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Abstract1

In this paper we have given conditions on exponential polynomials Pn(s) of Dirichlet type to2

be attained the equality between each of two pairs of bounds, called essential bounds, aPn(s), 13

ρN and bPn(s), ρ0 associated with Pn(s). The reciprocal question has been also treated. The4

bounds aPn(s), bPn(s) are defined as the end-points of the minimal closed and bounded real5

interval I = [aPn(s), bPn(s)] such that all the zeros of Pn(s) are contained in the strip I × R6

of the complex plane C. The bounds ρN , ρ0 are defined as the unique real solutions of Henry7

equations of Pn(s). Some applications to the partial sums of the Riemann zeta function have8

been also showed.9

Keywords Dirichlet polynomials · Zeros of exponential polynomials · Diophantine and10

rational dependence · Zeros of partial sums of the Riemann zeta function11

Mathematics Subject Classification Primary 30B50 · 11M41; Secondary 30D0512

1 Introduction13

An integer N ≥ 1, non-null complex numbers α j and positive real numbers λ1 < · · · < λN14

define an exponential polynomial of the form15

P(s) = 1 +

N
∑

j=1

α j e
−sλ j , s := σ + i t ∈ C, (1.1)16

where α j are called the coefficients and λ j the exponents, or frequencies, of P(s). An17

immediate property is satisfied:18

lim
σ→+∞

P(s) = lim
σ→−∞

Q(s) = 1, (1.2)19
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_####_ Page 2 of 17 G. Mora, E. Benítez

where Q(s) := α−1
N esλN P(s). On the other hand, any non-constant exponential polynomial20

has infinitely many zeros as a consequence of Hadamard’s Factorization Theorem [2, p. 151]21

or from Pólya’s Theorem (see [12, p. 71]). Therefore, since P(s) and Q(s) have exactly the22

same zeros, by (1.2) it follows the existence of a constant A > 0 such that P(s) �= 0 for23

all s with ℜs = σ such that |σ | > A. This means that the two half planes {s : σ < −A},24

{s : σ > A} are zero-free for P(s). Consequently for any P(s) of the form (1.1) there exist25

two real numbers aPn(s), bPn(s) defined as26

aP(s) := inf{σ : P(s) = 0}, bP(s) := sup{σ : P(s) = 0}. (1.3)27

On the other hand, given an exponential polynomial P(s) we have the equations, with ρ as28

unknown,29

|αN |e−ρλN = 1 +

N−1
∑

j=1

|α j |e
−ρλ j , 1 =

N
∑

j=1

|α j |e
−ρλ j , (1.4)30

called Henry’s equations [7]. By Pólya Criterium [13, p. 46], each equation of (1.4) has31

a unique real solution denoted by ρN and ρ0, respectively. Therefore to an exponential32

polynomial P(s) of the form (1.1) we can associated the numbers aP(s), bP(s), defined in33

(1.3), and ρN , ρ0, defined in (1.4). These four numbers will be named essential bounds34

associated with P(s).35

An elementary analysis of the real functions36

f (ρ) := |αN |e−ρλN −

⎛

⎝1 +

N−1
∑

j=1

|α j |e
−ρλ j

⎞

⎠ , g(ρ) := 1 −

N
∑

j=1

|α j |e
−ρλ j ,37

whose unique real zeros are ρN and ρ0 respectively, proves that there is no zero of P(s) at the38

left of ρN neither at the right of ρ0. That is, if s is a zero of P(s), necessarily ρN ≤ ℜs ≤ ρ0.39

Therefore ρN ≤ aP(s) and bP(s) ≤ ρ0. Since it is always true that aP(s) ≤ bP(s), the essential40

bounds of any exponential polynomial P(s) of the form (1.1) are related by the inequalities41

ρN ≤ aP(s) ≤ bP(s) ≤ ρ0. (1.5)42

Furthermore, noticing that any non-constant exponential polynomial P(s) has infinitely many43

zeros, the closure of the real parts of its zeros44

RP(s) := {σ : P(s) = 0}, (1.6)45

is a non-empty-set. From (1.5), it follows that46

RP(s) ⊂ [aP(s), bP(s)] ⊂ [ρN , ρ0]. (1.7)47

It is evident that if N = 1 (the trivial case) the two Henry’s equations are equal, so the48

numbers ρN and ρ0 coincide. Then, from (1.5), the four bounds are equal and the exponential49

polynomial P(s) has infinitely many zeros aligned. Consequently, in order to avoid the trivial50

case, from now on, we will assume that N > 1 in the expression that defines an exponential51

polynomial P(s) of the form (1.1). That is, we will consider exponential polynomials with52

at least three non-null terms.53

For a given P(s) of the form (1.1) it would not be too much difficult to obtain computa-54

tionally the values of ρN , ρ0 by means of Henry’s equations (1.4). However we could not say55

the same for finding an analytical expression for ρN , ρ0, as well as for the numbers aP(s),56

bP(s), when N → ∞. Furthermore, even in the case to have analytical expressions of those57
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Essential bounds of Dirichlet polynomials Page 3 of 17 _####_

numbers, as usually they are asymptotic, the differences between the bounds ρN , aP(s) and58

ρ0, bP(s), if there are, are really not easy to determine. For instance, for the special type of59

Dirichlet polynomials ζn(s) :=
∑n

j=1 j−s , i.e., the nth partial sums of the series
∑∞

j=1 j−s ,60

σ > 1, that defines the Riemann zeta function, we have the estimates61

bζn(s) = 1 +

(

4

π
− 1 + o(1)

)

log log n

log n
, n → ∞,62

and63

aζn(s) = −
log 2

log( n−1
n−2

)
+ �n, lim sup

n→∞
|�n | ≤ log 2, n > 2,64

found in 2001 [8] and 2015 [10], respectively. By comparing the previous bounds aζn(s),65

bζn(s) with the solutions of (1.4) for ρN , ρ0, we can see that computationally ρN , aζn(s) and66

ρ0, bζn(s) are indistinguishable when n is large. The difficulty to settle the equality or not67

between ρ0 and bζn(s) is specially hard in this case. Regarding to ρN and aζn(s), to appreciate68

such difference the value of |ρN − aζn(s)| would have to be greater than log 2, but usually it69

does not occur, as we can see in [10].70

In the same way that is relevant the abscissa of convergence for a Dirichlet series [1, p.71

165] (very interesting works on this subject and generalizations can be seen, for instance, in72

[4,5]), it is also relevant the essential bounds for a Dirichlet polynomial. In a recent article73

[14] both notions, i.e., the abscissa of convergence of an ordinary Dirichlet series, whose74

coefficients αn are defined by αn := f (n) ( f denotes a multiplicative function [1, p. 138]75

) and the essential bound bPN (s) corresponding to the N th partial sum PN (s) of the given76

series, have been related. Important results have been obtained in the aforementioned paper77

such as an analytical expression for bPN (s) that generalizes the obtained for bζn(s) in [8] by78

Montgomery and Vaughan.79

In the present paper, for a given exponential P(s) of the form (1.1) we have treated the80

problem of the equality between the bounds ρN , aP(s) and ρ0, bP(s). Our study has been81

focused on a class of exponential polynomials that we have called Dirichlet polynomials82

because they are partial sums of ordinary Dirichlet series [1, p. 161]. That is, we have83

considered the class of normalized exponential polynomials of the form84

Pn(s) := 1 +

n−1
∑

j=1

α j

( j + 1)s
, n > 2, α j ≥ 0, α jαn−1 �= 0 for some j < n − 1. (1.8)85

To be more concrete, in the present paper we have found the conditions that must be86

imposed on a Dirichlet polynomial Pn(s) to have either87

ρN = aPn(s) (1.9)88

or89

ρ0 = bPn(s). (1.10)90

The converse question is relevant and it also has been studied. Throughout the manuscript we91

have demonstrated that the aforementioned conditions are linked to the notions of diophantine92

and rational dependence (see below for a precise definition). We will show that the exponential93

polynomials of the class of prime Dirichlet polynomials (see below Definition 2.1) satisfy94

the property (1.9), whereas the exponential polynomials of the class of strict prime Dirichlet95

polynomials (see below Definition 2.2) satisfy both properties (1.9) and (1.10). To prove the96

main results of the paper we have used analytical-arithmetical techniques. For instance, it97

123

SPI Journal: 13398 Article No.: 1045 TYPESET DISK LE CP Disp.:2021/4/11 Pages: 17 Layout: Small

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

_####_ Page 4 of 17 G. Mora, E. Benítez

has been used a characterization of the set (1.6) (see [3, Theorem 3.1], [11, Theorem 1] that98

is crucial to prove Theorem 3.1 and Theorem 3.2. This theorem generalizes [9, Theorem 3]99

(see below Example 3.2). Another important result that we have handled has been Bohr’s100

equivalence theorem [1, Theorem 8.16] used to prove Theorem 4.1. Among the applications101

to the partial sums of the Riemann zeta function (see the Sect. 5 in the manuscript), we have102

obtained a characterization of the set of all prime numbers by means of those partial sums103

ζn(s) that satisfy the property ρN = aζn(s).104

2 Preliminaries105

Firstly we introduce two remarkable classes of Dirichlet polynomials.106

Definition 2.1 A Dirichlet polynomial Pn(s) of the form (1.8) is said to be a prime Dirichlet107

polynomial if and only if n is a prime number. The class of all prime Dirichlet polynomials108

will be denoted as P .109

For instance, the Dirichlet polynomials P5(s) := 1 + 2−s + 3−s + 4−s + 5−s , P7(s) :=110

1 + 2−s + 4−s + 7−s are in the class P .111

A special subclass of P is the following.112

Definition 2.2 A Dirichlet polynomial Pn(s) of the form (1.8) is said to be a strict prime113

Dirichlet polynomial if and only if n is a prime number and α j �= 0 for j = p − 1, α j = 0114

for all j �= p − 1, for all primes p with p ≤ n. The class of all strict prime Dirichlet115

polynomials will be denoted as Pst.116

For instance, the prime Dirichlet polynomials Q3(s) := 1 + 2−s + 3−s , Q5(s) := 1 +117

2−s + 3−s + 5−s are in the class Pst.118

In order to use some results already known on exponential polynomials, in the next result119

we prove that the class of Dirichlet polynomials is a subclass of a more general class of120

exponential polynomials that can be written in the form121

P(s) := 1 +

N
∑

j=1

α j e
−sγ j ·r , α j ∈ R, αn−1 �= 0, N > 1, (2.1)122

where γ j ·r represents the inner product of γ j = (γ j1 , γ j2 , . . . , γ jM
), non-null vectors of RM ,123

M ≥ 1, distinct, with non-negative integers components, by a vector r = (r1, r2, . . . , rM ) of124

RM with positive rationally independent components (i.e., the equation
∑M

k=1 ǫkrk = 0, with125

ǫk ∈ Q, implies that ǫk = 0 for all k = 1, . . . , M). Observe that any exponential polynomial126

P(s) of the form (2.1) is in turn a particular case of exponential polynomial of the form (1.1)127

by increasingly ordering the exponents λ j := γ j · r , 1 ≤ j ≤ N .128

Lemma 2.1 Any Dirichlet polynomial of the form (1.8) can be expressed in the form (2.1)129

with M > 1.130

Proof Let Pn(s) = 1 +
∑n−1

j=1

α j

( j+1)s be a Dirichlet polynomial of the form (1.8). Then we131

have132

1

(1 + j)s
= e−s log(1+ j) for every j = 1, . . . , n − 1. (2.2)133

For a given integer n > 2, consider all prime numbers not greater than n, denoted as p1 <134

p2 < · · · < pkn ≤ n. Hence p1 = 2, p2 = 3, etc., and pkn is the last prime not exceeding n,135

123

SPI Journal: 13398 Article No.: 1045 TYPESET DISK LE CP Disp.:2021/4/11 Pages: 17 Layout: Small

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Essential bounds of Dirichlet polynomials Page 5 of 17 _####_

where kn represents the number of primes p such that p ≤ n, so kn ≥ 2. Take M = kn and136

define137

r := (log p1, log p2, . . . , log pkn ). (2.3)138

It is immediate to check that the numbers log p1, log p2 . . . , log pkn are rationally indepen-139

dent. By virtue of Fundamental Theorem of Arithmetic write140

j + 1 = p
m j1

1 · p
m j2

2 · · · p
m jkn

kn
for every j = 1, . . . , n − 1141

and then142

log( j + 1) = m j1 log p1 + m j2 log p2 + · · · + m jkn
log pkn . (2.4)143

Now we define144

γ j = (γ j1 , γ j2 , . . . , γ jM
) := (m j1 , m j2 , . . . , m jkn

), j = 1, . . . , n − 1. (2.5)145

In particular if j + 1 is prime, i.e. if j + 1 = pm with m ∈ {1, 2, . . . , kn}, then the vector γ j146

is given by147

γ j = (0, . . . , 1, . . . 0), where 1 is the mth component of γ j . (2.6)148

Then, from (2.5) and taking into account the definition of the vector r , it follows that γ j · r =149

log(1 + j) for every j = 1, . . . , n − 1. Therefore by taking N = n − 1 (see (2.1), noticing150

(2.2), we get151

Pn(s) = 1 +

n−1
∑

j=1

α j e
−s log(1+ j) = 1 +

N
∑

j=1

α j e
−sγ j ·r .152

It means that Pn(s) can be written in the form (2.1), where the vector r is given by (2.3) and153

the vectors γ j by (2.5). Then the lemma follows. ⊓⊔154

3 The property �N = aPn(s) in the class of Dirichlet polynomials155

In this section we will analyse the property ρN = aPn(s) for the class of Dirichlet polynomials156

(see (1.8)). For this, firstly we note that if some coefficient α j of Pn(s) = 1 +
∑n−1

j=1

α j

( j+1)s157

is equal to 0, by removing the corresponding term, we can write Pn(s) under the form158

Pn(s) = 1 +

m
∑

j=1

β j e
−s log n j with 0 < β j , m ≥ 2, (3.1)159

where β j = α j for the α j �= 0, and positive integers 2 ≤ n1 < n2 < · · · < nm = n.160

We introduce the following concepts.161

Definition 3.1 Given an integer n > 2 and integers 2 ≤ n1 < n2 < · · · < nk , we will say162

that log n is diophantinally dependent on log n j , 1 ≤ j ≤ k, if and only if there are integers163

δ j , 1 ≤ j ≤ k, such that164

log n =

k
∑

j=1

δ j log n j . (3.2)165
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_####_ Page 6 of 17 G. Mora, E. Benítez

Definition 3.2 Given an integer n > 2 and integers 2 ≤ n1 < n2 < · · · < nk , we will say166

that log n is rationally dependent on log n j , 1 ≤ j ≤ k, if and only if there are rationals ǫ j ,167

1 ≤ j ≤ k, such that168

log n =

k
∑

j=1

ǫ j log n j .169

Observe that if log n is diophantinally dependent on log n j , 1 ≤ j ≤ k, then in particular170

log n is rationally dependent on log n j , 1 ≤ j ≤ k. The converse is not true. Indeed, noticing171

log 36 =
2

3
log 8 + log 9, (3.3)172

we can see that log 36 is rationally dependent on log 8 and log 9, but it is not diophantinally173

dependent.174

It is worth to stress that log n can be rationally independent of log n j , 1 ≤ j ≤ k, but175

the set {log n, log n j , 1 ≤ j ≤ k} can be rationally dependent. For instance, log 2250 is176

rationally independent of log 30 and log 900. Indeed, assume there are rationals ǫ1, ǫ2 such177

that log 2250 = ǫ1 log 30 + ǫ2 log 900. Then, since 30 = 2 · 3 · 5, 900 = 22 · 32 · 52 and178

2250 = 2 · 32 · 53 we have179

log 2250 = log 2 + 2 log 3 + 3 log 5 = (ǫ1 + 2ǫ2)(log 2 + log 3 + log 5). (3.4)180

But log 2, log 3 and log 5 are rationally independent because 2, 3 and 5 are primes. Then by181

identifying the coefficients of log 2, log 3 and log 5 in both sides of (3.4), we are led to a182

contradiction. Therefore log 2250 is rationally independent of log 30 and log 900. However,183

the numbers {log 2250, log 30, log 900} are rationally dependent. Indeed, the equation184

A log 2250 + B log 30 + C log 900 = 0185

has non-null solutions, it is satisfied for A = 0, B = 1 and C = −1/2.186

The next result requires a characterization of the set defined in (1.6) (see for instance [3,187

Theorem 3.1], [11, Theorem 1]).188

Theorem 3.1 Given an integer n > 2, if a Dirichlet polynomial Pn(s) written in the form189

(3.1) satisfies the property ρN = aPn(s), then log n is diophantinally independent of log n j ,190

1 ≤ j < m.191

Proof Let Pn(s) be a Dirichlet polynomial of the form (3.1) that satisfies the property ρN =192

aPn(s). Since it is always true that aPn(s) ∈ RPn(s) (see (1.3) and (1.6)), then ρN ∈ RPn(s). By193

applying [3, Theorem 3.1], there exists a vector θ = (θ1, θ2, . . . , θM ) ∈ RM , M ≤ kn (see194

the proof of Lemma 2.1), such that195

1 +

m
∑

j=1

β j e
−ρN log n j eiγ j ·θ = 0, (3.5)196

where γ j are the vectors defined in (2.5) and γ j · θ denotes the inner product of γ j by θ .197

From (3.5) and noticing nm = n, it follows that198

|βme−ρN log neiγm ·θ | =

∣

∣

∣

∣

∣

∣

1 +

m−1
∑

j=1

β j e
−ρN log n j eiγ j ·θ

∣

∣

∣

∣

∣

∣

. (3.6)199
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Essential bounds of Dirichlet polynomials Page 7 of 17 _####_

Now we write the right hand side of (3.6) as200

∣

∣

∣

∣

1

m − 1
+ β1e−ρN log n1 eiγ1·θ + · · · +

1

m − 1
+ βm−1e−ρN log nm−1 eiγm−1·θ

∣

∣

∣

∣

201

≤

∣

∣

∣

∣

1

m − 1
+ β1e−ρN log n1 eiγ1·θ

∣

∣

∣

∣

+ · · ·202

+

∣

∣

∣

∣

1

m − 1
+ βm−1e−ρN log nm−1 eiγm−1·θ

∣

∣

∣

∣

203

≤
1

m − 1
+ β1e−ρN log n1 + · · · +

1

m − 1
+ βm−1e−ρN log nm−1 . (3.7)204

Then, from (3.6) and (3.7), we deduce that205

βme−ρN log n ≤ 1 +

m−1
∑

j=1

β j e
−ρN log n j . (3.8)206

But, taking into account the definition of ρN (see Eq. (1.4)), the inequality in (3.8) becomes207

an equality. Now we recall the property:208

Given z, w ∈ C with zw �= 0, one has |z +w| = |z|+ |w| if and only if there exists λ > 0209

such that w = λz.210

Then, noticing the above property, in each summand of (3.7), necessarily it must be211

eiγ j ·θ > 0 for each 1 ≤ j ≤ m − 1. Since |eiγ j ·θ | = 1, it means that212

eiγ j ·θ = 1 for all 1 ≤ j ≤ m − 1, so γ j · θ = πl j , l j ∈ Z, l j even. (3.9)213

Therefore, substituting in (3.5), it follows eiγm ·θ < 0. Consequently,214

eiγm ·θ = −1, so γm · θ = πlm, lm ∈ Z, lm odd. (3.10)215

Let {q1, q2, . . . , qM } be the minimal set of ordered prime numbers that are necessary to216

obtain the prime factorization of the numbers {n1, n2, . . . , nm−1, n}. Then, from (2.3), the217

vector r := (log q1, log q2, . . . , log qM ). Noticing the expression (3.1), for each 1 ≤ j ≤ m,218

the vector γ j = (γ j1, . . . , γ j M ) (see (2.4), (2.5)) is such that219

log n j =

M
∑

k=1

γ jk log qk, with γ jk ≥ 0 integers.220

Then the above equality can be written as221

log n j = γ j · r , for all 1 ≤ j ≤ m. (3.11)222

Assume log n is not diophantinally independent of log n j , 1 ≤ j ≤ m − 1. It means that223

there are integers (δ j )
m−1
j=1 such that log n =

∑m−1
j=1 δ j log n j . Then, since nm = n, by (3.11),224

we can write225

log n = γm · r =

m−1
∑

j=1

δ j (γ j · r).226

Therefore,227

⎛

⎝γm −

m−1
∑

j=1

δ jγ j

⎞

⎠ · r = 0. (3.12)228
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_####_ Page 8 of 17 G. Mora, E. Benítez

Since {qk : 1 ≤ k ≤ M} are primes, the set {log qk : 1 ≤ k ≤ M} is rationally independent,229

so, from (3.12), we infer that γm =
∑m−1

j=1 δ jγ j . Then, by multiplying by θ , we have γm ·θ =230

∑m−1
j=1 δ j (γ j · θ). Now, by dividing by π , we are led to the following contradiction231

1

π
(γm · θ) =

m−1
∑

j=1

δ j

π
(γ j · θ). (3.13)232

Indeed, because (3.9), the right hand side of (3.13) is an even integer whereas, from (3.10),233

the left hand side is odd. This completes the proof. ⊓⊔234

The next example proves that the converse of the previous theorem is not true in general.235

Example 3.1 The Dirichlet polynomial236

P36(s) := 1 + 2 · 8−s + 2 · 9−s +
35

36
· 36−s

237

does not satisfy the property ρN = aP36(s). However log 36 is diophantinally independent of238

log 8 and log 9.239

Indeed, in (3.3) we have seen that log 36 is diophantinally independent of log 8 and log 9.240

From (1.4), ρN is the unique real solution of the equation241

35

36
· 36−ρ = 1 + 2 · 8−ρ + 2 · 9−ρ, (3.14)242

that clearly is satisfied for ρ = −1, so ρN = −1. Assume ρN = aP36(s), so −1 = aP36(s).243

Since {2, 3} is the minimal set of ordered prime numbers that are necessary to obtain the244

prime factorization of {8, 9, 36}, the vectors γ j (see (2.5)) are γ1 = (3, 0), γ2 = (0, 2) and245

γ3 = (2, 2). Then, since always it is true that aP36(s) ∈ RP36(s) (see (1.3) and (1.6)), from [3,246

Theorem 3.1] there exists a vector θ = (θ1, θ2) ∈ R2 such that247

1 + 2 · 8eiγ1·θ + 2 · 9eiγ2·θ +
35

36
· 36eiγ3·θ = 0, (3.15)248

where γ j · θ , j = 1, 2, 3, denotes the inner product in R2. From (3.15), we have249

|35eiγ3·θ | = |1 + 16eiγ1·θ + 18eiγ2·θ |.250

Therefore251

35 = |1 + 16eiγ1·θ + 18eiγ2·θ |,252

which means that we are in a particular case of (3.6). Then, we get γ j · θ = πl j , l j ∈ Z,253

where l j is even for j = 1, 2 (see (3.9)). Consequently eiγ1·θ = eiγ2·θ = 1. By substituting254

in (3.15), it follows that255

eiγ3·θ = −1. (3.16)256

Nevertheless, γ1 · θ = 3θ1 = πl1, γ2 · θ = 2θ2 = πl2. Then257

γ3 · θ = 2θ1 + 2θ2 =
2

3
πl1 + πl2, with l j even for j = 1, 2,258

so, eiγ3·θ = ei 2
3 πl1 .eiπl2 = ei 2

3 πl1 . But it is immediate that ei 2
3 πl1 �= −1 for any l1 even259

integer. This contradicts (3.16). Consequently, ρN �= aP36(s).260
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Essential bounds of Dirichlet polynomials Page 9 of 17 _####_

To guarantee the validity of the converse of the above result we need a more restric-261

tive condition that of the diophantine independence. Such condition is exactly the rational262

independence.263

Theorem 3.2 Given an integer n > 2. If in a Dirichlet polynomial Pn(s) written in the form264

(3.1), log n is rationally independent of log n j , 1 ≤ j < m, then Pn(s) satisfies the property265

ρN = aPn(s).266

Proof Let {q1, q2, . . . , qM } be the minimal set of ordered primes numbers that it is necessary267

to obtain the prime factorization of {n1, n2, . . . , nm−1, nm = n}. Then there are integers268

δ jk ≥ 0, 1 ≤ j ≤ m, 1 ≤ k ≤ M , such that we can write269

n j = q
δ j1

1 · q
δ j2

2 · · · q
δ j M

M ,270

so the vectors γ j (see (2.5)) are271

γ j = (δ j1, . . . , δ j M ), 1 ≤ j ≤ m.272

Consequently273

log n j =

M
∑

k=1

δ jk log qk, 1 ≤ j ≤ m. (3.17)274

Hence, since log n is rationally independent of log n j , 1 ≤ j ≤ m − 1, the vector γm is275

rationally independent of the vectors γ j , 1 ≤ j ≤ m − 1. First we claim that M ≥ 2, i.e.,276

we need at least two primes {qk1 , qk2} to obtain the prime factorization of n j , 1 ≤ j ≤ m.277

Otherwise, assume all n j = q
δ jk1

k1
, 1 ≤ j ≤ m for some 1 ≤ k1 ≤ M . Since n j ≥ 2 for all278

1 ≤ j ≤ m (see (3.1)), necessarily δ jk1 > 0 for all 1 ≤ j ≤ m. Then we can write279

log n = δmk1 log qk1 = δmk1

δ1k1

δ1k1

log q1 =
δmk1

δ1k1

log n1 + 0 log n2 + · · · + 0 log nm−1280

that contradicts the fact of log n is rationally independent of log n j , 1 ≤ j ≤ m − 1.281

With the aim to exhibit the reasoning of the proof, we start by proving the theorem for282

m = 2 (the minimum value for m). We claim that the system γ1 · θ = 0, γ2 · θ = π , has a283

solution, where the unknown is the vector θ = (θ1, . . . , θM ). Indeed, by writing the system284

of the usual form285

δ11θ1 + · · · + δ1MθM = 0

δ21θ1 + · · · + δ2MθM = π

}

, (3.18)286

it is immediate that287

rank

(

δ11 . . . δ1M

δ21 . . . δ2M

)

2×M

= 2,288

because the vector γ2 = (δ21, . . . , δ2M ) is rationally independent of γ1 = (δ11, . . . , δ1M ).289

Hence290

rank

(

δ11 . . . δ1M

δ21 . . . δ2M

)

2×M

= rank

(

δ11 . . . δ1M 0

δ21 . . . δ2M π

)

,291

and then, by Rouché–Frobenius Theorem, the system (3.18) has a solution. It means that292

there exists a vector θ such that γ1 · θ = 0, γ2 · θ = π . Then eiγ1·θ = 1, eiγ2·θ = −1,293

i.e., it fulfills (3.9) and (3.10). Consequently, for m = 2, (3.5) follows. Then by applying [3,294
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_####_ Page 10 of 17 G. Mora, E. Benítez

Theorem 3.1], ρN ∈ RPn(s) (see (1.6)). Now, by using (1.5), we have ρN = aPn(s). Therefore295

the theorem is true for m = 2. Now we study the general case M ≥ 2, m > 2.296

Since log n is rationally independent of log n j , 1 ≤ j < m, the system log n =297

∑m−1
j=1 X j log n j has no solution in Q. Hence, by using (3.17), Rouché–Frobenius Theo-298

rem says us that the matrices299

⎛

⎜

⎜

⎝

δ11 δ21 . . . δm−1,1

δ12 δ22 . . . δm−1,2

. . . . . . . . . . . .

δ1M δ2M . . . δm−1,M

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

δ11 δ21 . . . δm−1,1 δm1

δ12 δ22 . . . δm−1,2 δm2

. . . . . . . . . . . . . . .

δ1M δ2M . . . δm−1,M δm,M

⎞

⎟

⎟

⎠

, (3.19)300

have different rank. Denote AM×(m−1) and BM×m the matrices of (3.19), respectively. Then301

if R := rankAM×(m−1), necessarily rankBM×m = R + 1 because BM×m has one column302

more than AM×(m−1). Now we consider the system γ1 · θ = 0, γ2 · θ = 0, . . . , γm · θ = π ,303

written as304

δ11θ1 + · · · + δ1MθM = 0

. . .

δm1θ1 + · · · + δm MθM = π

⎫

⎬

⎭

. (3.20)305

We claim that (3.20) has solution. To show that, it is enough to prove that the matrices306

⎛

⎜

⎜

⎝

δ11 δ12 . . . δ1M

δ21 δ22 . . . δ2M

. . . . . . . . . . . .

δm1 δm2 . . . δm M

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

δ11 δ12 . . . δ1M 0

δ21 δ22 . . . δ2M 0

. . . . . . . . . . . . . . .

δm1 δm2 . . . δm M π

⎞

⎟

⎟

⎠

(3.21)307

have equal rank. Indeed, denote as Cm×M and Dm×(M+1) the matrices of (3.21), respec-308

tively. Now we observe that Cm×M is the transposed matrix of BM×m , so rankCm×M =309

rankBM×m = R + 1. Since Dm×(M+1) has one column more than Cm×M , the maximum310

value of rankDm×(M+1) is R + 2. However it is not possible. Indeed, first consider the case311

m = M +1. In this case, we have detDm×(M+1) = πdetA′
(m−1)×M = πdetAM×(m−1), where312

A′
(m−1)×M denotes the transposed matrix of AM×(m−1). Hence, if rankDm×(M+1) = R + 2,313

necessarily detDm×(M+1) �= 0, so detAM×(m−1) �= 0, and then R = rankAM×(m−1) = M =314

m − 1. But, on the other hand,315

rankBM×m = R + 1 ≤ min{M, m} ≤ M = R,316

which is absurdum. Consequently m �= M + 1. Assume m < M + 1. Since R :=317

rankAM×(m−1) ≤ min{M, m −1} = m −1, in AM×(m−1) there are R rationally independent318

columns. In BM×m there are R + 1 rationally independent columns, being the last one of319

those. Hence in Cm×M there are R+1 rationally independent rows, being the last one of those.320

Consequently in Dm×(M+1) there are exactly R + 1 rationally independent rows because if a321

new row were rationally independent of the others, then rankDm×(M+1) = R + 2. However,322

as the last component of such new row is a 0, it would mean that the rankBM×m = R +2. But323

this is a contradiction since rankBM×m = R + 1. Finally, we analyse the case m > M + 1.324

In this case R := rankAM×(m−1) ≤ M and then in AM×(m−1) there are R rationally inde-325

pendent rows. In BM×m there are R + 1 rationally independent rows, being the last one of326

those. Hence in C we have R + 1 rationally independent columns, being the last column one327

of those. If rankDm×(M+1) = R + 2, it would mean that the last column contributes to the328

number of rationally independent columns. Hence, there is a square submatrix of Dm×(M+1),329

say E(R+2)×(R+2), that contains the last column, such that detE(R+2)×(R+2) �= 0. Since the330

last column is of the form331
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Essential bounds of Dirichlet polynomials Page 11 of 17 _####_

⎛

⎜

⎜

⎜

⎝

0

0
...

π

⎞

⎟

⎟

⎟

⎠

,332

we have detE(R+2)×(R+2) = πdetF(R+1)×(R+1), where F(R+1)×(R+1) is the submatrix of E333

obtained by deleting the last column and the last row of E(R+2)×(R+2). Hence F(R+1)×(R+1)334

is a submatrix of A′
(m−1)×M with335

detF(R+1)×(R+1) �= 0.336

Then, it means that rankA′
(m−1)×M ≥ R+1. But this a contradiction because rankA′

(m−1)×M =337

rankAM×(m−1) = R. Consequently (3.20) has solution. That is, there exists a vector θ such338

that γ1 · θ = 0, γ2 · θ = 0, . . . , γm · θ = π . Then the conditions (3.9) and (3.10) are fulfilled.339

Consequently (3.5) follows. Hence by applying [3, Theorem 3.1], ρN ∈ RPn(s) (see (1.6))340

and it implies that ρN = aPn(s). Now the proof is completed. ⊓⊔341

In [9, Theorem 3] was proved that if the exponents (the log n j in (3.1)) of an exponential342

polynomial are rationally independents, then the property ρN = aPn(s) follows. However,343

in Theorem 3.2, for assuring that ρN = aPn(s), it is only needed that log n does not depend344

rationally on {log n j : 1 ≤ j ≤ m − 1}. This condition is less restrictive than the rational345

independence of the set {log n j : 1 ≤ j ≤ m} as we have seen in a preceding example (see346

(3.4)). Therefore the previous Theorem 3.2 generalizes [9, Theorem 3] such as we point out347

by means of the following example:348

Example 3.2 Consider the Dirichlet polynomial (see (3.4))349

P2250(s) := 1 + 30−s + 900−s +
931

2250
2250−s .350

Since log 2250 does not depend rationally on {log 30, log 900}, the Theorem 3.2 implies that351

P2250(s) satisfies the property ρN = aP2250(s) = −1 (it can be also checked that (3.5) is352

fulfilled for θ = (π, π, 0) and γ1 = (1, 1, 1), γ2 = (2, 2, 2), γ3 = (1, 2, 3)). However, as we353

saw, the set {log 30, log 900, log 2250} is rationally dependent. Consequently, the property354

ρN = aP2250(s) would not be able deduced from [9, Theorem 3].355

In the next result we prove that the exponential polynomials of the class of prime Dirichlet356

polynomials satisfy the property ρN = aPn(s).357

Theorem 3.3 Any prime Dirichlet polynomial Pn(s) satisfies the property ρN = aPn(s).358

Proof We know that any prime Dirichlet Polynomial Pn(s) can be written under the form359

(3.1) as360

Pn(s) = 1 +

m
∑

j=1

β j e
−s log n j , 0 < β j , m ≥ 2,361

with positive integers 2 ≤ n1 < n2 < · · · < nm = n with n prime. Let {q1, q2, . . . , qL } be362

the minimal set of ordered prime numbers that it is necessary to obtain the prime factorization363

of the numbers of the set {n1, n2, . . . , nm−1}. Then there are integers δ jk ≥ 0, 1 ≤ j ≤ m−1,364

1 ≤ k ≤ L , such that we can write n j = q
δ j1

1 q
δ j2

2 . . . q
δ j L

L . Hence365

log n j =

L
∑

k=1

δ jk log qk . (3.22)366
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_####_ Page 12 of 17 G. Mora, E. Benítez

Now, by assuming that log n is rationally dependent of log n j , 1 ≤ j ≤ m − 1, there are367

rationals ǫ j such that368

log n =

m−1
∑

j=1

ǫ j log n j .369

Consequently, from (3.22),370

log n =

m−1
∑

j=1

ǫ j

L
∑

k=1

δ jk log qk . (3.23)371

Since n is prime and n > n j for all 1 ≤ j ≤ m−1, it follows that n /∈ {q1, q2, . . . , qL }. Taking372

into account that the logarithms of a set of prime numbers define a rationally independent set,373

the coefficient of each logarithm of the left hand side of (3.23) must be equal to the coefficient374

of the same logarithm of the right hand side one. But this leads us a contradiction because the375

coefficient of log n in the left hand side of (3.23) is 1 whereas the coefficient of log n in the376

right hand side is 0. This means that log n is rationally independent of log n j , 1 ≤ j ≤ m −1.377

Then by applying the previous theorem, Pn(s) satisfies the property ρN = aPn(s). ⊓⊔378

4 A characterization of Dirichlet polynomials in terms of �0 = bPn(s)379

In the next result we characterize the class of Dirichlet polynomials that satisfy the property380

ρ0 = bPn(s).381

Theorem 4.1 Given an integer n > 2, a Dirichlet polynomial382

Pn(s) = 1 +
∑

j=p−1

α j

( j + 1)s
+ αn−1n−s, α j > 0, αn−1 > 0, (4.1)383

for all primes p with p ≤ n, satisfies the property ρ0 = bPn(s) if and only m1 +m2 +· · ·+m
kn

384

is odd, where p
m1

1 · p
m2

2 · · · p
m

kn

kn
is the prime factorization of n and pkn being the last prime385

not exceeding n.386

Proof We first prove the sufficiency. Consider the exponential polynomial387

Qn(s) := 1 −
∑

j=p−1

α j

( j + 1)s
− αn−1n−s .388

Define a function f : N → C as389

f (m) = ( f (p1))
l1( f (p2))

l2 · · · ( f (pkm ))lkm , m ∈ N, m > 1, f (1) = 1, (4.2)390

where f (p) = −1 for any p prime and p1
l1 p2

l2 . . . p
lkm

km
being the prime factorization of m.391

It is immediate that f is a completely multiplicative function [1, p. 138]. Then, because of392

m1 + m2 + · · · + m
kn

is odd, from (4.2), we have393

f (n) = (−1)
m1+m2+···+m

kn = −1.394

This proves that Qn(s) is an exponential polynomial that is Bohr equivalent to Pn(s) (see for395

instance [1, Theorem 8.12]). By (1.4), ρ0 satisfies396

1 = αn−1e−ρ0 log n +
∑

j=p−1

α j e
−ρ0 log( j+1), (4.3)397
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Essential bounds of Dirichlet polynomials Page 13 of 17 _####_

so ρ0 is a zero of Qn(s). Then by Bohr’s equivalence theorem [1, Theorem 8.16], there exists398

a zero of Pn(s) in every strip Sδ := {s : ρ0 −δ ≤ ℜs < ρ0}, for arbitrary δ > 0. It means that399

sup{ℜs : Pn(s) = 0} ≥ ρ0. But bPn(s) := sup{ℜs : Pn(s) = 0} (see (1.3)), so bPn(s) ≥ ρ0.400

Then, from (1.5), we infer that ρ0 = bPn(s). Consequently the sufficiency follows.401

Reciprocally, let Pn(s) be a Dirichlet polynomial of the form (4.1) satisfying ρ0 = bPn(s).402

If n is prime, n = pkn and then the prime factorization of n coincides with pkn , so ml = 0403

for all l �= kn and ml = 1 for l = kn . Hence m1 + m2 + · · · + m
kn

= 1 and the necessity404

follows in this case. We assume n is composite. Since ρ0 = bPn(s) and bPn(s) ∈ RPn(s), from405

[3, Theorem 3.1], there exists a vector θ = (θ1, θ2, . . . , θM ) with M = kn such that406

1 + αn−1e−ρ0 log neiγn−1·θ +
∑

j=p−1

α j e
−ρ0 log( j+1)eiγ j ·θ = 0, (4.4)407

where γ j , j = 1, . . . , n −1, are the vectors defined in (2.5) and p runs on the prime numbers408

less than n. From (4.4) we have409

1 =

∣

∣

∣

∣

∣

∣

αn−1e−ρ0 log neiγn−1·θ +
∑

j=p−1

α j e
−ρ0 log( j+1)eiγ j ·θ

∣

∣

∣

∣

∣

∣

. (4.5)410

Taking into account that in the right hand side of (4.5) there are kn + 1 summands, we put411

α1e−ρ0 log 2eiγ1·θ = kn

1

kn

α1e−ρ0 log 2eiγ1·θ ,412

and write (4.5) as413

1 =

∣

∣

∣

∣

∣

∣

∣

∣

αn−1e−ρ0 log neiγn−1·θ +
1

kn

α1e−ρ0 log 2eiγ1·θ
414

+
∑

j=p−1
j>1

(

1

kn

α1e−ρ0 log 2eiγ1·θ + α j e
−ρ0 log( j+1)eiγ j ·θ

)

∣

∣

∣

∣

∣

∣

∣

∣

. (4.6)415

For instance, for n = 8, the number of primes p < 8, denoted as k8, is 4, namely, 2, 3, 5 and 7.416

Hence the right hand side of (4.5) has 5 summands and then, for certain θ = (θ1, θ2, θ3, θ4),417

it can be expressed as418

1 =

∣

∣

∣

∣

α7e−ρ0 log 8eiγ7·θ +
1

4
α1e−ρ0 log 2eiγ1·θ +

1

4
α1e−ρ0 log 2eiγ1·θ

419

+α2e−ρ0 log 3eiγ2·θ +
1

4
α1e−ρ0 log 2eiγ1·θ + α4e−ρ0 log 5eiγ4·θ

420

+
1

4
α1e−ρ0 log 2eiγ1·θ + α6e−ρ0 log 7eiγ6·θ

∣

∣

∣

∣

.421

Here, according to the prime factorization of the numbers 2, 3, 5, 7 and 8, respectively, the422

vectors γp−1, with p prime less than 8, and γn−1, for n = 8 (see (2.6)) are423

γ1 = (1, 0, 0, 0), γ2 = (0, 1, 0, 0), γ4 = (0, 0, 1, 0), γ6 = (0, 0, 0, 1), γ7 = (3, 0, 0, 0).424
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_####_ Page 14 of 17 G. Mora, E. Benítez

Then, from (4.6), we have425

1 ≤

∣

∣

∣

∣

αn−1e−ρ0 log neiγn−1·θ +
1

kn

α1e−ρ0 log 2eiγ1·θ

∣

∣

∣

∣

426

+
∑

j=p−1
j>1

∣

∣

∣

∣

1

kn

α1e−ρ0 log 2eiγ1·θ + α j e
−ρ0 log( j+1)eiγ j ·θ

∣

∣

∣

∣

. (4.7)427

Now, as in Theorem 3.1, we use the property that for any z, w ∈ C with zw �= 0, we have428

|z + w| = |z| + |w| if and only if there exists λ > 0 such that w = λz. If there is either a429

summand of the form430

∣

∣

∣

∣

1

kn

α1e−ρ0 log 2eiγ1·θ + α j e
−ρ0 log( j+1)eiγ j ·θ

∣

∣

∣

∣

, for j = p − 1, j > 1,431

or the summand432

∣

∣

∣

∣

αn−1e−ρ0 log neiγn−1·θ +
1

kn

α1e−ρ0 log 2eiγ1·θ

∣

∣

∣

∣

433

such that one has434

∣

∣

∣

∣

1

kn

α1e−ρ0 log 2eiγ1·θ + α j e
−ρ0 log( j+1)eiγ j ·θ

∣

∣

∣

∣

<
1

kn

α1e−ρ0 log 2 + α j e
−ρ0 log( j+1)

435

or436

∣

∣

∣

∣

αn−1e−ρ0 log neiγn−1·θ +
1

kn

α1e−ρ0 log 2eiγ1·θ

∣

∣

∣

∣

< αn−1e−ρ0 log n +
1

kn

α1e−ρ0 log 2,437

then, noticing (4.3), we are led to the following contradiction:438

1 <
∑

j=p−1

α j e
−ρ0 log( j+1) + αn−1e−ρ0 log n = 1.439

Therefore, for every j = p − 1 > 1, j = n − 1, there exists λ j > 0 such that440

α j e
−ρ0 log( j+1)eiγ j ·θ = λ j

1

kn

α1e−ρ0 log 2eiγ1·θ .441

Since 1
kn

α j > 0 for all j = p − 1 > 1 and j = n − 1, it means that ei(γ j −γ1)·θ > 0, so442

ei(γ j −γ1)·θ = 1. Hence443

γ j · θ = γ1 · θ + 2πl j , l j ∈ Z, for all j = p − 1 > 1 and j = n − 1. (4.8)444

Then eiγ j ·θ = eiγ1·θ for j = p − 1 and j = n − 1, so by substituting it in (4.4) we have445

eiγ1·θ

⎛

⎝αn−1e−ρ0 log n +
∑

j=p−1

α j e
−ρ0 log( j+1)

⎞

⎠ = −1.446

Now, noticing (4.3), we deduce that eiγ1·θ = −1. Then, γ1 · θ = π t1, with t1 ∈ Z odd.447

Therefore, from (4.8), we get448

γ j · θ = π t j , t j ∈ Z odd for all j = p − 1, j = n − 1. (4.9)449

From (2.6) the vectors γ j corresponding to each prime p < n, with j = p − 1, are of the450

form451

γ1 = (1, 0, . . . 0), γ2 = (0, 1, 0, . . . 0), . . . ,γkn−1 = (0, 0, . . . , 0, 1),452
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Essential bounds of Dirichlet polynomials Page 15 of 17 _####_

whereas the vector γn−1 corresponding to n, according to its prime factorization, is453

γn−1 = (m1, m2, . . . mkn ).454

Therefore, it follows that455

γ j · θ = θ j , j = p − 1 and γn−1 · θ = m1θ1 + m2θ2 + · · · + mkn θkn . (4.10)456

Then, from (4.9), (4.10) and (4.8), we infer457

π tn−1 = γn−1 · θ458

= m1θ1 + m2θ2 + · · · + mkn θkn = m1θ1 + m2(θ1 + 2πl2) + · · ·459

+mkn (θ1 + 2πlkn ) = (m1 + m2 + . . . + mkn )θ1 + 2πl, for some l ∈ Z.460

(4.11)461

By (4.9) and (4.10), we have γ1 · θ = π t1 = θ1 with t1 odd. Now, by substituting θ1 in (4.11)462

and dividing that expression by π , we get463

tn−1 = (m1 + m2 + · · · + mkn )t1 + 2l, l ∈ Z. (4.12)464

Then, since t1 and tn−1 are odd, the relation (4.12) implies that necessarily m1+m2+· · ·+mkn465

is odd. Consequently the theorem follows. ⊓⊔466

In the next result we prove that all the exponential polynomials of the class Pst (see467

Definition 2.2) satisfy the properties (1.9) and (1.10).468

Theorem 4.2 Any strict prime Dirichlet polynomial satisfies the properties ρN = aPn(s) and469

ρ0 = bPn(s).470

Proof Let Pn(s) be a strict prime Dirichlet polynomial. Then in particular Pn(s) is a prime471

Dirichlet polynomial, so by Theorem 3.3, Pn(s) satisfies the property ρN = aPn(s). On the472

other hand, Pn(s) is of the form (4.1) and since n is prime,n = pkn (see the statement of473

Theorem 4.1). Hence the prime factorization of n is pkn and then m1 = m2 = · · · = mkn−1 =474

0 and mkn = 1. Therefore, m1 + m2 + · · · + m
kn

= 1, so odd. Then, Theorem 4.1 applies475

and consequently Pn(s) fulfills the property ρ0 = bPn(s). ⊓⊔476

5 Applications477

As an application of the previous results we obtain a characterization of the set of prime478

numbers by means of the partial sums of the Riemann zeta function that satisfy the property479

ρN = aζn(s).480

Theorem 5.1 A positive integer n is prime if and only if the partial sum of the Riemann zeta481

function ζn(s) :=
∑n

j=1 j−s satisfies the property ρN = aζn(s).482

Proof If n = 2, the zeros of ζ2(s) are given by the formula sk =
(2k+1)π i

log 2
, k ∈ Z. Then all the483

zeros of ζ2(s) are imaginary, so aζ2(s) = 0 (see (1.3)), and ρN is the unique real solution of484

the equation 2−ρ = 1, so ρN = 0 (see (1.4)). Therefore ρN = aζ2(s) and then the necessity485

follows for n = 2. Assume n > 2 is prime. Let ζn(s) be a partial sum with n prime. Then ζn(s)486

is a prime Dirichlet polynomial (see Definition 2.1). Therefore, by applying Theorem 3.3,487
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_####_ Page 16 of 17 G. Mora, E. Benítez

ζn(s) satisfies the property ρN = aζn(s). Reciprocally, suppose that ζn(s) satisfies the property488

ρN = aζn(s). We write489

ζn(s) = 1 +

n−1
∑

j=1

( j + 1)−s = 1 +

n−1
∑

j=1

e−s log( j+1).490

Hence ζn(s) is a Dirichlet polynomial of the form (3.1) with β j = 1 and n j = j +1, for each491

1 ≤ j ≤ n − 1 = m, and nm = n. Then, by applying Theorem 3.1, log n is diophantinally492

independent of {log n j : 1 ≤ j < m}. This means that n is prime. Indeed, assume n is493

composite. Then n = p
m1

1 .p
m2

2 . . . p
m

kn

kn
, where p1, p2, . . . , pkn are the prime numbers less494

than n and m1, m2, . . . , m
kn

are non negative integers with at least one of them, say ml , with495

ml > 0. Then496

log n = m1 log p1 + m2 log p2 + · · · + m
kn

log pkn . (5.1)497

Since n j = j + 1 and 1 ≤ j ≤ n − 1, noticing n is composite, one has pkn < n and then498

pkn ≤ n − 1. Therefore499

{p1, p2, . . . , pkn } ⊂ A := {d ∈ N : 1 < d ≤ n − 1}.500

Then the expression (5.1) can be written as501

log n =

kn
∑

j=1

m j log p j +
∑

d composite ∈A

0 log d. (5.2)502

But it is clear that (5.2) is a contradiction because it would mean that log n is diophantinally503

dependent on {log n j : 1 ≤ j < m}. Then n is prime and consequently the theorem follows.504

⊓⊔505

Remark 5.1 We point out that the necessity of the above theorem could be also obtained as a506

consequence of a result contained in [6, Proposition 5]. Indeed, there it was proved that for507

n prime one has508

sup{σ : Gn−1(σ ) = nσ } = sup{σ : Gn(s) = 0}, (5.3)509

where Gn(s) := 1 + 2s + · · · + ns . By Pólya Criterium [13, p. 46], Gn−1(σ ) = nσ has510

only one real solution. Then, noticing that the nth partial sum of the Riemann zeta function,511

ζn(s) :=
∑n

j=1 j−s , is such that ζn(−s) = Gn(s) for all s ∈ C, from equality (5.3), it512

follows that −ρN = −aζn(s), so ρN = aζn(s).513
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