table 1, showing a very good 271 
agreement, confirming the validity of the round corner toppling stability computation 272 
approach.  273 
 274 

FIGURE 10 275 
 276 

TABLE 1 277 
 278 
Remark that for the case of actual boulders the so called curvature radius may vary along an 279 
edge and in different edges of the boulder, so the selection of a representative value of this 280 
parameter, tending to diminish in the middle of the edge, may slightly affect the stability 281 
computations (Alejano et al., 2015).  282 
 283 
To further illustrate the influence of geometry on toppling stability, a number of increasingly 284 
complex geometrical elements are illustrated on the top row of Figure 11 with the aim of 285 
analyzing their toppling behavior.  286 
 287 
Figure 11.a is a simple rectangular prism with square base. If we position it on a flat surface, 288 
its center of gravity (cog) will project right on the center of its square base. If we 289 
continuously tilt the surface where it stands, at a particular tilt angle α, the projection of its 290 
cog will come out of its base (lower row of Figure 11) so the prism will topple. The tilting 291 
angle α for toppling can be computed based on the formulation illustrated in Figure 8. 292 
 293 

FIGURE 11 294 
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 295 
To see the role of a more complex geometry, Figure 11.b shows a similar prism with a cube 296 
stuck to its upper back face. Note that when placed on a flat surface, its cog will not project 297 
on the center of the square base but somewhat backwards, due to the effect of the additional 298 
weight of the stuck cube. In this way, when tilting the plane on which this element stands, 299 
it will topple at a higher angle than the previous figure because the cog will project 300 
somewhat backwards. In this way the toppling angle in this case, β, will be steeper than the 301 
one observed for the first prismatic element (α). 302 
 303 
Element c in Figure 11 is like element b, but the added cube is now stacked on the upper 304 
left side face. Its cog will be at the same height as for element b (since it is the same element), 305 
but its projection on a horizontal plane will be moved leftwards in relation to element a 306 
(Figure 11.c, second row). When tilting the platform where element c rests, it will topple at 307 
a less steep angle than α, because its cog is located higher than in case “a”, so its projection 308 
will fall outside its base at a less steep angle γ, which will be also less steep than β. 309 
 310 
Element d in Figure 11 is a rectangular prism with square cross-section that has cubes 311 
attached in the upper part of its lateral backward and leftward faces. In this case, the cog of 312 
the element will be even higher than for elements b and c and the cog projection on its base 313 
will be slightly moved backwards and a little bit leftwards in relation to the case of element 314 
a in Figure 11. This will be clearly less stable than b (since the side-stuck cube moves the 315 
cog upwards), but more stable than c (since the back-stuck cube will increase its stability by 316 
moving the projection of its cog backwards). 317 
 318 
One can then show that β > δ > α > γ. Based on this type of reasoning or equivalent 319 
computations, it is possible to develop an understanding of general toppling mechanics 320 
using the contact area and projection of the cog. This approach can be applied to better 321 
understand stability of granite boulders.  322 
 323 
Note that when no external forces (e.g. water or seismic forces) are applied, the stability of 324 
these elements basically depends on the location of the vertical projection of the cog of the 325 
element on the contact base. When the projection of the cog is inside the contact base, the 326 
element is stable against toppling; when this projection falls out the contact base, the 327 
element will topple. External forces typically associated with seismic movements or water 328 
pressure can destabilize otherwise blocks.   329 
 330 
Considering this, a factor of safety against toppling can be computed by relating the angle 331 
between the vertical line and the normal to the basal plane (denoted as α in Figures 8, 9 and 332 
12) and the angle formed by the normal to the basal plane and the line connecting the center 333 
of gravity and the rotation axis. Note that the rotation axis is the point where the projection 334 
of the cog will first come out of the contact area when tilting the basal plane (shown as β’ 335 
in Figures 9 and 12).  336 
 337 
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FIGURE 12 338 
 339 
This concept is illustrated for the ‘Pena do Equilibrio’ boulder studied by the authors (Pérez-340 
Rey et al., 2019a) in the enlarged view of Figure 7.d and in Figure 12. In both these figures, 341 
the projection of the cog normal to the basal plane (cog-p, in brown in the figures) falls out 342 
of the contact surface. This means that if the boulder were placed on a horizontal base, it 343 
would have toppled backwards. The vertical projection of the cog on the contact base (cog-344 
v, in green color in Figures 7.c and 12) falls within this contact area, which explains the 345 
present stability of the boulder against toppling.  346 
 347 
Moreover, the factor of safety of the boulder against toppling, denoted as FoStoppling, can be 348 
computed as the relation of the tangents of the angles indicated above (shown as β´ and 349 
α, respectively, in Figures 9 and 12). This approach can be extended to the case where 350 
external forces such as water pressure, ice-jacking or a seismic force are applied to the 351 
boulder. 352 
 353 
It should be noted, however, that such potential stability estimates depend on a very accurate 354 
description of the geometry of the boulder, including its contact area. Also, knowledge of 355 
the geometry of the basal plane (dip, dip direction and planarity) and the contact zone 356 
between the boulder and basal plane area and external forces acting is needed to assess 357 
stability. When the contact zone has a simple geometry (Figures 8, 9 and 12), identifying 358 
the rotation axis is simple. However, for less regular contacts, as are usually found in nature, 359 
the situation is more complex, as illustrated in section 4.4. 360 
 361 
 362 
4.3. Positioning of the rotation axis for toppling estimates 363 
 364 
Often, the location of the rotation axis enabling stability calculations of boulder toppling 365 
may not be known a priori. This is the case of the boulder illustrated on Figures 7 and 12, 366 
or any other element that does not have an edge parallel to the strike of the basal plane. 367 
 368 
To illustrate how to identify the rotation axis, a simple tilt test is performed with an element 369 
consisting of two pieces: a cylindrical rock specimen (with height twice its diameter) and a 370 
steel disk with the same diameter but much denser than the rock, which is positioned on the 371 
rock cylinder and moved a half radius leftwards as illustrated in Figure 13.a. In this way, 372 
the projection of the cog of the element moves towards the left and it does not project on 373 
the center of the rock cylinder base.  374 
 375 
When this element is positioned on a tilting platform and increasingly tilted (Figure 13.b), 376 
the projection of the cog moves along the dip direction of the tilting table until it projects 377 
on the perimeter of the rock cylinder base. At this point, the whole setup will topple. This 378 
toppling will not occur in the dip direction, but in a direction forming an angle β with the 379 
dip direction as shown on Figure 13.b and demonstrated by Pérez-Rey et al (2019a).  380 
 381 
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This means that the toppling will occur in a direction marked by the point where the cog 382 
first projects outside the element base as shown in the lower left corner photograph in Figure 383 
13.b. Accordingly, if the boulder illustrated on Figure 12 topples, it will not do so in the dip 384 
direction, but in the direction marked by this intersecting point.  385 
 386 
Additionally, the rotation axis necessary to compute stability against toppling will have to 387 
be identified based on this intersection. Pérez-Rey et al (2019a) illustrates how this is 388 
performed in greater detail. 389 
 390 

FIGURE 13 391 
 392 
4.4. Contact zone geometry 393 
 394 
In all the reasoning above, we have assumed a fully planar contact surface between the 395 
element or boulder under scrutiny and the so-called basal plane. Even if this seems to be a 396 
reasonable assumption, it may not always hold true, which can may positively or negatively 397 
affect the boulder stability. Specifically, a concave contact will improve stability against 398 
toppling, and a convex contact will be detrimental. However, the non-planarity of this 399 
contact is difficult to characterize in practice.   400 
 401 
In theory, at least for specific tested geometries, the convex or concave contact geometries 402 
could be incorporated into stability computations against toppling. For illustrative purposes, 403 
the authors have checked this formulation for the elements shown in Figure 14 and compare 404 
analytical results against actual tilt tests results, based on the force distribution and pictures 405 
of the two tested elements in Figure 14. 406 
 407 
The authors tentatively suggest that a convex contact can be associated with traditional 408 
rocking stones, also known as logan stones or logans. These are large stones that are so 409 
finely balanced that the application of just a small force causes them to rock. These rocks 410 
associated with popular traditions appear in the Atlantic European façade and elsewhere as 411 
pictured in Figure. 4.b.  412 
 413 

FIGURE 14 414 
 415 

Not only the concavity of convexity of the base contact can affect stability, but also 416 
roughness may play a role. Indeed, typical roughness of rock joints could affect the critical 417 
value of the tilting angle, according to the wavelength and asperity amplitude, and 418 
particularly the asperity height in the potential rotation axis. Variations of a few degrees in 419 
the critical tilting angles and variations on the order of 10% of the FoStoppling can be observed 420 
based on the roughness of the basal plane. 421 
 422 
To illustrate this phenomenon from a theoretical point of view, a granitic composite 423 
specimen is considered with a regular rough base (Figure 15). It has a height of 99.17 mm 424 
in the valleys and 93.64 mm in the peaks with a width of 46.36 mm. The roughness presents 425 
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an inclination of 20º (equivalent JRC=20) at a wavelength of 30.92 mm and an amplitude 426 
of 8.53 mm. When tilting this specimen in both possible directions, it topples at 20.9º when 427 
the toppling corner coincides with a valley, and at 23.6º when the rotation axis coincides 428 
with a peak. The corresponding theoretical estimates are 24.5º and 27.1º; once corrected 429 
considering a round corner with radius of 7.5% the width of the samples (a value selected to 430 
match the experimental values through back analysis), these values change to 21.1º and 23.5º, 431 
obviously quite close to those that were experimentally observed. 432 
   433 
This simple study shows that the topology of the granite boulder base, if rough, could 434 
influence the stability condition of the boulder in relation to toppling. For the simple case 435 
introduced here, the variations introduced to the critical toppling angle are about 3º; this 436 
effect will be less significant for slenderer samples, and typically more significant when the 437 
contact zone size is small. 438 
 439 

FIGURE 15 440 
 441 

4.5. 3D printing of boulders and physical modelling 442 
 443 
Overturning of a constant density rigid body only depends on its geometry and its position 444 
on a basal plane. If the body is formed by materials with varying densities, it will also depend 445 
on the location of the cog. Therefore, if one can reproduce the geometry of a boulder with a 446 
different material, for instance any plastic as those used by 3D printers, it is possible to carry 447 
out physical models including tilt tests to analyze stability against toppling of the boulder. 448 
In the case that, as recommended, we have a detailed and accurate point cloud (3DPC) of 449 
the boulder available, it is now feasible to print a scaled 3D version of the boulder under 450 
consideration. 451 
 452 
The authors have created a roughly 1:50 scaled plastic version of the ‘Pena do Equilibrio’ 453 
boulder illustrated in Figure 7. Figure 16 shows the upper and lower plan views of the 454 
boulder, including the contact area and the boulder in the process of subjecting it to a tilt 455 
test. The polylactide (PLA) plastic replica of the boulder presented a plastic pattern inside, 456 
but we consider the assumption of uniform density to be reasonable. It is therefore an 457 
appropriate geometrical copy of the actual boulder for use in physical testing. 458 
 459 

FIGURE 16 460 
 461 
Tilt tests with this boulder, adequately positioned on an polyestirene surface and with sand 462 
paper in the contact area, provided tilt test toppling angles in the range of 30 to 31º, one 463 
degree (on average) less than the critical tilting angle estimated for the actual boulder based 464 
on analytical calculations. 465 
 466 
As an alternative to the physical modeling demonstrated here, 3D point clouds may serve 467 
as a basis to create a grid able to simulate the behavior of the boulder by means of the 468 
Discrete Element Method or any other suitable numerical modelling technique.  469 
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 470 
 471 
4.6. Contact strength 472 
 473 
The Barton & Bandis (1982) formulation has been widely used as a suitable approach to 474 
estimate the shear strength of rough unfilled rock joints. However, in the process of boulder 475 
formation associated with spheroidal weathering, the original joint typically erodes 476 
differently on its sides which tends to produce convex, and not planar, profiles. Accordingly, 477 
the final contact between the boulder and the basal plane behaves more like a so-called 478 
mismatched contact or joint (Figure 17). In this case, the sides of the contact do not match, 479 
as each side presents a different roughness pattern (JRC) and shear behavior tends to depend 480 
more on the contact area than on the JRC. 481 
 482 
For illustrative purposes, Figure 18 shows two natural rough joints (left hand side) and two 483 
block contacts (right hand side). Natural joints formed in a rock mass tend to present equal 484 
geometrical patterns in both sides, so they are matched joints and behave accordingly 485 
(Barton-Bandis); conversely, block contacts present different geometric patterns in both 486 
sides, so they are mismatched joints and behave as such.  487 
 488 

FIGURE 17 489 
 490 

FIGURE 18 491 
 492 
Zhao (1997a, b) studied strength behavior of mismatched contacts and proposed a new 493 
version of Barton's formula denoted the JRC-JMC shear strength model. This criterion 494 
accounts for an additional influence of the so-called joint matching coefficient (JMC), a 495 
parameter to be estimated based on the matching of the two joint sides: 496 

     10tan  · log n
JRC JMC n r n

n

JCSJMC JRCτ σ φ
σ−

 
= + 

 
     (3)                      497 

 498 
Some studies have shown that JMC depends on the level of contact of the surfaces. Based 499 
on an estimation of potential contact of such a surface in case of granite blocks or granite 500 
boulders, previous experience developed by the authors with tilt tests carried out on large 501 
scale physical models (Alejano et al., 2012) and on the recommendation by Zhao (1997b), 502 
we tentatively suggest JMC = 0.3 as an initial estimate for this type of problem. The authors 503 
think that more detailed studies on the behavior of these mismatched joints will be necessary 504 
to better understand and bracket the shear strength behavior of these contacts. 505 
 506 
 507 
4.7. External forces 508 
 509 
A detailed analysis of the external forces, including water pressures, ice-jacking and 510 
earthquakes potentially acting on the studied rock structures should be accounted for when 511 



13 

analyzing the stability of boulders for different temporal horizons (Christianson et al., 1995; 512 
Alejano et al., 2010). 513 
 514 
Most often, water pressure associated high rainfall periods can be considered, but seismic 515 
forces and ice-jacking are also typical external forces. When such forces are applied to 516 
boulders or rock elements at particular moments, they may cause the ultimate instability of 517 
the element under scrutiny (Wyllie and Mah, 2004: Alejano et al., 2013). 518 
 519 
Meteorological records informing on peak rainfall and lowest levels of temperatures and 520 
freezing periods can help to provide realistic assumptions regarding the magnitude and level 521 
of external forces associated to water on boulders. Additionally, seismic safety acts and 522 
earthquake damage mitigation policies could be of help in order to quantify the role of 523 
earthquakes on the stability of this type of structures.  524 
 525 
Recent studies have put forward other potential external causes of ultimate instability (Vann 526 
et al., 2019). These include dynamic loads caused by construction equipment or seismic 527 
shaking, loss of downslope support, and human activity. All of these and other external 528 
influences should be considered in stability estimates. 529 
 530 
 531 
4.8. Numerical modeling 532 
 533 
Numerical analysis can also be of help to carry out a realistic assessment on the stability of 534 
boulders with complex geometries. Some authors (Christianson et al., 1995; Shi et al., 1996; 535 
Purvance et al., 2009) have specifically addressed the stability of boulders in regard to 536 
seismic forces in regions particularly prone to earthquake activity. 537 
 538 
The 3D geometry of boulders can be obtained in the form of a 3DPC. This 3DPC can be 539 
typically imported to 3D software to perform stability analysis. For the case of the ‘Pena do 540 
Equilibrio’ boulder, the 3DPC was imported to the finite-element software MIDAS GTS 541 
NX v.2019 (Midas IT, 2019) to generate a 3D tetrahedral mesh with more than 20,000 542 
elements (including boulder and basal rock where it stands). These elements were exported 543 
as individual blocks to the Discrete Element Method-based 3-Dimensional Distinct Element 544 
Code 3DEC v.5.20 (Itasca, 2019) by means of an internal subroutine (Muñiz-Menéndez et 545 
al., 2020).  546 
 547 
For these numerical studies, geomechanical parameters such as the normal and shear 548 
stiffness in the contact plane should be selected with care according to estimative techniques 549 
(Itasca, 2019; Muñiz-Menéndez et al., 2020). Based on this approach, static, pseudo-550 
dynamic and dynamic calculations have been performed. In the first and second cases, the 551 
obtained results coincide with analytical approaches. No analytical approach exists in the 552 
third case. Figure 19, illustrates the boulder toppling for the 3DEC model for a horizontal 553 
acceleration 0.105g (Muñiz-Menéndez et al., 2020). 554 
 555 
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FIGURE 19 556 
 557 
The use of numerical approaches, provided they are applied in a rigorous manner, can be 558 
quite useful to carry out particular analyses on the stability of boulders and group of boulders 559 
(Christianson et al., 1995). This could include consideration of some dynamic and coupled 560 
processes that difficult to address using standard approaches (Mendes et al., 2020, Lemos 561 
et al., 2011).  562 
 563 
 564 
5. Conclusions 565 
 566 
This paper is presented as an initial guideline for studies on granite boulder stability, or for 567 
other natural rock slope stability phenomena associated with irregular rock elements. 568 
Additionally, a number of issues still requiring further analysis are highlighted, with the aim 569 
of seeking improvement on our present capabilities to understand the actual instability 570 
behavior of granitic boulders.  571 
 572 
A combination of different remote sensing techniques (UAS photogrammetry and TLS) has 573 
been successfully demonstrated with the aim of developing accurate geometric models of 574 
boulders. These techniques are critical in providing a detailed geometrical representation of 575 
the rock element whose stability is at stake. 576 
 577 
The geometry and behavior of the contact zone of the boulder on the resting surface is 578 
another aspect that has shown to be important in the analysis of the stability of boulders 579 
against sliding or toppling. Sometimes it is not possible to fully constrain this geometry, so 580 
some assumptions regarding the geometry, roughness and strength of the contact are needed. 581 
 582 
External forces associated with water, ice-jacking or earthquakes can be considered the final 583 
trigger of the instability of some boulders, so suggestions are provided on how to compute 584 
the effects of these forces on the boulder stability. Moreover, the use of numerical models 585 
is briefly described, which can be helpful to manage this type of analysis. 586 
 587 
In summary, the authors have attempted to compile a number of relevant aspects playing a 588 
relevant role on the stability of granitic boulders in this document, with the aim of aiding 589 
the rock mechanics community in better assessing and predicting the mechanical stability 590 
of these natural structures. 591 
 592 
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 724 

 725 

FIGURES 726 

 727 

 728 

Figure 1. Schematic diagram and accompanying pictures of different slope types in 729 
granitic terrain and associated potential geomechanical problems for each environment. 730 

 731 
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 732 
Figure 2. Idealized sketches illustrating the evolution of granitic rock masses to produce 733 
boulder fields according to Linton (1955). a). Original granite orthogonally fissured rock 734 
mass; b). Spheroidal penetration of weathering; c). Ultimate stage with saprolite and clay 735 

removal, unveiling spheroidal weathering. 736 

 737 

 738 
Figure 3. Illustrative example of the tentative weathering and eroding process producing a 739 

group of granite boulders. 740 

 741 
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 742 
Figure 4. Examples of granitic boulders in different parts of the world: a) The 250 t 743 

Krishna butter ball in the Kancheepuram district in India b) Kidney-shaped 100 t rocking 744 
stone in Abadín, Galicia (NW-Spain); c) Devil’s marble in the North Territories 745 

(Australia); d) Kit Mikayi or the stone of the first wife in Kisumu, Kenya, a 20 m high 746 
structure still attracting pilgrims, e) Logan stone (a rock which, through weathering, has 747 
become disjoined from the parent-rock and is pivoted upon it…) at Thornworthy Tor in 748 
UK; f) A 5 kt boulder in North Portugal. Source: photos b) and d) by the authors and a), 749 

c), d) and e) taken from (https://commons.wikimedia.com).   750 

 751 

 752 
Figure 5. a) Potential instability mechanisms of a boulder or a block lying on a tilted 753 

surface. b) Point cloud and picture images of two granite boulders lying on inclined planar 754 
surfaces or basal planes, whose stability was considered in previous studies (Alejano et al., 755 

2010; Pérez-Rey et al., 2019a). 756 
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 757 
Figure 6. Different geometry boulders. Slender blocks are more prone to topple, 758 

particularly if they show rounded corners. Rounded blocks tend to be more stable but may 759 
slide if they lay on basal planes more inclined than the contact friction angle. 760 

 761 

 762 
Figure 7. a) 3D photogrammetric model and b) derived 3DPC of the ‘Pena do Equilibrio’ 763 
350 t boulder in Spain, whose stability was studied by the authors. c & d) Plan view of the 764 

point cloud with area enlarged. Modified from Pérez-Rey et al., (2019a) 765 

 766 
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 767 
Figure 8. Formulation of the stability of slab like block against toppling, based on the 768 

Goodman and Bray (1976) approach. 769 

 770 

 771 
Figure 9. Formulation of the stability analysis of slab like rounded corner block against 772 

toppling based on the Alejano et al. (2015) approach. 773 

 774 

 775 
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 776 
Figure 10. Printed plastic element with fixed dimensions and perfectly rounded 1 cm 777 

radius corners and tilt tests showing theoretical and average empirical results. 778 

 779 

 780 
Figure 11. Image of various 3D elements a, b, c and d to be subjected to tilt testing to 781 
illustrate the role of geometry on toppling. On the upper row 3D view of the elements 782 
resting on a horizontal base to be tilted. On the second row, initial top view with the 783 

projection including the cog. On the third row, top view of the surface after tilting and in 784 
the moment of toppling and on the last row, side view of platform and element when 785 

toppling. 786 
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 787 

 788 
Figure 12. On the left hand side grayscale photograph, the location of the cog and forces 789 
applied to the ‘Pena do Equilibrio’ boulder, whose stability was studied by the authors, is 790 
shown. On the right hand side, a force diagram and projection of the contact area of this 791 

boulder used to compute its stability against toppling are shown. 792 

 793 

 794 
Figure 13. Element formed by a rock cylinder and a steel disk positioned leftwards above 795 
subjected to a tilt test. a) Side (left) and front views of the element and projection of its 796 

cog on its base and picture of the element; b) side view of the element before starting the 797 
tilt test (left) and when toppling (right), and plan view illustrating the projection of its cog 798 

in both cases. A picture illustrates the observed toppling mechanism occurring in a 799 
direction forming β degrees with the dip direction. 800 
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 801 

 802 
Figure 14. Force decomposition and picture of a) a cylindrical disk on a concave surface 803 
base and b) a disk with a lateral segment cut. Both these elements were tilt tested in the 804 
lab. Computation and results agree, showing increased stability for the concave case. 805 

 806 

 807 

 808 
Figure 15. Tilt tests on a composite rock sample with regular rough base. Representation 809 

and obtained experimental, theoretical and corrected theoretical angles for tilt tests in both 810 
directions. 811 
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 812 
Figure 16. 3D printed 1:50 scaled reproduction of the ‘Pena do Equilibrio’ boulder. a) Top 813 

view of the upper part; b) top view of the lower part including the contact area with a 814 
piece of sandpaper to increase friction. c) Tilt testing of the boulder reproduction on an 815 

expanded polyestyrene base, producing similar results to that derived from the theoretical 816 
calculations. 817 

 818 
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 819 
Figure 17. a) Sketch of the evolution of a granitic rock mass where starting from slab-like 820 
blocks, ellipsoidal boulders eventually occur. b) Detailed view of the small contact of a 821 

boulder with a basal plane and measurements taken (orientation, JRC and JCS). c) Sketch 822 
of the ‘Pena do Equilibrio’ boulder and detail illustrating the mismatched nature of the 823 

contact. 824 

 825 
Figure 18. Natural rock joints, which are matched joints on the left hand side and block 826 
contacts, which are mismatched joints, on the right hand side. The contact geometry is 827 

sketched for each case in the center of the Figure.   828 

 829 
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 830 

 831 
Figure 19. Numerical result with code 3DEC of the toppling instability of the ‘Pena do 832 

Equilibrio’ boulder in a pseudo-dynamic analysis for the case of a large earthquake 833 
(horizontal acceleration 0.105g), illustrated by means of displacement vectors. 834 
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TABLES 837 

 838 

Table 1. Results of toppling angles of a slab-like element with perfectly rounded corners. 839 
Tilt test and theoretical results. 840 

 841 
Slenderness Tilting results (º) Average tests (º) Theoretical result (º) 

5/3 11, 12.3, 10.4, 9.5 10.8 11.3 
4/3 15, 14.2, 13.4, 14.5 14.3 14.0 
5/4 22.8, 22.2, 20.8, 22.7 22.1 21.8 
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Figure 18. Natural rock joints, which are matched joints on the left hand side and block contacts, 910 
which are mismatched joints, on the right hand side. The contact geometry is sketched for each 911 
case in the center of the Figure.   912 

Figure 19. Numerical result with code 3DEC of the toppling instability of the ‘Pena do 913 
Equilibrio’ boulder in a pseudo-dynamic analysis for the case of a large earthquake, 914 
illustrated by means of displacement vectors. 915 
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