Dear Author,
Here are the proofs of your article.

- You can submit your corrections online, via e-mail or by fax.
- For online submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers.
- You can also insert your corrections in the proof PDF and email the annotated PDF.
- For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page.
- Remember to note the journal title, article number, and your name when sending your response via e-mail or fax.
- Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown.
- Check the questions that may have arisen during copy editing and insert your answers/ corrections.
- Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript.
- The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct.
- Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal's style.
Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
- If we do not receive your corrections within $\mathbf{4 8}$ hours, we will send you a reminder.
- Your article will be published Online First approximately one week after receipt of your corrected proofs. This is the official first publication citable with the DOI. Further changes are, therefore, not possible.
- The printed version will follow in a forthcoming issue.

Please note

After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL: http://dx.doi.org/[DOI].
If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information go to: http://www.link.springer.com.

Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us if you would like to have these documents returned.

Metadata of the article that will be visualized in OnlineFirst

ArticleTitle	Essential bounds of Dirichlet polynomials
Article Sub-Title	
Article CopyRight	The Royal Academy of Sciences, Madrid (This will be the copyright line in the final PDF)
Journal Name	Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
Corresponding Author	Family Name Mora
	Particle
	Given Name G.
	Suffix
	Division Departamento de Matemáticas, Facultad de Ciencias II
	Organization Universidad de Alicante
	Address Campus de San Vicente del Raspeig, Ap. 99, 03080, Alicante, Spain
	Phone
	Fax
	Email gaspar.mora@ua.es
	URL
	ORCID $\quad \mathrm{http}$://orcid.org/0000-0003-0883-220X
Author	Family Name Benítez
	Particle
	Given Name E.
	Suffix
	Division Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales
	Organization Campus de San Lorenzo
	Address San Lorenzo, Paraguay
	Phone
	Fax
	Email edgarbeni15@gmail.com
	URL
	ORCID
	Received 11 March 2021
Schedule	Revised
	Accepted 7 April 2021
Abstract	In this paper we have given conditions on exponential polynomials $P_{n}(s)$ of Dirichlet type to be attained the equality between each of two pairs of bounds, called essential bounds, $a_{P_{n}(s),} \rho_{N}$ and $b_{P_{n}(s), \rho_{0}}$ associated with $P_{n}(s)$. The reciprocal question has been also treated. The bounds $a_{P_{n}(s),}, b_{P_{n}(s)}$ are defined as the end-points of the minimal closed and bounded real interval $I=\left[a_{P_{n}(s)}, b_{P_{n}(s)}\right]$ such that all the zeros of $P_{n}(s)$ are contained in the strip $I \times \mathbb{R}$ of the complex plane \mathbb{C}. The bounds ρ_{N}, ρ_{0} are defined as the unique real solutions of Henry equations of $P_{n}(s)$. Some applications to the partial sums of the Riemann zeta function have been also showed.

Keywords (separated by '-') Dirichlet polynomials - Zeros of exponential polynomials - Diophantine and rational dependence - Zeros of partial sums of the Riemann zeta function

Mathematics Subject	Primary 30B50-11M41-Secondary 30D05
Classification (separated by	
'-')	

Footnote Information

ORIGINAL PAPER

Essential bounds of Dirichlet polynomials

G. Mora ${ }^{1}$ (D) \cdot E. Benítez ${ }^{2}$

Received: 11 March 2021 / Accepted: 7 April 2021
© The Royal Academy of Sciences, Madrid 2021

Abstract

In this paper we have given conditions on exponential polynomials $P_{n}(s)$ of Dirichlet type to be attained the equality between each of two pairs of bounds, called essential bounds, $a_{P_{n}(s)}$, ρ_{N} and $b_{P_{n}(s)}, \rho_{0}$ associated with $P_{n}(s)$. The reciprocal question has been also treated. The bounds $a_{P_{n}(s)}, b_{P_{n}(s)}$ are defined as the end-points of the minimal closed and bounded real interval $I=\left[a_{P_{n}(s)}, b_{P_{n}(s)}\right]$ such that all the zeros of $P_{n}(s)$ are contained in the strip $I \times \mathbb{R}$ of the complex plane \mathbb{C}. The bounds ρ_{N}, ρ_{0} are defined as the unique real solutions of Henry equations of $P_{n}(s)$. Some applications to the partial sums of the Riemann zeta function have been also showed.

Keywords Dirichlet polynomials • Zeros of exponential polynomials • Diophantine and rational dependence \cdot Zeros of partial sums of the Riemann zeta function

Mathematics Subject Classification Primary 30B50 • 11M41; Secondary 30D05

1 Introduction

An integer $N \geq 1$, non-null complex numbers α_{j} and positive real numbers $\lambda_{1}<\cdots<\lambda_{N}$ define an exponential polynomial of the form

$$
\begin{equation*}
P(s)=1+\sum_{j=1}^{N} \alpha_{j} e^{-s \lambda_{j}}, \quad s:=\sigma+i t \in \mathbb{C}, \tag{1.1}
\end{equation*}
$$

where α_{j} are called the coefficients and λ_{j} the exponents, or frequencies, of $P(s)$. An immediate property is satisfied:

$$
\begin{equation*}
\lim _{\sigma \rightarrow+\infty} P(s)=\lim _{\sigma \rightarrow-\infty} Q(s)=1, \tag{1.2}
\end{equation*}
$$

G. Mora
gaspar.mora@ua.es
E. Benítez
edgarbeni15@gmail.com
1 Departamento de Matemáticas, Facultad de Ciencias II, Universidad de Alicante, Campus de San Vicente del Raspeig, Ap. 99, 03080 Alicante, Spain
2 Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, Campus de San Lorenzo, San Lorenzo, Paraguay
where $Q(s):=\alpha_{N}^{-1} e^{s \lambda_{N}} P(s)$. On the other hand, any non-constant exponential polynomial has infinitely many zeros as a consequence of Hadamard's Factorization Theorem [2, p. 151] or from Pólya's Theorem (see [12, p. 71]). Therefore, since $P(s)$ and $Q(s)$ have exactly the same zeros, by (1.2) it follows the existence of a constant $A>0$ such that $P(s) \neq 0$ for all s with $\mathfrak{R} s=\sigma$ such that $|\sigma|>A$. This means that the two half planes $\{s: \sigma<-A\}$, $\{s: \sigma>A\}$ are zero-free for $P(s)$. Consequently for any $P(s)$ of the form (1.1) there exist two real numbers $a_{P_{n}(s)}, b_{P_{n}(s)}$ defined as

$$
\begin{equation*}
a_{P(s)}:=\inf \{\sigma: P(s)=0\}, \quad b_{P(s)}:=\sup \{\sigma: P(s)=0\} \tag{1.3}
\end{equation*}
$$

On the other hand, given an exponential polynomial $P(s)$ we have the equations, with ρ as unknown,

$$
\begin{equation*}
\left|\alpha_{N}\right| e^{-\rho \lambda_{N}}=1+\sum_{j=1}^{N-1}\left|\alpha_{j}\right| e^{-\rho \lambda_{j}}, \quad 1=\sum_{j=1}^{N}\left|\alpha_{j}\right| e^{-\rho \lambda_{j}} \tag{1.4}
\end{equation*}
$$

called Henry's equations [7]. By Pólya Criterium [13, p. 46], each equation of (1.4) has a unique real solution denoted by ρ_{N} and ρ_{0}, respectively. Therefore to an exponential polynomial $P(s)$ of the form (1.1) we can associated the numbers $a_{P(s)}, b_{P(s)}$, defined in (1.3), and ρ_{N}, ρ_{0}, defined in (1.4). These four numbers will be named essential bounds associated with $P(s)$.

An elementary analysis of the real functions

$$
f(\rho):=\left|\alpha_{N}\right| e^{-\rho \lambda_{N}}-\left(1+\sum_{j=1}^{N-1}\left|\alpha_{j}\right| e^{-\rho \lambda_{j}}\right), \quad g(\rho):=1-\sum_{j=1}^{N}\left|\alpha_{j}\right| e^{-\rho \lambda_{j}}
$$

whose unique real zeros are ρ_{N} and ρ_{0} respectively, proves that there is no zero of $P(s)$ at the left of ρ_{N} neither at the right of ρ_{0}. That is, if s is a zero of $P(s)$, necessarily $\rho_{N} \leq \Re s \leq \rho_{0}$. Therefore $\rho_{N} \leq a_{P(s)}$ and $b_{P(s)} \leq \rho_{0}$. Since it is always true that $a_{P(s)} \leq b_{P(s)}$, the essential bounds of any exponential polynomial $P(s)$ of the form (1.1) are related by the inequalities

$$
\begin{equation*}
\rho_{N} \leq a_{P(s)} \leq b_{P(s)} \leq \rho_{0} \tag{1.5}
\end{equation*}
$$

Furthermore, noticing that any non-constant exponential polynomial $P(s)$ has infinitely many zeros, the closure of the real parts of its zeros

$$
\begin{equation*}
R_{P(s)}:=\overline{\{\sigma: P(s)=0\}}, \tag{1.6}
\end{equation*}
$$

is a non-empty-set. From (1.5), it follows that

$$
\begin{equation*}
R_{P(s)} \subset\left[a_{P(s)}, b_{P(s)}\right] \subset\left[\rho_{N}, \rho_{0}\right] . \tag{1.7}
\end{equation*}
$$

It is evident that if $N=1$ (the trivial case) the two Henry's equations are equal, so the numbers ρ_{N} and ρ_{0} coincide. Then, from (1.5), the four bounds are equal and the exponential polynomial $P(s)$ has infinitely many zeros aligned. Consequently, in order to avoid the trivial case, from now on, we will assume that $N>1$ in the expression that defines an exponential polynomial $P(s)$ of the form (1.1). That is, we will consider exponential polynomials with at least three non-null terms.

For a given $P(s)$ of the form (1.1) it would not be too much difficult to obtain computationally the values of ρ_{N}, ρ_{0} by means of Henry's equations (1.4). However we could not say the same for finding an analytical expression for ρ_{N}, ρ_{0}, as well as for the numbers $a_{P(s)}$, $b_{P(s)}$, when $N \rightarrow \infty$. Furthermore, even in the case to have analytical expressions of those

Springer

numbers, as usually they are asymptotic, the differences between the bounds $\rho_{N}, a_{P(s)}$ and $\rho_{0}, b_{P(s)}$, if there are, are really not easy to determine. For instance, for the special type of Dirichlet polynomials $\zeta_{n}(s):=\sum_{j=1}^{n} j^{-s}$, i.e., the nth partial sums of the series $\sum_{j=1}^{\infty} j^{-s}$, $\sigma>1$, that defines the Riemann zeta function, we have the estimates

$$
b_{\zeta_{n}(s)}=1+\left(\frac{4}{\pi}-1+o(1)\right) \frac{\log \log n}{\log n}, \quad n \rightarrow \infty,
$$

and

$$
a_{\zeta_{n}(s)}=-\frac{\log 2}{\log \left(\frac{n-1}{n-2}\right)}+\Delta_{n}, \quad \limsup _{n \rightarrow \infty}\left|\Delta_{n}\right| \leq \log 2, \quad n>2
$$

found in 2001 [8] and 2015 [10], respectively. By comparing the previous bounds $a_{\zeta_{n}(s)}$, $b_{\zeta_{n}(s)}$ with the solutions of (1.4) for ρ_{N}, ρ_{0}, we can see that computationally $\rho_{N}, a_{\zeta_{n}(s)}$ and $\rho_{0}, b_{\zeta_{n}(s)}$ are indistinguishable when n is large. The difficulty to settle the equality or not between ρ_{0} and $b_{\zeta_{n}(s)}$ is specially hard in this case. Regarding to ρ_{N} and $a_{\zeta_{n}(s)}$, to appreciate such difference the value of $\left|\rho_{N}-a_{\zeta_{n}(s)}\right|$ would have to be greater than $\log 2$, but usually it does not occur, as we can see in [10].

In the same way that is relevant the abscissa of convergence for a Dirichlet series $[1, \mathrm{p}$. 165] (very interesting works on this subject and generalizations can be seen, for instance, in [4,5]), it is also relevant the essential bounds for a Dirichlet polynomial. In a recent article [14] both notions, i.e., the abscissa of convergence of an ordinary Dirichlet series, whose coefficients α_{n} are defined by $\alpha_{n}:=f(n)(f$ denotes a multiplicative function [1, p. 138]) and the essential bound $b_{P_{N}(s)}$ corresponding to the N th partial sum $P_{N}(s)$ of the given series, have been related. Important results have been obtained in the aforementioned paper such as an analytical expression for $b_{P_{N}(s)}$ that generalizes the obtained for $b_{\zeta_{n}(s)}$ in [8] by Montgomery and Vaughan.

In the present paper, for a given exponential $P(s)$ of the form (1.1) we have treated the problem of the equality between the bounds $\rho_{N}, a_{P(s)}$ and $\rho_{0}, b_{P(s)}$. Our study has been focused on a class of exponential polynomials that we have called Dirichlet polynomials because they are partial sums of ordinary Dirichlet series [1, p. 161]. That is, we have considered the class of normalized exponential polynomials of the form

$$
\begin{equation*}
P_{n}(s):=1+\sum_{j=1}^{n-1} \frac{\alpha_{j}}{(j+1)^{s}}, n>2, \quad \alpha_{j} \geq 0, \alpha_{j} \alpha_{n-1} \neq 0 \text { for some } j<n-1 \tag{1.8}
\end{equation*}
$$

To be more concrete, in the present paper we have found the conditions that must be imposed on a Dirichlet polynomial $P_{n}(s)$ to have either

$$
\begin{equation*}
\rho_{N}=a_{P_{n}(s)} \tag{1.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\rho_{0}=b_{P_{n}(s)} \tag{1.10}
\end{equation*}
$$

The converse question is relevant and it also has been studied. Throughout the manuscript we have demonstrated that the aforementioned conditions are linked to the notions of diophantine and rational dependence (see below for a precise definition). We will show that the exponential polynomials of the class of prime Dirichlet polynomials (see below Definition 2.1) satisfy the property (1.9), whereas the exponential polynomials of the class of strict prime Dirichlet polynomials (see below Definition 2.2) satisfy both properties (1.9) and (1.10). To prove the main results of the paper we have used analytical-arithmetical techniques. For instance, it
has been used a characterization of the set (1.6) (see [3, Theorem 3.1], [11, Theorem 1] that is crucial to prove Theorem 3.1 and Theorem 3.2. This theorem generalizes [9, Theorem 3] (see below Example 3.2). Another important result that we have handled has been Bohr's equivalence theorem [1, Theorem 8.16] used to prove Theorem 4.1. Among the applications to the partial sums of the Riemann zeta function (see the Sect. 5 in the manuscript), we have obtained a characterization of the set of all prime numbers by means of those partial sums $\zeta_{n}(s)$ that satisfy the property $\rho_{N}=a_{\zeta_{n}(s)}$.

2 Preliminaries

Firstly we introduce two remarkable classes of Dirichlet polynomials.
Definition 2.1 A Dirichlet polynomial $P_{n}(s)$ of the form (1.8) is said to be a prime Dirichlet polynomial if and only if n is a prime number. The class of all prime Dirichlet polynomials will be denoted as \mathcal{P}.

For instance, the Dirichlet polynomials $P_{5}(s):=1+2^{-s}+3^{-s}+4^{-s}+5^{-s}, P_{7}(s):=$ $1+2^{-s}+4^{-s}+7^{-s}$ are in the class \mathcal{P}.

A special subclass of \mathcal{P} is the following.
Definition 2.2 A Dirichlet polynomial $P_{n}(s)$ of the form (1.8) is said to be a strict prime Dirichlet polynomial if and only if n is a prime number and $\alpha_{j} \neq 0$ for $j=p-1, \alpha_{j}=0$ for all $j \neq p-1$, for all primes p with $p \leq n$. The class of all strict prime Dirichlet polynomials will be denoted as $\mathcal{P}_{\text {st }}$.

For instance, the prime Dirichlet polynomials $Q_{3}(s):=1+2^{-s}+3^{-s}, Q_{5}(s):=1+$ $2^{-s}+3^{-s}+5^{-s}$ are in the class $\mathcal{P}_{\mathrm{st}}$.

In order to use some results already known on exponential polynomials, in the next result we prove that the class of Dirichlet polynomials is a subclass of a more general class of exponential polynomials that can be written in the form

$$
\begin{equation*}
P(s):=1+\sum_{j=1}^{N} \alpha_{j} e^{-s \gamma_{j} \cdot r}, \quad \alpha_{j} \in \mathbb{R}, \alpha_{n-1} \neq 0, \quad N>1, \tag{2.1}
\end{equation*}
$$

where $\gamma_{j} \cdot r$ represents the inner product of $\gamma_{j}=\left(\gamma_{j_{1}}, \gamma_{j_{2}}, \ldots, \gamma_{j_{M}}\right)$, non-null vectors of \mathbb{R}^{M}, $M \geq 1$, distinct, with non-negative integers components, by a vector $r=\left(r_{1}, r_{2}, \ldots, r_{M}\right)$ of \mathbb{R}^{M} with positive rationally independent components (i.e., the equation $\sum_{k=1}^{M} \epsilon_{k} r_{k}=0$, with $\epsilon_{k} \in \mathbb{Q}$, implies that $\epsilon_{k}=0$ for all $\left.k=1, \ldots, M\right)$. Observe that any exponential polynomial $P(s)$ of the form (2.1) is in turn a particular case of exponential polynomial of the form (1.1) by increasingly ordering the exponents $\lambda_{j}:=\gamma_{j} \cdot r, 1 \leq j \leq N$.

Lemma 2.1 Any Dirichlet polynomial of the form (1.8) can be expressed in the form (2.1) with $M>1$.

Proof Let $P_{n}(s)=1+\sum_{j=1}^{n-1} \frac{\alpha_{j}}{(j+1)^{s}}$ be a Dirichlet polynomial of the form (1.8). Then we have

$$
\begin{equation*}
\frac{1}{(1+j)^{s}}=e^{-s \log (1+j)} \quad \text { for every } j=1, \ldots, n-1 \tag{2.2}
\end{equation*}
$$

For a given integer $n>2$, consider all prime numbers not greater than n, denoted as $p_{1}<$ $p_{2}<\cdots<p_{k_{n}} \leq n$. Hence $p_{1}=2, p_{2}=3$, etc., and $p_{k_{n}}$ is the last prime not exceeding n,

Springer

where k_{n} represents the number of primes p such that $p \leq n$, so $k_{n} \geq 2$. Take $M=k_{n}$ and define

$$
\begin{equation*}
r:=\left(\log p_{1}, \log p_{2}, \ldots, \log p_{k_{n}}\right) . \tag{2.3}
\end{equation*}
$$

It is immediate to check that the numbers $\log p_{1}, \log p_{2} \ldots, \log p_{k_{n}}$ are rationally independent. By virtue of Fundamental Theorem of Arithmetic write

$$
j+1=p_{1}^{m_{j_{1}}} \cdot p_{2}^{m_{j_{2}}} \cdots p_{k_{n}}^{m_{j_{k_{n}}}} \quad \text { for every } j=1, \ldots, n-1
$$

and then

$$
\begin{equation*}
\log (j+1)=m_{j_{1}} \log p_{1}+m_{j_{2}} \log p_{2}+\cdots+m_{j_{k_{n}}} \log p_{k_{n}} . \tag{2.4}
\end{equation*}
$$

Now we define

$$
\begin{equation*}
\gamma_{j}=\left(\gamma_{j_{1}}, \gamma_{j_{2}}, \ldots, \gamma_{j_{M}}\right):=\left(m_{j_{1}}, m_{j_{2}}, \ldots, m_{j_{k_{n}}}\right), j=1, \ldots, n-1 \tag{2.5}
\end{equation*}
$$

In particular if $j+1$ is prime, i.e. if $j+1=p_{m}$ with $m \in\left\{1,2, \ldots, k_{n}\right\}$, then the vector γ_{j} is given by

$$
\begin{equation*}
\gamma_{j}=(0, \ldots, 1, \ldots 0), \quad \text { where } 1 \text { is the } m \text { th component of } \gamma_{j} . \tag{2.6}
\end{equation*}
$$

Then, from (2.5) and taking into account the definition of the vector r, it follows that $\gamma_{j} \cdot r=$ $\log (1+j)$ for every $j=1, \ldots, n-1$. Therefore by taking $N=n-1$ (see (2.1), noticing (2.2), we get

$$
P_{n}(s)=1+\sum_{j=1}^{n-1} \alpha_{j} e^{-s \log (1+j)}=1+\sum_{j=1}^{N} \alpha_{j} e^{-s \gamma_{j} \cdot r}
$$

It means that $P_{n}(s)$ can be written in the form (2.1), where the vector r is given by (2.3) and the vectors γ_{j} by (2.5). Then the lemma follows.

3 The property $\rho_{N}=a_{P_{n}(s)}$ in the class of Dirichlet polynomials

In this section we will analyse the property $\rho_{N}=a_{P_{n}(s)}$ for the class of Dirichlet polynomials (see (1.8)). For this, firstly we note that if some coefficient α_{j} of $P_{n}(s)=1+\sum_{j=1}^{n-1} \frac{\alpha_{j}}{(j+1)^{s}}$ is equal to 0 , by removing the corresponding term, we can write $P_{n}(s)$ under the form

$$
\begin{equation*}
P_{n}(s)=1+\sum_{j=1}^{m} \beta_{j} e^{-s \log n_{j}} \quad \text { with } 0<\beta_{j}, m \geq 2 \tag{3.1}
\end{equation*}
$$

where $\beta_{j}=\alpha_{j}$ for the $\alpha_{j} \neq 0$, and positive integers $2 \leq n_{1}<n_{2}<\cdots<n_{m}=n$.
We introduce the following concepts.
Definition 3.1 Given an integer $n>2$ and integers $2 \leq n_{1}<n_{2}<\cdots<n_{k}$, we will say that $\log n$ is diophantinally dependent on $\log n_{j}, 1 \leq j \leq k$, if and only if there are integers $\delta_{j}, 1 \leq j \leq k$, such that

$$
\begin{equation*}
\log n=\sum_{j=1}^{k} \delta_{j} \log n_{j} . \tag{3.2}
\end{equation*}
$$

Definition 3.2 Given an integer $n>2$ and integers $2 \leq n_{1}<n_{2}<\cdots<n_{k}$, we will say that $\log n$ is rationally dependent on $\log n_{j}, 1 \leq j \leq k$, if and only if there are rationals ϵ_{j}, $1 \leq j \leq k$, such that

Observe that if $\log n$ is diophantinally dependent on $\log n_{j}, 1 \leq j \leq k$, then in particular $\log n$ is rationally dependent on $\log n_{j}, 1 \leq j \leq k$. The converse is not true. Indeed, noticing

$$
\begin{equation*}
\log 36=\frac{2}{3} \log 8+\log 9 \tag{3.3}
\end{equation*}
$$

we can see that $\log 36$ is rationally dependent on $\log 8$ and $\log 9$, but it is not diophantinally dependent.

It is worth to stress that $\log n$ can be rationally independent of $\log n_{j}, 1 \leq j \leq k$, but the set $\left\{\log n, \log n_{j}, 1 \leq j \leq k\right\}$ can be rationally dependent. For instance, $\log 2250$ is rationally independent of $\log 30$ and $\log 900$. Indeed, assume there are rationals $\epsilon_{1}, \epsilon_{2}$ such that $\log 2250=\epsilon_{1} \log 30+\epsilon_{2} \log 900$. Then, since $30=2 \cdot 3 \cdot 5,900=2^{2} \cdot 3^{2} \cdot 5^{2}$ and $2250=2 \cdot 3^{2} \cdot 5^{3}$ we have

$$
\begin{equation*}
\log 2250=\log 2+2 \log 3+3 \log 5=\left(\epsilon_{1}+2 \epsilon_{2}\right)(\log 2+\log 3+\log 5) . \tag{3.4}
\end{equation*}
$$

But $\log 2, \log 3$ and $\log 5$ are rationally independent because 2,3 and 5 are primes. Then by identifying the coefficients of $\log 2, \log 3$ and $\log 5$ in both sides of (3.4), we are led to a contradiction. Therefore $\log 2250$ is rationally independent of $\log 30$ and $\log 900$. However, the numbers $\{\log 2250, \log 30, \log 900\}$ are rationally dependent. Indeed, the equation

$$
A \log 2250+B \log 30+C \log 900=0
$$

has non-null solutions, it is satisfied for $A=0, B=1$ and $C=-1 / 2$.
The next result requires a characterization of the set defined in (1.6) (see for instance [3, Theorem 3.1], [11, Theorem 1]).

Theorem 3.1 Given an integer $n>2$, if a Dirichlet polynomial $P_{n}(s)$ written in the form (3.1) satisfies the property $\rho_{N}=a_{P_{n}(s)}$, then $\log n$ is diophantinally independent of $\log n_{j}$, $1 \leq j<m$.

Proof Let $P_{n}(s)$ be a Dirichlet polynomial of the form (3.1) that satisfies the property $\rho_{N}=$ $a_{P_{n}(s)}$. Since it is always true that $a_{P_{n}(s)} \in R_{P_{n}(s)}$ (see (1.3) and (1.6)), then $\rho_{N} \in R_{P_{n}(s)}$. By applying [3, Theorem 3.1], there exists a vector $\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{M}\right) \in \mathbb{R}^{M}, M \leq k_{n}$ (see the proof of Lemma 2.1), such that

$$
\begin{equation*}
1+\sum_{j=1}^{m} \beta_{j} e^{-\rho_{N} \log n_{j}} e^{i \gamma_{j} \cdot \theta}=0 \tag{3.5}
\end{equation*}
$$

where γ_{j} are the vectors defined in (2.5) and $\gamma_{j} \cdot \theta$ denotes the inner product of γ_{j} by θ. From (3.5) and noticing $n_{m}=n$, it follows that

$$
\begin{equation*}
\left|\beta_{m} e^{-\rho_{N} \log n} e^{i \gamma_{m} \cdot \theta}\right|=\left|1+\sum_{j=1}^{m-1} \beta_{j} e^{-\rho_{N} \log n_{j}} e^{i \gamma_{j} \cdot \theta}\right| . \tag{3.6}
\end{equation*}
$$

(4) Springer

Now we write the right hand side of (3.6) as

$$
\begin{align*}
& \left|\frac{1}{m-1}+\beta_{1} e^{-\rho_{N} \log n_{1}} e^{i \gamma_{1} \cdot \theta}+\cdots+\frac{1}{m-1}+\beta_{m-1} e^{-\rho_{N} \log n_{m-1}} e^{i \gamma_{m-1} \cdot \theta}\right| \\
& \quad \leq\left|\frac{1}{m-1}+\beta_{1} e^{-\rho_{N} \log n_{1}} e^{i \gamma_{1} \cdot \theta}\right|+\cdots \\
& \quad+\left|\frac{1}{m-1}+\beta_{m-1} e^{-\rho_{N} \log n_{m-1}} e^{i \gamma_{m-1} \cdot \theta}\right| \\
& \quad \leq \frac{1}{m-1}+\beta_{1} e^{-\rho_{N} \log n_{1}}+\cdots+\frac{1}{m-1}+\beta_{m-1} e^{-\rho_{N} \log n_{m}-1} \tag{3.7}
\end{align*}
$$

Then, from (3.6) and (3.7), we deduce that

$$
\begin{equation*}
\beta_{m} e^{-\rho_{N} \log n} \leq 1+\sum_{j=1}^{m-1} \beta_{j} e^{-\rho_{N} \log n_{j}} \tag{3.8}
\end{equation*}
$$

But, taking into account the definition of ρ_{N} (see Eq. (1.4)), the inequality in (3.8) becomes an equality. Now we recall the property:

Given $z, w \in \mathbb{C}$ with $z w \neq 0$, one has $|z+w|=|z|+|w|$ if and only if there exists $\lambda>0$ such that $w=\lambda z$.

Then, noticing the above property, in each summand of (3.7), necessarily it must be $e^{i \gamma_{j} \cdot \theta}>0$ for each $1 \leq j \leq m-1$. Since $\left|e^{i \gamma_{j} \cdot \theta}\right|=1$, it means that

$$
\begin{equation*}
e^{i \gamma_{j} \cdot \theta}=1 \text { for all } 1 \leq j \leq m-1 \text {, so } \gamma_{j} \cdot \theta=\pi l_{j}, l_{j} \in \mathbb{Z}, l_{j} \text { even. } \tag{3.9}
\end{equation*}
$$

Therefore, substituting in (3.5), it follows $e^{i \gamma_{m} \cdot \theta}<0$. Consequently,

$$
\begin{equation*}
e^{i \gamma_{m} \cdot \theta}=-1, \quad \text { so } \gamma_{m} \cdot \theta=\pi l_{m}, l_{m} \in \mathbb{Z}, l_{m} \text { odd. } \tag{3.10}
\end{equation*}
$$

Let $\left\{q_{1}, q_{2}, \ldots, q_{M}\right\}$ be the minimal set of ordered prime numbers that are necessary to obtain the prime factorization of the numbers $\left\{n_{1}, n_{2}, \ldots, n_{m-1}, n\right\}$. Then, from (2.3), the vector $r:=\left(\log q_{1}, \log q_{2}, \ldots, \log q_{M}\right)$. Noticing the expression (3.1), for each $1 \leq j \leq m$, the vector $\gamma_{j}=\left(\gamma_{j 1}, \ldots, \gamma_{j M}\right)$ (see (2.4), (2.5)) is such that

$$
\log n_{j}=\sum_{k=1}^{M} \gamma_{j k} \log q_{k}, \quad \text { with } \gamma_{j k} \geq 0 \text { integers. }
$$

Then the above equality can be written as

$$
\begin{equation*}
\log n_{j}=\gamma_{j} \cdot r, \quad \text { for all } 1 \leq j \leq m \tag{3.11}
\end{equation*}
$$

Assume $\log n$ is not diophantinally independent of $\log n_{j}, 1 \leq j \leq m-1$. It means that there are integers $\left(\delta_{j}\right)_{j=1}^{m-1}$ such that $\log n=\sum_{j=1}^{m-1} \delta_{j} \log n_{j}$. Then, since $n_{m}=n$, by (3.11), we can write

$$
\log n=\gamma_{m} \cdot r=\sum_{j=1}^{m-1} \delta_{j}\left(\gamma_{j} \cdot r\right)
$$

Therefore,

$$
\begin{equation*}
\left(\gamma_{m}-\sum_{j=1}^{m-1} \delta_{j} \gamma_{j}\right) \cdot r=0 \tag{3.12}
\end{equation*}
$$

Since $\left\{q_{k}: 1 \leq k \leq M\right\}$ are primes, the set $\left\{\log q_{k}: 1 \leq k \leq M\right\}$ is rationally independent, so, from (3.12), we infer that $\gamma_{m}=\sum_{j=1}^{m-1} \delta_{j} \gamma_{j}$. Then, by multiplying by θ, we have $\gamma_{m} \cdot \theta=$ $\sum_{j=1}^{m-1} \delta_{j}\left(\gamma_{j} \cdot \theta\right)$. Now, by dividing by π, we are led to the following contradiction

$$
\begin{equation*}
\frac{1}{\pi}\left(\gamma_{m} \cdot \theta\right)=\sum_{j=1}^{m-1} \frac{\delta_{j}}{\pi}\left(\gamma_{j} \cdot \theta\right) \tag{3.13}
\end{equation*}
$$

Indeed, because (3.9), the right hand side of (3.13) is an even integer whereas, from (3.10), the left hand side is odd. This completes the proof.

The next example proves that the converse of the previous theorem is not true in general.

Example 3.1 The Dirichlet polynomial

$$
P_{36}(s):=1+2 \cdot 8^{-s}+2 \cdot 9^{-s}+\frac{35}{36} \cdot 36^{-s}
$$

does not satisfy the property $\rho_{N}=a_{P_{36}(s)}$. However $\log 36$ is diophantinally independent of $\log 8$ and $\log 9$.

Indeed, in (3.3) we have seen that $\log 36$ is diophantinally independent of $\log 8$ and $\log 9$. From (1.4), ρ_{N} is the unique real solution of the equation

$$
\begin{equation*}
\frac{35}{36} \cdot 36^{-\rho}=1+2 \cdot 8^{-\rho}+2 \cdot 9^{-\rho} \tag{3.14}
\end{equation*}
$$

that clearly is satisfied for $\rho=-1$, so $\rho_{N}=-1$. Assume $\rho_{N}=a_{P_{36}(s)}$, so $-1=a_{P_{36}(s)}$. Since $\{2,3\}$ is the minimal set of ordered prime numbers that are necessary to obtain the prime factorization of $\{8,9,36\}$, the vectors $\gamma_{j}($ see $(2.5))$ are $\gamma_{1}=(3,0), \gamma_{2}=(0,2)$ and $\gamma_{3}=(2,2)$. Then, since always it is true that $a_{P_{36}(s)} \in R_{P_{36}(s)}$ (see (1.3) and (1.6)), from [3, Theorem 3.1] there exists a vector $\theta=\left(\theta_{1}, \theta_{2}\right) \in \mathbb{R}^{2}$ such that

$$
\begin{equation*}
1+2 \cdot 8 e^{i \gamma_{1} \cdot \theta}+2 \cdot 9 e^{i \gamma_{2} \cdot \theta}+\frac{35}{36} \cdot 36 e^{i \gamma_{3} \cdot \theta}=0 \tag{3.15}
\end{equation*}
$$

where $\gamma_{j} \cdot \theta, j=1,2,3$, denotes the inner product in \mathbb{R}^{2}. From (3.15), we have

$$
\left|35 e^{i \gamma_{3} \cdot \theta}\right|=\left|1+16 e^{i \gamma_{1} \cdot \theta}+18 e^{i \gamma_{2} \cdot \theta}\right| .
$$

Therefore

$$
35=\left|1+16 e^{i \gamma_{1} \cdot \theta}+18 e^{i \gamma_{2} \cdot \theta}\right|,
$$

which means that we are in a particular case of (3.6). Then, we get $\gamma_{j} \cdot \theta=\pi l_{j}, l_{j} \in \mathbb{Z}$, where l_{j} is even for $j=1,2$ (see (3.9)). Consequently $e^{i \gamma_{1} \cdot \theta}=e^{i \gamma_{2} \cdot \theta}=1$. By substituting in (3.15), it follows that

$$
\begin{equation*}
e^{i \gamma_{3} \cdot \theta}=-1 \tag{3.16}
\end{equation*}
$$

Nevertheless, $\gamma_{1} \cdot \theta=3 \theta_{1}=\pi l_{1}, \gamma_{2} \cdot \theta=2 \theta_{2}=\pi l_{2}$. Then
$\gamma_{3} \cdot \theta=2 \theta_{1}+2 \theta_{2}=\frac{2}{3} \pi l_{1}+\pi l_{2}$, with l_{j} even for $j=1,2$,
so, $e^{i \gamma_{3} \cdot \theta}=e^{i \frac{2}{3} \pi l_{1}} \cdot e^{i \pi l_{2}}=e^{i \frac{2}{3} \pi l_{1}}$. But it is immediate that $e^{i \frac{2}{3} \pi l_{1}} \neq-1$ for any l_{1} even integer. This contradicts (3.16). Consequently, $\rho_{N} \neq a_{P_{36}(s)}$.

Springer

To guarantee the validity of the converse of the above result we need a more restrictive condition that of the diophantine independence. Such condition is exactly the rational independence.

```
Theorem 3.2 Given an integer \(n>2\). If in a Dirichlet polynomial \(P_{n}(s)\) written in the form (3.1), \(\log n\) is rationally independent of \(\log n_{j}, 1 \leq j<m\), then \(P_{n}(s)\) satisfies the property \(\rho_{N}=a_{P_{n}(s)}\).
```

Proof Let $\left\{q_{1}, q_{2}, \ldots, q_{M}\right\}$ be the minimal set of ordered primes numbers that it is necessary to obtain the prime factorization of $\left\{n_{1}, n_{2}, \ldots, n_{m-1}, n_{m}=n\right\}$. Then there are integers $\delta_{j k} \geq 0,1 \leq j \leq m, 1 \leq k \leq M$, such that we can write

$$
n_{j}=q_{1}^{\delta_{j 1}} \cdot q_{2}^{\delta_{j 2}} \cdots q_{M}^{\delta_{j M}}
$$

so the vectors γ_{j} (see (2.5)) are

$$
\gamma_{j}=\left(\delta_{j 1}, \ldots, \delta_{j M}\right), \quad 1 \leq j \leq m .
$$

Consequently

$$
\begin{equation*}
\log n_{j}=\sum_{k=1}^{M} \delta_{j k} \log q_{k}, \quad 1 \leq j \leq m \tag{3.17}
\end{equation*}
$$

Hence, since $\log n$ is rationally independent of $\log n_{j}, 1 \leq j \leq m-1$, the vector γ_{m} is rationally independent of the vectors $\gamma_{j}, 1 \leq j \leq m-1$. First we claim that $M \geq 2$, i.e., we need at least two primes $\left\{q_{k_{1}}, q_{k_{2}}\right\}$ to obtain the prime factorization of $n_{j}, 1 \leq j \leq m$. Otherwise, assume all $n_{j}=q_{k_{1}}^{\delta_{j k_{1}}}, 1 \leq j \leq m$ for some $1 \leq k_{1} \leq M$. Since $n_{j} \geq 2$ for all $1 \leq j \leq m$ (see (3.1)), necessarily $\delta_{j k_{1}}>0$ for all $1 \leq j \leq m$. Then we can write

$$
\log n=\delta_{m k_{1}} \log q_{k_{1}}=\delta_{m k_{1}} \frac{\delta_{1 k_{1}}}{\delta_{1 k_{1}}} \log q_{1}=\frac{\delta_{m k_{1}}}{\delta_{1 k_{1}}} \log n_{1}+0 \log n_{2}+\cdots+0 \log n_{m-1}
$$

that contradicts the fact of $\log n$ is rationally independent of $\log n_{j}, 1 \leq j \leq m-1$.
With the aim to exhibit the reasoning of the proof, we start by proving the theorem for $m=2$ (the minimum value for m). We claim that the system $\gamma_{1} \cdot \theta=0, \gamma_{2} \cdot \theta=\pi$, has a solution, where the unknown is the vector $\theta=\left(\theta_{1}, \ldots, \theta_{M}\right)$. Indeed, by writing the system of the usual form

$$
\left.\begin{array}{l}
\delta_{11} \theta_{1}+\cdots+\delta_{1 M} \theta_{M}=0 \tag{3.18}\\
\delta_{21} \theta_{1}+\cdots+\delta_{2 M} \theta_{M}=\pi
\end{array}\right\},
$$

it is immediate that

$$
\operatorname{rank}\left(\begin{array}{lll}
\delta_{11} & \ldots & \delta_{1 M} \\
\delta_{21} & \ldots & \delta_{2 M}
\end{array}\right)_{2 \times M}=2,
$$

because the vector $\gamma_{2}=\left(\delta_{21}, \ldots, \delta_{2 M}\right)$ is rationally independent of $\gamma_{1}=\left(\delta_{11}, \ldots, \delta_{1 M}\right)$. Hence

$$
\operatorname{rank}\left(\begin{array}{ccc}
\delta_{11} & \ldots & \delta_{1 M} \\
\delta_{21} & \ldots & \delta_{2 M}
\end{array}\right)_{2 \times M}=\operatorname{rank}\left(\begin{array}{llll}
\delta_{11} & \ldots & \delta_{1 M} & 0 \\
\delta_{21} & \ldots & \delta_{2 M} & \pi
\end{array}\right),
$$

and then, by Rouché-Frobenius Theorem, the system (3.18) has a solution. It means that there exists a vector θ such that $\gamma_{1} \cdot \theta=0, \gamma_{2} \cdot \theta=\pi$. Then $e^{i \gamma_{1} \cdot \theta}=1$, $e^{i \gamma_{2} \cdot \theta}=-1$, i.e., it fulfills (3.9) and (3.10). Consequently, for $m=2$, (3.5) follows. Then by applying [3,

Theorem 3.1], $\rho_{N} \in R_{P_{n}(s)}$ (see (1.6)). Now, by using (1.5), we have $\rho_{N}=a_{P_{n}(s)}$. Therefore the theorem is true for $m=2$. Now we study the general case $M \geq 2, m>2$.

Since $\log n$ is rationally independent of $\log n_{j}, 1 \leq j<m$, the system $\log n=$ $\sum_{j=1}^{m-1} X_{j} \log n_{j}$ has no solution in \mathbb{Q}. Hence, by using (3.17), Rouché-Frobenius Theorem says us that the matrices

$$
\left(\begin{array}{cccc}
\delta_{11} & \delta_{21} & \ldots & \delta_{m-1,1} \tag{3.19}\\
\delta_{12} & \delta_{22} & \ldots & \delta_{m-1,2} \\
\ldots & \ldots & \ldots & \ldots \\
\delta_{1 M} & \delta_{2 M} & \ldots & \delta_{m-1, M}
\end{array}\right), \quad\left(\begin{array}{ccccc}
\delta_{11} & \delta_{21} & \ldots & \delta_{m-1,1} & \delta_{m 1} \\
\delta_{12} & \delta_{22} & \ldots & \delta_{m-1,2} & \delta_{m 2} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\delta_{1 M} & \delta_{2 M} & \ldots & \delta_{m-1, M} & \delta_{m, M}
\end{array}\right),
$$

have different rank. Denote $A_{M \times(m-1)}$ and $B_{M \times m}$ the matrices of (3.19), respectively. Then if $R:=\operatorname{rank} A_{M \times(m-1)}$, necessarily $\operatorname{rank} B_{M \times m}=R+1$ because $B_{M \times m}$ has one column more than $A_{M \times(m-1)}$. Now we consider the system $\gamma_{1} \cdot \theta=0, \gamma_{2} \cdot \theta=0, \ldots, \gamma_{m} \cdot \theta=\pi$, written as

$$
\left.\begin{array}{l}
\delta_{11} \theta_{1}+\cdots+\delta_{1 M} \theta_{M}=0 \tag{3.20}\\
\cdots \\
\delta_{m 1} \theta_{1}+\cdots+\delta_{m M} \theta_{M}=\pi
\end{array}\right\} .
$$

We claim that (3.20) has solution. To show that, it is enough to prove that the matrices

$$
\left(\begin{array}{cccc}
\delta_{11} & \delta_{12} & \ldots & \delta_{1 M} \tag{3.21}\\
\delta_{21} & \delta_{22} & \ldots & \delta_{2 M} \\
\ldots & \ldots & \ldots & \ldots \\
\delta_{m 1} & \delta_{m 2} & \ldots & \delta_{m M}
\end{array}\right), \quad\left(\begin{array}{ccccc}
\delta_{11} & \delta_{12} & \ldots & \delta_{1 M} & 0 \\
\delta_{21} & \delta_{22} & \ldots & \delta_{2 M} & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\delta_{m 1} & \delta_{m 2} & \ldots & \delta_{m M} & \pi
\end{array}\right)
$$

have equal rank. Indeed, denote as $C_{m \times M}$ and $D_{m \times(M+1)}$ the matrices of (3.21), respectively. Now we observe that $C_{m \times M}$ is the transposed matrix of $B_{M \times m}$, so $\operatorname{rank} C_{m \times M}=$ $\operatorname{rank} B_{M \times m}=R+1$. Since $D_{m \times(M+1)}$ has one column more than $C_{m \times M}$, the maximum value of $\operatorname{rank} D_{m \times(M+1)}$ is $R+2$. However it is not possible. Indeed, first consider the case $m=M+1$. In this case, we have $\operatorname{det} D_{m \times(M+1)}=\pi \operatorname{det} A_{(m-1) \times M}^{\prime}=\pi \operatorname{det} A_{M \times(m-1)}$, where $A_{(m-1) \times M}^{\prime}$ denotes the transposed matrix of $A_{M \times(m-1)}$. Hence, if $\operatorname{rank} D_{m \times(M+1)}=R+2$, necessarily $\operatorname{det} D_{m \times(M+1)} \neq 0$, so $\operatorname{det} A_{M \times(m-1)} \neq 0$, and then $R=\operatorname{rank} A_{M \times(m-1)}=M=$ $m-1$. But, on the other hand,

$$
\operatorname{rank} B_{M \times m}=R+1 \leq \min \{M, m\} \leq M=R,
$$

which is absurdum. Consequently $m \neq M+1$. Assume $m<M+1$. Since $R:=$ $\operatorname{rank} A_{M \times(m-1)} \leq \min \{M, m-1\}=m-1$, in $A_{M \times(m-1)}$ there are R rationally independent columns. In $B_{M \times m}$ there are $R+1$ rationally independent columns, being the last one of those. Hence in $C_{m \times M}$ there are $R+1$ rationally independent rows, being the last one of those. Consequently in $D_{m \times(M+1)}$ there are exactly $R+1$ rationally independent rows because if a new row were rationally independent of the others, then $\operatorname{rank} D_{m \times(M+1)}=R+2$. However, as the last component of such new row is a 0 , it would mean that the $\operatorname{rank} B_{M \times m}=R+2$. But this is a contradiction since $\operatorname{rank} B_{M \times m}=R+1$. Finally, we analyse the case $m>M+1$. In this case $R:=\operatorname{rank} A_{M \times(m-1)} \leq M$ and then in $A_{M \times(m-1)}$ there are R rationally independent rows. In $B_{M \times m}$ there are $R+1$ rationally independent rows, being the last one of those. Hence in C we have $R+1$ rationally independent columns, being the last column one of those. If $\operatorname{rank} D_{m \times(M+1)}=R+2$, it would mean that the last column contributes to the number of rationally independent columns. Hence, there is a square submatrix of $D_{m \times(M+1)}$, say $E_{(R+2) \times(R+2)}$, that contains the last column, such that $\operatorname{det} E_{(R+2) \times(R+2)} \neq 0$. Since the last column is of the form

(4) Springer

we have $\operatorname{det} E_{(R+2) \times(R+2)}=\pi \operatorname{det} F_{(R+1) \times(R+1)}$, where $F_{(R+1) \times(R+1)}$ is the submatrix of E obtained by deleting the last column and the last row of $E_{(R+2) \times(R+2)}$. Hence $F_{(R+1) \times(R+1)}$ is a submatrix of $A_{(m-1) \times M}^{\prime}$ with

$$
\operatorname{det} F_{(R+1) \times(R+1)} \neq 0 .
$$

Then, it means that rank $A_{(m-1) \times M}^{\prime} \geq R+1$. But this a contradiction because rank $A_{(m-1) \times M}^{\prime}=$ $\operatorname{rank} A_{M \times(m-1)}=R$. Consequently (3.20) has solution. That is, there exists a vector θ such that $\gamma_{1} \cdot \theta=0, \gamma_{2} \cdot \theta=0, \ldots, \gamma_{m} \cdot \theta=\pi$. Then the conditions (3.9) and (3.10) are fulfilled. Consequently (3.5) follows. Hence by applying [3, Theorem 3.1], $\rho_{N} \in R_{P_{n}(s)}$ (see (1.6)) and it implies that $\rho_{N}=a_{P_{n}(s)}$. Now the proof is completed.

In [9, Theorem 3] was proved that if the exponents (the $\log n_{j}$ in (3.1)) of an exponential polynomial are rationally independents, then the property $\rho_{N}=a_{P_{n}(s)}$ follows. However, in Theorem 3.2, for assuring that $\rho_{N}=a_{P_{n}(s)}$, it is only needed that $\log n$ does not depend rationally on $\left\{\log n_{j}: 1 \leq j \leq m-1\right\}$. This condition is less restrictive than the rational independence of the set $\left\{\log n_{j}: 1 \leq j \leq m\right\}$ as we have seen in a preceding example (see (3.4)). Therefore the previous Theorem 3.2 generalizes [9, Theorem 3] such as we point out by means of the following example:

Example 3.2 Consider the Dirichlet polynomial (see (3.4))

$$
P_{2250}(s):=1+30^{-s}+900^{-s}+\frac{931}{2250} 2250^{-s} .
$$

Since $\log 2250$ does not depend rationally on $\{\log 30, \log 900\}$, the Theorem 3.2 implies that $P_{2250}(s)$ satisfies the property $\rho_{N}=a_{P_{2250}(s)}=-1$ (it can be also checked that (3.5) is fulfilled for $\theta=(\pi, \pi, 0)$ and $\left.\gamma_{1}=(1,1,1), \gamma_{2}=(2,2,2), \gamma_{3}=(1,2,3)\right)$. However, as we saw, the set $\{\log 30, \log 900, \log 2250\}$ is rationally dependent. Consequently, the property $\rho_{N}=a_{P_{2250}(s)}$ would not be able deduced from [9, Theorem 3].

In the next result we prove that the exponential polynomials of the class of prime Dirichlet polynomials satisfy the property $\rho_{N}=a_{P_{n}(s)}$.

Theorem 3.3 Any prime Dirichlet polynomial $P_{n}(s)$ satisfies the property $\rho_{N}=a_{P_{n}(s)}$.
Proof We know that any prime Dirichlet Polynomial $P_{n}(s)$ can be written under the form (3.1) as

$$
P_{n}(s)=1+\sum_{j=1}^{m} \beta_{j} e^{-s \log n_{j}}, \quad 0<\beta_{j}, m \geq 2,
$$

with positive integers $2 \leq n_{1}<n_{2}<\cdots<n_{m}=n$ with n prime. Let $\left\{q_{1}, q_{2}, \ldots, q_{L}\right\}$ be the minimal set of ordered prime numbers that it is necessary to obtain the prime factorization of the numbers of the set $\left\{n_{1}, n_{2}, \ldots, n_{m-1}\right\}$. Then there are integers $\delta_{j k} \geq 0,1 \leq j \leq m-1$, $1 \leq k \leq L$, such that we can write $n_{j}=q_{1}^{\delta_{j 1}} q_{2}^{\delta_{j 2}} \ldots q_{L}^{\delta_{j L}}$. Hence

$$
\begin{equation*}
\log n_{j}=\sum_{k=1}^{L} \delta_{j k} \log q_{k} . \tag{3.22}
\end{equation*}
$$

Now, by assuming that $\log n$ is rationally dependent of $\log n_{j}, 1 \leq j \leq m-1$, there are rationals ϵ_{j} such that

$$
\log n=\sum_{j=1}^{m-1} \epsilon_{j} \log n_{j}
$$

Consequently, from (3.22),

$$
\begin{equation*}
\log n=\sum_{j=1}^{m-1} \epsilon_{j} \sum_{k=1}^{L} \delta_{j k} \log q_{k} . \tag{3.23}
\end{equation*}
$$

Since n is prime and $n>n_{j}$ for all $1 \leq j \leq m-1$, it follows that $n \notin\left\{q_{1}, q_{2}, \ldots, q_{L}\right\}$. Taking into account that the logarithms of a set of prime numbers define a rationally independent set, the coefficient of each logarithm of the left hand side of (3.23) must be equal to the coefficient of the same logarithm of the right hand side one. But this leads us a contradiction because the coefficient of $\log n$ in the left hand side of (3.23) is 1 whereas the coefficient of $\log n$ in the right hand side is 0 . This means that $\log n$ is rationally independent of $\log n_{j}, 1 \leq j \leq m-1$. Then by applying the previous theorem, $P_{n}(s)$ satisfies the property $\rho_{N}=a_{P_{n}(s)}$.

4 A characterization of Dirichlet polynomials in terms of $\rho_{0}=b_{P_{n}(s)}$

In the next result we characterize the class of Dirichlet polynomials that satisfy the property $\rho_{0}=b_{P_{n}(s)}$.

Theorem 4.1 Given an integer $n>2$, a Dirichlet polynomial

$$
\begin{equation*}
P_{n}(s)=1+\sum_{j=p-1} \frac{\alpha_{j}}{(j+1)^{s}}+\alpha_{n-1} n^{-s}, \quad \alpha_{j}>0, \quad \alpha_{n-1}>0, \tag{4.1}
\end{equation*}
$$

for all primes p with $p \leq n$, satisfies the property $\rho_{0}=b_{P_{n}(s)}$ if and only $m_{1}+m_{2}+\cdots+m_{k_{n}}$ is odd, where $p_{1}^{m_{1}} \cdot p_{2}^{m_{2}} \cdots p_{k_{n}}^{m_{k_{n}}}$ is the prime factorization of n and $p_{k_{n}}$ being the last prime not exceeding n.

Proof We first prove the sufficiency. Consider the exponential polynomial

$$
Q_{n}(s):=1-\sum_{j=p-1} \frac{\alpha_{j}}{(j+1)^{s}}-\alpha_{n-1} n^{-s} .
$$

Define a function $f: \mathbb{N} \rightarrow \mathbb{C}$ as

$$
\begin{equation*}
f(m)=\left(f\left(p_{1}\right)\right)^{l_{1}}\left(f\left(p_{2}\right)\right)^{l_{2}} \cdots\left(f\left(p_{k_{m}}\right)\right)^{l_{k_{m}}}, m \in \mathbb{N}, m>1, f(1)=1, \tag{4.2}
\end{equation*}
$$

where $f(p)=-1$ for any p prime and $p_{1}^{l_{1}} p_{2}^{l_{2}} \ldots p_{k_{m}}^{l_{k}}$ being the prime factorization of m. It is immediate that f is a completely multiplicative function [1, p. 138]. Then, because of $m_{1}+m_{2}+\cdots+m_{k_{n}}$ is odd, from (4.2), we have

$$
f(n)=(-1)^{m_{1}+m_{2}+\cdots+m_{k_{n}}}=-1 .
$$

This proves that $Q_{n}(s)$ is an exponential polynomial that is Bohr equivalent to $P_{n}(s)$ (see for instance [1, Theorem 8.12]). By (1.4), ρ_{0} satisfies

$$
\begin{equation*}
1=\alpha_{n-1} e^{-\rho_{0} \log n}+\sum_{j=p-1} \alpha_{j} e^{-\rho_{0} \log (j+1)}, \tag{4.3}
\end{equation*}
$$

(4) Springer

so ρ_{0} is a zero of $Q_{n}(s)$. Then by Bohr's equivalence theorem [1, Theorem 8.16], there exists a zero of $P_{n}(s)$ in every strip $S_{\delta}:=\left\{s: \rho_{0}-\delta \leq \Re s<\rho_{0}\right\}$, for arbitrary $\delta>0$. It means that $\sup \left\{\Re s: P_{n}(s)=0\right\} \geq \rho_{0}$. But $b_{P_{n}(s)}:=\sup \left\{\Re s: P_{n}(s)=0\right\}$ (see (1.3)), so $b_{P_{n}(s)} \geq \rho_{0}$. Then, from (1.5), we infer that $\rho_{0}=b_{P_{n}(s)}$. Consequently the sufficiency follows.

Reciprocally, let $P_{n}(s)$ be a Dirichlet polynomial of the form (4.1) satisfying $\rho_{0}=b_{P_{n}(s)}$. If n is prime, $n=p_{k_{n}}$ and then the prime factorization of n coincides with $p_{k_{n}}$, so $m_{l}=0$ for all $l \neq k_{n}$ and $m_{l}=1$ for $l=k_{n}$. Hence $m_{1}+m_{2}+\cdots+m_{k_{n}}=1$ and the necessity follows in this case. We assume n is composite. Since $\rho_{0}=b_{P_{n}(s)}$ and $b_{P_{n}(s)} \in R_{P_{n}(s)}$, from [3, Theorem 3.1], there exists a vector $\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{M}\right)$ with $M=k_{n}$ such that

$$
\begin{equation*}
1+\alpha_{n-1} e^{-\rho_{0} \log n} e^{i \gamma_{n-1} \cdot \theta}+\sum_{j=p-1} \alpha_{j} e^{-\rho_{0} \log (j+1)} e^{i \gamma_{j} \cdot \theta}=0 \tag{4.4}
\end{equation*}
$$

where $\gamma_{j}, j=1, \ldots, n-1$, are the vectors defined in (2.5) and p runs on the prime numbers less than n. From (4.4) we have

$$
\begin{equation*}
1=\left|\alpha_{n-1} e^{-\rho_{0} \log n} e^{i \gamma_{n-1} \cdot \theta}+\sum_{j=p-1} \alpha_{j} e^{-\rho_{0} \log (j+1)} e^{i \gamma_{j} \cdot \theta}\right| \tag{4.5}
\end{equation*}
$$

Taking into account that in the right hand side of (4.5) there are $k_{n}+1$ summands, we put

$$
\alpha_{1} e^{-\rho_{0} \log 2} e^{i \gamma_{1} \cdot \theta}=k_{n} \frac{1}{k_{n}} \alpha_{1} e^{-\rho_{0} \log 2} e^{i \gamma_{1} \cdot \theta},
$$

and write (4.5) as

$$
\begin{align*}
1= & \left\lvert\, \alpha_{n-1} e^{-\rho_{0} \log n} e^{i \gamma_{n-1} \cdot \theta}+\frac{1}{k_{n}} \alpha_{1} e^{-\rho_{0} \log 2} e^{i \gamma_{1} \cdot \theta}\right. \\
& \left.+\sum_{\substack{j=p-1 \\
j>1}}\left(\frac{1}{k_{n}} \alpha_{1} e^{-\rho_{0} \log 2} e^{i \gamma_{1} \cdot \theta}+\alpha_{j} e^{-\rho_{0} \log (j+1)} e^{i \gamma_{j} \cdot \theta}\right) \right\rvert\, . \tag{4.6}
\end{align*}
$$

For instance, for $n=8$, the number of primes $p<8$, denoted as k_{8}, is 4 , namely, $2,3,5$ and 7 . Hence the right hand side of (4.5) has 5 summands and then, for certain $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)$, it can be expressed as

$$
\begin{aligned}
1= & \left\lvert\, \alpha_{7} e^{-\rho_{0} \log 8} e^{i \gamma_{7} \cdot \theta}+\frac{1}{4} \alpha_{1} e^{-\rho_{0} \log 2} e^{i \gamma_{1} \cdot \theta}+\frac{1}{4} \alpha_{1} e^{-\rho_{0} \log 2} e^{i \gamma_{1} \cdot \theta}\right. \\
& +\alpha_{2} e^{-\rho_{0} \log 3} e^{i \gamma_{2} \cdot \theta}+\frac{1}{4} \alpha_{1} e^{-\rho_{0} \log 2} e^{i \gamma_{1} \cdot \theta}+\alpha_{4} e^{-\rho_{0} \log 5} e^{i \gamma_{4} \cdot \theta} \\
& \left.+\frac{1}{4} \alpha_{1} e^{-\rho_{0} \log 2} e^{i \gamma_{1} \cdot \theta}+\alpha_{6} e^{-\rho_{0} \log 7} e^{i \gamma_{6} \cdot \theta} \right\rvert\,
\end{aligned}
$$

Here, according to the prime factorization of the numbers $2,3,5,7$ and 8 , respectively, the vectors γ_{p-1}, with p prime less than 8 , and γ_{n-1}, for $n=8$ (see (2.6)) are

$$
\gamma_{1}=(1,0,0,0), \gamma_{2}=(0,1,0,0), \gamma_{4}=(0,0,1,0), \gamma_{6}=(0,0,0,1), \gamma_{7}=(3,0,0,0) .
$$

Then, from (4.6), we have

$$
\begin{align*}
1 \leq & \left|\alpha_{n-1} e^{-\rho_{0} \log n} e^{i \gamma_{n-1} \cdot \theta}+\frac{1}{k_{n}} \alpha_{1} e^{-\rho_{0} \log 2} e^{i \gamma_{1} \cdot \theta}\right| \\
& +\sum_{\substack{j=p-1 \\
j>1}}\left|\frac{1}{k_{n}} \alpha_{1} e^{-\rho_{0} \log 2} e^{i \gamma_{1} \cdot \theta}+\alpha_{j} e^{-\rho_{0} \log (j+1)} e^{i \gamma_{j} \cdot \theta}\right| . \tag{4.7}
\end{align*}
$$

Now, as in Theorem 3.1, we use the property that for any $z, w \in \mathbb{C}$ with $z w \neq 0$, we have $|z+w|=|z|+|w|$ if and only if there exists $\lambda>0$ such that $w=\lambda z$. If there is either a summand of the form

$$
\left|\frac{1}{k_{n}} \alpha_{1} e^{-\rho_{0} \log 2} e^{i \gamma_{1} \cdot \theta}+\alpha_{j} e^{-\rho_{0} \log (j+1)} e^{i \gamma_{j} \cdot \theta}\right|, \quad \text { for } j=p-1, j>1,
$$

or the summand

$$
\left|\alpha_{n-1} e^{-\rho_{0} \log n} e^{i \gamma_{n-1} \cdot \theta}+\frac{1}{k_{n}} \alpha_{1} e^{-\rho_{0} \log 2} e^{i \gamma_{1} \cdot \theta}\right|
$$

such that one has

$$
\left|\frac{1}{k_{n}} \alpha_{1} e^{-\rho_{0} \log 2} e^{i \gamma_{1} \cdot \theta}+\alpha_{j} e^{-\rho_{0} \log (j+1)} e^{i \gamma_{j} \cdot \theta}\right|<\frac{1}{k_{n}} \alpha_{1} e^{-\rho_{0} \log 2}+\alpha_{j} e^{-\rho_{0} \log (j+1)}
$$

or

$$
\left|\alpha_{n-1} e^{-\rho_{0} \log n} e^{i \gamma_{n-1} \cdot \theta}+\frac{1}{k_{n}} \alpha_{1} e^{-\rho_{0} \log 2} e^{i \gamma_{1} \cdot \theta}\right|<\alpha_{n-1} e^{-\rho_{0} \log n}+\frac{1}{k_{n}} \alpha_{1} e^{-\rho_{0} \log 2},
$$

then, noticing (4.3), we are led to the following contradiction:

$$
1<\sum_{j=p-1} \alpha_{j} e^{-\rho_{0} \log (j+1)}+\alpha_{n-1} e^{-\rho_{0} \log n}=1 .
$$

Therefore, for every $j=p-1>1, j=n-1$, there exists $\lambda_{j}>0$ such that

$$
\alpha_{j} e^{-\rho_{0} \log (j+1)} e^{i \gamma_{j} \cdot \theta}=\lambda_{j} \frac{1}{k_{n}} \alpha_{1} e^{-\rho_{0} \log 2} e^{i \gamma_{1} \cdot \theta} .
$$

Since $\frac{1}{k_{n}} \alpha_{j}>0$ for all $j=p-1>1$ and $j=n-1$, it means that $e^{i\left(\gamma_{j}-\gamma_{1}\right) \cdot \theta}>0$, so $e^{i\left(\gamma_{j}-\gamma_{1}\right) \cdot \theta}=1$. Hence

$$
\begin{equation*}
\gamma_{j} \cdot \theta=\gamma_{1} \cdot \theta+2 \pi l_{j}, l_{j} \in \mathbb{Z}, \quad \text { for all } j=p-1>1 \text { and } j=n-1 . \tag{4.8}
\end{equation*}
$$

Then $e^{i \gamma_{j} \cdot \theta}=e^{i \gamma_{1} \cdot \theta}$ for $j=p-1$ and $j=n-1$, so by substituting it in (4.4) we have

$$
e^{i \gamma_{1} \cdot \theta}\left(\alpha_{n-1} e^{-\rho_{0} \log n}+\sum_{j=p-1} \alpha_{j} e^{-\rho_{0} \log (j+1)}\right)=-1
$$

Now, noticing (4.3), we deduce that $e^{i \gamma_{1} \cdot \theta}=-1$. Then, $\gamma_{1} \cdot \theta=\pi t_{1}$, with $t_{1} \in \mathbb{Z}$ odd. Therefore, from (4.8), we get

$$
\begin{equation*}
\gamma_{j} \cdot \theta=\pi t_{j}, \quad t_{j} \in \mathbb{Z} \quad \text { odd for all } j=p-1, j=n-1 . \tag{4.9}
\end{equation*}
$$

From (2.6) the vectors γ_{j} corresponding to each prime $p<n$, with $j=p-1$, are of the form

$$
\gamma_{1}=(1,0, \ldots 0), \gamma_{2}=(0,1,0, \ldots 0), \ldots, \gamma_{k_{n}-1}=(0,0, \ldots, 0,1),
$$

(3) Springer

whereas the vector γ_{n-1} corresponding to n, according to its prime factorization, is

$$
\gamma_{n-1}=\left(m_{1}, m_{2}, \ldots m_{k_{n}}\right)
$$

Therefore, it follows that

$$
\begin{equation*}
\gamma_{j} \cdot \theta=\theta_{j}, j=p-1 \text { and } \gamma_{n-1} \cdot \theta=m_{1} \theta_{1}+m_{2} \theta_{2}+\cdots+m_{k_{n}} \theta_{k_{n}} . \tag{4.10}
\end{equation*}
$$

Then, from (4.9), (4.10) and (4.8), we infer

$$
\begin{align*}
\pi t_{n-1}= & \gamma_{n-1} \cdot \theta \\
= & m_{1} \theta_{1}+m_{2} \theta_{2}+\cdots+m_{k_{n}} \theta_{k_{n}}=m_{1} \theta_{1}+m_{2}\left(\theta_{1}+2 \pi l_{2}\right)+\cdots \\
& +m_{k_{n}}\left(\theta_{1}+2 \pi l_{k_{n}}\right)=\left(m_{1}+m_{2}+\ldots+m_{k_{n}}\right) \theta_{1}+2 \pi l, \text { for some } l \in \mathbb{Z} . \tag{4.11}
\end{align*}
$$

By (4.9) and (4.10), we have $\gamma_{1} \cdot \theta=\pi t_{1}=\theta_{1}$ with t_{1} odd. Now, by substituting θ_{1} in (4.11) and dividing that expression by π, we get

$$
\begin{equation*}
t_{n-1}=\left(m_{1}+m_{2}+\cdots+m_{k_{n}}\right) t_{1}+2 l, \quad l \in \mathbb{Z} \tag{4.12}
\end{equation*}
$$

Then, since t_{1} and t_{n-1} are odd, the relation (4.12) implies that necessarily $m_{1}+m_{2}+\cdots+m_{k_{n}}$ is odd. Consequently the theorem follows.

In the next result we prove that all the exponential polynomials of the class $\mathcal{P}_{s t}$ (see Definition 2.2) satisfy the properties (1.9) and (1.10).

Theorem 4.2 Any strict prime Dirichlet polynomial satisfies the properties $\rho_{N}=a_{P_{n}(s)}$ and $\rho_{0}=b_{P_{n}(s)}$.

Proof Let $P_{n}(s)$ be a strict prime Dirichlet polynomial. Then in particular $P_{n}(s)$ is a prime Dirichlet polynomial, so by Theorem 3.3, $P_{n}(s)$ satisfies the property $\rho_{N}=a_{P_{n}(s)}$. On the other hand, $P_{n}(s)$ is of the form (4.1) and since n is prime, $n=p_{k_{n}}$ (see the statement of Theorem 4.1). Hence the prime factorization of n is $p_{k_{n}}$ and then $m_{1}=m_{2}=\cdots=m_{k_{n}-1}=$ 0 and $m_{k_{n}}=1$. Therefore, $m_{1}+m_{2}+\cdots+m_{k n}=1$, so odd. Then, Theorem 4.1 applies and consequently $P_{n}(s)$ fulfills the property $\rho_{0}=b_{P_{n}(s)}$.

5 Applications

As an application of the previous results we obtain a characterization of the set of prime numbers by means of the partial sums of the Riemann zeta function that satisfy the property $\rho_{N}=a_{\zeta_{n}(s)}$.

Theorem 5.1 A positive integer n is prime if and only if the partial sum of the Riemann zeta function $\zeta_{n}(s):=\sum_{j=1}^{n} j^{-s}$ satisfies the property $\rho_{N}=a_{\zeta n}(s)$.

Proof If $n=2$, the zeros of $\zeta_{2}(s)$ are given by the formula $s_{k}=\frac{(2 k+1) \pi i}{\log 2}, k \in \mathbb{Z}$. Then all the zeros of $\zeta_{2}(s)$ are imaginary, so $a_{\zeta_{2}(s)}=0$ (see (1.3)), and ρ_{N} is the unique real solution of the equation $2^{-\rho}=1$, so $\rho_{N}=0$ (see (1.4)). Therefore $\rho_{N}=a_{\zeta 2(s)}$ and then the necessity follows for $n=2$. Assume $n>2$ is prime. Let $\zeta_{n}(s)$ be a partial sum with n prime. Then $\zeta_{n}(s)$ is a prime Dirichlet polynomial (see Definition 2.1). Therefore, by applying Theorem 3.3,
$\zeta_{n}(s)$ satisfies the property $\rho_{N}=a_{\zeta_{n}(s)}$. Reciprocally, suppose that $\zeta_{n}(s)$ satisfies the property $\rho_{N}=a_{\zeta n}(s)$. We write

$$
\zeta_{n}(s)=1+\sum_{j=1}^{n-1}(j+1)^{-s}=1+\sum_{j=1}^{n-1} e^{-s \log (j+1)}
$$

Hence $\zeta_{n}(s)$ is a Dirichlet polynomial of the form (3.1) with $\beta_{j}=1$ and $n_{j}=j+1$, for each $1 \leq j \leq n-1=m$, and $n_{m}=n$. Then, by applying Theorem 3.1, $\log n$ is diophantinally independent of $\left\{\log n_{j}: 1 \leq j<m\right\}$. This means that n is prime. Indeed, assume n is composite. Then $n=p_{1}^{m_{1}} \cdot p_{2}^{m_{2}} \ldots p_{k_{n}}^{m_{k_{n}}}$, where $p_{1}, p_{2}, \ldots, p_{k_{n}}$ are the prime numbers less than n and $m_{1}, m_{2}, \ldots, m_{k_{n}}$ are non negative integers with at least one of them, say m_{l}, with $m_{l}>0$. Then

$$
\begin{equation*}
\log n=m_{1} \log p_{1}+m_{2} \log p_{2}+\cdots+m_{k_{n}} \log p_{k_{n}} . \tag{5.1}
\end{equation*}
$$

Since $n_{j}=j+1$ and $1 \leq j \leq n-1$, noticing n is composite, one has $p_{k_{n}}<n$ and then $p_{k_{n}} \leq n-1$. Therefore

$$
\left\{p_{1}, p_{2}, \ldots, p_{k_{n}}\right\} \subset A:=\{d \in \mathbb{N}: 1<d \leq n-1\} .
$$

Then the expression (5.1) can be written as

$$
\begin{equation*}
\log n=\sum_{j=1}^{k_{n}} m_{j} \log p_{j}+\sum_{d \text { composite } \in A} 0 \log d . \tag{5.2}
\end{equation*}
$$

But it is clear that (5.2) is a contradiction because it would mean that $\log n$ is diophantinally dependent on $\left\{\log n_{j}: 1 \leq j<m\right\}$. Then n is prime and consequently the theorem follows.

Remark 5.1 We point out that the necessity of the above theorem could be also obtained as a consequence of a result contained in [6, Proposition 5]. Indeed, there it was proved that for n prime one has

$$
\begin{equation*}
\sup \left\{\sigma: G_{n-1}(\sigma)=n^{\sigma}\right\}=\sup \left\{\sigma: G_{n}(s)=0\right\}, \tag{5.3}
\end{equation*}
$$

where $G_{n}(s):=1+2^{s}+\cdots+n^{s}$. By Pólya Criterium [13, p. 46], $G_{n-1}(\sigma)=n^{\sigma}$ has only one real solution. Then, noticing that the nth partial sum of the Riemann zeta function, $\zeta_{n}(s):=\sum_{j=1}^{n} j^{-s}$, is such that $\zeta_{n}(-s)=G_{n}(s)$ for all $s \in \mathbb{C}$, from equality (5.3), it follows that $-\rho_{N}=-a_{\zeta_{n}(s)}$, so $\rho_{N}=a_{\zeta_{n}(s)}$.

Acknowledgements We are indebted to the referee and we wish to express our gratitude for your work. Your remarks and comments have improved our paper.

References

1. Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Springer, New York (1990)
2. Ash, R.B.: Complex Variables. Academic Press, New York (1971)
3. Avellar, C.E., Hale, J.K.: On the zeros of exponential polynomials. J. Math. Anal. Appl. 73, 434-452 (1980)
4. Castillo-Medina, J.: Convergence formulae for double Dirichlet series. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(44) (2020)
5. Defant, A., Pérez, A., Sevilla-Peris, P.: A note on abscissas of Dirichlet series. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(3), 2639-2653 (2019)

(3) Springer

6. Dubon, E., Mora, G., Sepulcre, J.M., Ubeda, J.I., Vidal, T.: A note on the real projection of the zeros of partial sums of Riemann zeta function. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 108(2), 317-333 (2012)
7. Henry, D.: Linear autonomous neutral functional differential equations. J. Differ. Equ. 15, 106-128 (1974)
8. Montgomery, H.L., Vaughan, R.C.: Mean values of multiplicative functions. Period. Math. Hungar. 43, 199-214 (2001)
9. Mora, G., Sepulcre, J.M., Vidal, T.: On the existence of exponential polynomials with prefixed gaps. Bull. Lond. Math. Soc. 45, 1148-1162 (2013)
10. Mora, G.: An estimate of the lower bound of the real parts of the zeros of the partial sums of the Riemann zeta function. J. Math. Anal. Appl. 427, 428-439 (2015)
11. Mora, G.: On the closure of the real parts of the zeros of a class of exponential polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(2), 327-332 (2019)
12. Moreno, C.J.: The zeros of exponential polynomials (I). Compos. Math. 26(1), 69-78 (1973)
13. Pólya, G., Szëgo, G.: Problems and Theorems in Analysis, vol. II. Springer, New York (1976)
14. Roy, A., Vatwani, A.: Zeros of Dirichlet polynomials. Trans. Am. Math. Soc. 374, 643-661 (2021)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author Query Form

Please ensure you fill out your response to the queries raised below and return this form along with your corrections

Dear Author
During the process of typesetting your article, the following queries have arisen. Please check your typeset proof carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the 'Author's response' area provided below

Query	Details required	Author's response
1.	Please confirm the city name in affiliation 2 and amend if necessary.	

