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Abstract: Heavy-metal sources in urban environments include automobile exhaust, fuel combustion,
tires, road asphalt, weathering of building materials, and/or industrial activities. The presence of
heavy metals in urban stormwaters constitutes a potential risk for water resources and aquatic life.
Results from the present study demonstrated the effectiveness of two different lightweight aggregates
(LWAs), Arlita and Filtralite, to remove heavy metals (Ni, Cu, Zn, Cd, and Pb) present in aqueous
solutions. These materials were selected because they previously showed great results for water
treatment and because of their physicochemical properties. The removal efficiency of the studied
materials was evaluated with batch tests containing solutions contaminated with heavy metals (with
individual and multiple contaminants) at different concentrations mixed with the LWA particles.
Filtralite showed a better performance in heavy metal removal than Arlita: higher adsorption capacity
for all metals, and lower release of metals from contaminated particles into washing water. The
average removal capacities in tests developed with solutions containing individual contaminants for
Arlita and Filtralite were 76% and 90%, respectively, although the values varied across the different
contaminants. Metal elimination by LWAs was more effective with individual contaminated solutions
than with multielemental ones. The analysis of the adsorption curves, the mineral precipitation
on the LWA surface, and the geochemical modeling confirmed that two different mechanisms are
responsible for the heavy-metal removal. First, the rough surface of the LWA presents sorbing
surface sites of the forming minerals, resulting in the ion-exchange reactions of metal ions. Second,
the LWA–water interaction causes an increase in solution pH, which triggers the precipitation and
coprecipitation of the metals in the form of oxide and hydroxides. The study confirms that the use
of Arlita and especially Filtralite present promising potential to remove heavy metals from urban
stormwaters.

Keywords: metal precipitation; ion exchange; pH; lightweight aggregates; urban drainage systems

1. Introduction

Currently, urban runoff results in a considerable nonstop source of pollutants, causing
severe global environmental problems [1–4]. This pronounced increment of pollutants is
mainly related to growing populations in urban areas [5] and, thus, to the expansion of
impervious areas [6,7] caused by unsuitable and unsustainable urbanization. This produces
adverse effects such as an increase in flood volumes and maximum water discharges. In
addition, the raise in the frequency of extreme precipitation events [1,8,9], according to
climate change predictions [10], will accentuate those effects. The expansion of urban
areas affects not only the amount of water but also its quality and distribution during the
hydrologic circulation [11]. Infiltration may decrease by up to 15–40% [12], causing a clear
modification of the natural water cycle. Stormwtater managers have become essential for
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urban development due to the increase in urban flooding [13,14]. Particularly, in arid and
semiarid Mediterranean areas, the presence of convective storms with short duration and
high intensity [15] accentuates the urbanization effect and directly affects the exacerbation
of pollutant wash-off, causing a deterioration in water quality [16].

In urban impervious areas, non-infiltrated water from precipitation leads to large
volumes of runoff that must be collected and treated because of the presence of water-
borne contaminants [17,18]. Regarding stormwater quality treatment, the early stage of
precipitation events deserves special attention, as the majority of the pollutants are washed
off within this period [19]. Different kinds of pollutants constitute stormwater contami-
nation: organic matter, suspended solids, phosphorus, nitrogen, hydrocarbons, and/or
heavy metals [16,19–23]. Among them, heavy metals are characterized by their toxicity,
long-term accumulation, and persistence [3,24,25]. The main sources of heavy metals are
automobile exhaust, fuel combustion, tires, road asphalt, weathering of building materials,
and industrial activities [26,27]. They exist in the form of precipitates (associated with
suspended particulates) or are dissolved in aqueous solutions. The latter form constitutes
a potential risk since contaminants cannot be degraded to harmless molecules, contrary to
organic compounds [28]. They have high mobility and can be transported as complexed
compounds, allowing them to reach surface water and groundwater resources, affecting
aquatic life and human water supply [29–31]. The mobility and toxic potential of heavy
metals depend strongly on the adsorption and desorption processes, controlled by the
flow regime, pH, redox conditions, temperature, heavy-metal concentration, and existence
of particulates [29,32]. Those previous studies have demonstrated that the efficiency of
heavy-metal removal is worse when heavy metals are dissolved in water rather than as
particulate-bound metals [29,32].

Heavy-metal extraction from urban stormwaters can be afforded by different technolo-
gies including chemical precipitation, chemical coagulation, ion exchange, electrochemical
methods, adsorption processes, membrane technologies, and filtration [33–38]. Recent
trends in stormwater management highly encourage the employment of best management
practice techniques aiming to achieve both flood protection and the improvement of wa-
ter quality via a reduction in pollutants [39]. The implementation of sustainable urban
drainage systems (SUDS), low impact development (LID) designs, or green infrastructures
(GI) allows the quantitative and qualitative control of stormwater runoff [40]. Among
these, SUDS minimize flood risk caused by runoff stormwater and enhance water quality
through harvesting, infiltrating, slowing, storing, conveying, and treating water volumes
on site, while simultaneously magnifying the green spaces in the urban city planning [41].

In these systems, it is critical to guarantee a high infiltration rate to reduce the water
runoff rate over the land surface. Therefore, the employed filter materials are mainly
aggregates, geotextiles, and engineered soils [41] that guarantee an adequate infiltration
rate but do not show such good characteristics when dealing with pollutant removal.
Recent research has been devoted to the search for different filter materials suitable to
work as part of the filter systems in SUDS. For instance, Soleimanifar et al. [42] evaluated
the capacity of wood mulches coated with water treatment residuals for the alleviation of
heavy metals and phosphorus in urban stormwater. Charlesworth et al. [43] used coarse
grades of compost in leaching columns to remediate contamination as potential materials
to be used in SUDS. Davis et al. [26] demonstrated the effectiveness of bioretention boxes,
composed of sandy loam soil, mulch, and juniper plants, for removing heavy metals from
water. In addition, the employment of permeable pavements for sustainable stormwater
management has also demonstrated successful results. Permeable pavements with high
CaCO3 concentrations seemed to offer the best results to reduce heavy-metal pollution
because they forced the precipitation of these pollutants and their adsorption [21].

Aggregates composed of calcite, zeolite, sand, etc. have demonstrated excellent
results in removing heavy metals from contaminated water [27], but they lack the high
hydraulic conductivity required to include them in the drainage system network. Among
filter materials, the employment of lightweight aggregates (LWAs) shows interesting



Water 2021, 13, 780 3 of 17

benefits. LWAs are defined as a wide range of construction materials initially used in civil
engineering and architecture to reduce the concrete density and to improve the thermo-
insulation properties of buildings. Additionally, they have shown excellent hydraulic
conductivity and removal capacity of different water-borne pollutants, and there is scientific
evidence of lightweight expanded clay aggregates providing outstanding results when
treating standard urban wastewater, mainly related to their sorption capacity [44]. The
LWA industry produces considerable amounts of aggregates which are regarded as wastes
from the point of view of traditional applications [45], and their use to remove heavy-metal
contents from urban stormwater would suppose an environmentally friendly solution
to remove pollutants from water. Among the whole family of LWAs, those made from
lightweight expanded clay constitute the mainstream in civil engineering. However, as far
as we know, the scientific literature has not fully addressed the problem of heavy-metal
removal from urban stormwater using this family of LWAs, characterized by a very high
hydraulic conductivity.

The main objective of this paper was to determine the effectiveness of two different
lightweight expanded clay aggregates as potential materials to remove heavy metals dis-
solved in urban runoff stormwaters. For this purpose, the physicochemical properties of the
selected LWA were firstly determined. We established the removal capacity of the materials
according to batch tests with aqueous solutions of individual contaminants (Ni, Cu, Zn,
Cd, and Pb) and multielemental solutions containing all of them. The selection of the target
heavy metals included the metals whose concentration is limited by European and Spanish
regulations in soils and wastewater sludges (RD 506/2013 [46]; RD 865/2010 [47]; RD
1310/1990 [48]; UE 2015/2099 [49]) and which have been scientifically reported in urban
environments from transport and urban activities [50,51]. We also studied the reversibility
of the decontamination process through washing stages of the contaminated material,
trying to simulate the different phases of urban storms. Both aqueous samples and solid
particles were analyzed in this study. Lastly, we developed a numerical simulation with
geochemical software to assist us in the identification of the processes taking place in the
experiments.

2. Materials and Methods
2.1. Characterization of Filter Materials

Two different lightweight aggregates obtained from expanded clay (the commercial
names of the materials in the present study were Arlita Leca and Filtralite) were tested to
determine their behavior as filter materials to remove urban stormwater runoff pollution.
The materials were washed with deionized water and air-dried before any use. The
characterization of the mineralogical composition of filter materials was determined by
X-ray diffraction (XRD) using a Philips PW diffractometer with Cu Kα radiation. XRD data
were collected and interpreted using the XPowder software package [52], which allows
a quantitative analysis of the identified phases. The calculation of the global amorphous
phase considers that amorphous absorption contributes to the full-profile background and
represents an approximate percentage of amorphous phases in the sample. The presence
of amorphous oxides was evaluated combining Raman spectroscopy (Jasco NRS-5100
dispersive Raman system) and the amorphous fraction obtained with XRD. The chemical
composition of the major elements was performed using X-ray fluorescence (XRF, Philips
Magix Pro device).

Field-emission scanning electron microscopy (FESEM, ZEISS Merlin VP Compact
device) was employed to determine the microstructure of Arlita and Filtralite. EDX (energy-
dispersive X-ray) was also applied to chemically characterize the elements associated with
the FESEM images.

The specific surface area (SSA) was determined using the nitrogen adsorption tech-
nique through the Brunauer–Emmett–Teller (BET) method [53].
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2.2. Aqueous Contaminated Solutions

All the tests used synthetic contaminated water which roughly simulated real urban
runoff stormwater. To produce this polluted water, five heavy metals (Zn, Cu, Pb, Ni, and
Cd) were introduced into the solution. Typical ranges of concentration for heavy metals
in urban stormwater can vary from 10−3 to 49 mg·L−1 (Ni), 6 × 10−5 to 1.4 mg·L−1 (Cu),
7 × 10−4 to 22 mg·L−1 (Zn), 5 × 10−5 to 13.7 mg·L−1 (Cd), and 6 × 10−4 to 26 mg·L−1

(Pb) [7,27,54–56]. The different concentrations of each contaminant were prepared using
different commercial chemical compounds: ZnSO4, CuSO4 (PanReac AppliChem ITW
Reagents), PbCl2 (EMD Millipore Corporation), NiCl2 (Sigma Aldrich), and CdSO4 (Alfa
Aesar). The pH measurements were conducted following the UNE-ISO10390:2012 [57]
standard using a Crison 25+ pH meter (±0.01 accuracy).

2.3. Batch Experiments

Metal removal efficiency of Arlita and Filtralite was evaluated with batch experi-
ments. Contaminated aqueous solutions (100 mL) were combined with the solid particles
of each LWA (10 g) to perform these experiments. The concentration for these solutions
ranged from 50 to 500 mg·L−1 (Ni), 2.5 to 25 mg·L−1 (Cu), 25 to 250 mg·L−1 (Zn), 15 to
150 mg·L−1 (Cd), and 5 to 50 mg·L−1 (Pb). In this study, the lowest concentration employed
for the batch tests roughly coincided with the upper value of the abovementioned con-
centration ranges. Thus, the employed concentrations were higher than expected for real
stormwater [7,27,54–56]. Aqueous solutions containing the different metals individually
were inserted into a glass bottle (height = 10 cm and diameter = 4.5 cm) with the LWA
particles at room temperature. The mixture underwent a stirring process for 24 h. Aqueous
samples from the studied solution were analyzed before and after the experiments in order
to establish differences in concentration between the original and final solutions. Analysis
consisted of pH measurements and inductively coupled plasma mass spectrometry (ICP-
MS) analysis (Agilent 7700x). The presence of precipitated compounds of metals on the
solid adsorbents was analyzed under FESEM. For this purpose, we selected dried Arlita
and Filtralite particles after the batch tests developed with the maximum concentration.

After batch tests with individual contaminants, batch tests with multielemental solu-
tions containing all the contaminants were also developed employing the same conditions
to investigate the potential interactions or synergistic effects among the five elements.
Lastly, with the unique objective of analyzing the impact of the studied materials on the
pH, a final batch test was developed with deionized water.

In the batch experiments, the amount of metal removed by the solid particles per unit
of mass (i.e., the adsorbate capacity; S, mg·g−1) was calculated with Equation (1), using the
initial (Ci, mg·L−1) and equilibrium concentration (Ce, mg·L−1), the mass (g) of the solid
particles (m), and the volume of the contaminated solution (V, mL).

S =
(Ci − Ce) V

m
. (1)

The reversibility of the process was also studied and, consequently, the capacity of
LWAs for fixing the contaminants. After finishing the batch test with both individual and
multiple contaminant solutions, the contaminated LWAs coming from the second highest
concentrated solution (Ni: 350 mg·L−1; Cu: 17.5 mg·L−1; Zn: 175 mg·L−1; Cd: 105 mg·L−1;
Pb: 35 mg·L−1) were oven-dried and tested again for both Arlita and Filtralite. Then, 5 g of
each material was inserted into a bottle and stirred with 50 mL of deionized water for a
period of 24 h. Amounts of solid and water were selected to keep the concentrations in the
determination range of the equipment employed.

2.4. Heavy-Metal Concentration in the Synthetic Water under Different pH Values

We evaluated the influence of pH on the metal concentration in the stormwater using
one of the contaminated aqueous solution in a range of pH values increasing from 4 to
12 (and later decreasing from 12 to 4). The initial solution was composed of 100 mg·L−1
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Ni, 5 mg·L−1 Cu, 50 mg·L−1 Zn, 30 mg·L−1 Cd, and 10 mg·L−1 Pb. Then, a solution of
NaOH (0.06 M) was gradually added to a multielemental contaminated solution (100 mL).
Changes in pH as a consequence of the NaOH addition were registered, and consecutive
samples were collected to observe changes in metal concentration after the ICP-MS analysis.
Once the NaOH experiment finished, a second phase began gradually adding HCl (0.5 M)
to reduce the pH. Samples were also collected and analyzed following the same procedure
as in the first part of the test.

2.5. Geochemical Modeling

The precipitation process was simulated with the PHREEQC code using 3.4.0 ver-
sion [58] in order to assist us in the determination of the role of precipitation processes in
the reduction in heavy metals from the stormwater. PHREEQC was used to calculate the
saturation index, SI, which is defined as follows (Equation (2)):

SI = log
(

IAP
K

)
, (2)

where IAP is the ion activity product, and K is the equilibrium constant. The saturation
index determines whether the water is saturated (SI = 0), undersaturated (SI < 0), or
supersaturated (SI > 0) with respect to the given mineral or phase. The variation in pH of
the initial contaminated solutions due to the interaction with LWA was simulated by adding
different concentrations of NaOH at different steps using the methodology described
in Benavente et al. [59], in isothermal conditions, through the REACTION keyword in
PHREEQC. Specific ion interaction theory was applied to estimate single-ion activity
coefficients in electrolyte solutions (ionic strength values lower than 0.05 mol·kgw−1) using
the Mintq.v4 thermodynamic database.

3. Results and Discussion
3.1. Filter Material Characterization

The mineralogical compositions of both filter materials reflected the presence of
common clay minerals (Table 1). Calcite was not present in Arlita and was scarce in
Filtralite. The chemical composition of the major elements of both solids was similar and
in concordance with XRD analysis (Table 2).

Table 1. Semiquantitative mineralogical composition of Arlita and Filtralite.

% Quartz
SiO2

Anorthite
(Ca,Na)Al2Si2O8

K-Feldspart
(K,Na)(Si,Al)4O8

Wadsleyite
(Mg,Fe)2SiO4

Calcite
CaCO3

Amorphous
Phases

Arlita 31.5 18.7 11.2 28.9 - 9.7
Filtralite 20.4 22.8 18.7 18.7 5.9 13.5

Table 2. Chemical composition of Arlita and Filtralite.

% Na2O MgO Al2O3 SiO2 P2O5 SO3 K2O CaO TiO2 MnO Fe2O3

Arlita 0.29 4.25 18.86 60.13 0.17 0.16 3.92 3.39 0.92 0.09 7.82
Filtralite 1.94 4.78 16.21 59.12 0.23 0.17 4.09 4.51 0.79 0.12 8.04

Raman spectra presented bands related to iron oxides, similar to hematite ones (circa
296, 400, and 1330 cm−1 [60]). These results match with the iron concentration obtained
with XRF (Table 2) and support the presence of amorphous iron oxides shown in the XRD
pattern (Table 1).

FESEM images (Figure 1) show the large intraparticle porosity of Arlita and Filtralite
and also reveal a rough surface of the filter solid materials. The specific surface areas
(SSAs) for Arlita and Filtralite were 0.44 m2·g−1 and 1.60 m2·g−1, respectively. These
values are in accordance with other clayed lightweight aggregates [45] and correspond to
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macroporous materials. SSAs for these lightweight aggregates were much more lower than
the SSAs of typical adsorbents such as clays (22.0 m2·g−1 [61]), zeolites (15.8 m2·g−1 [62]),
nanofibrous adsorbents (58.6 m2·g−1 [62]), and activated carbon (849 m2·g−1 [63]), which
limits, comparatively, their superficial reactivity for sorption reactions.
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3.2. Batch Experiments

Figure 2 shows the results obtained from the batch experiments. The general trend for
all the contaminants shows that Filtralite always presented a higher removal capacity than
Arlita, although this behavior changed for the different contaminants. For instance, Filtralite
stabilized at a maximum equilibrium concentration of 234.34 mg·L−1 and 100.00 mg·L−1

for Ni (Figure 2a) and Cd (Figure 2d), respectively, and presented a retention capacity of
6.29 mg·g−1 for Ni and 5.43 mg·g−1 for Cd. We considered that the maximum removal
capacity was obtained the first time that the slope of the batch test between two consecutive
points was smaller than 3%. However, the removal capacity for Cu (Figure 2c), Zn (Figure
2d), and Pb (Figure 2e) did not show stabilization with an increase in the metal concentra-
tion, which means that the material did not reach its maximal removal limit. In contrast,
Arlita presented a stabilization in its removal capacity for four out of the five elements
considered: Ni, Zn, Cd, and Pb at equilibrium concentrations of 84.61, 122.56, 33.47, and
170.70 mg·L−1, and a retention capacity of 1.59, 2.37, 1.33, and 10.13 mg·g−1, respectively.
Arlita’s removal capacity for Cu increased with concentration and did not stabilize in the
range of the tested concentrations. In the batch tests developed with solutions containing
individual contaminants, the average removal capacities for Arlita and Filtralite were 76%
and 90%, respectively, although the values varied across the different contaminants. For
instance, removal capacities of Filtralite for Cu and Pb were higher than 97%. Removal
capacity for Zn was 94% and that for Cd was 88%. These results are in agreement with
other removal capacities achieved when contaminated waters containing heavy metals
were treated with other materials such as vermiculite, kaolinite [64], bentonite, volcanic
ash soil [65], or zeolites [66], among others.
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Results from multielemental solutions (Figure 2f–j) allow evaluating the synergistic or
additive adsorption effects of the co-existing contaminants. The general trend described
for both materials was the same that appeared when the contaminants were studied
individually. Thus, Filtralite always had a higher removal capacity than Arlita in the
studied multielemental contaminated solutions. Comparing batch tests with individual
and multielemental solutions, the latter always presented higher values of equilibrium
concentration and lower values of removal capacity than the individual solutions (Figure 2).
The contaminant removal of LWA increased with concentration and did not reach the
maximum. Consequently, removal efficiencies were lower than in batch tests for individual
contaminants. The competition among all elements in the initial solution to be removed
by the LWA resulted in a decrease in the final value of removed elements for all the
heavy metals considered. Considering that real stormwaters may contain many types of
pollutants such as hydrocarbons, suspended solids, organic matter, etc. [16,19–23], the
removal efficiencies of the studied materials for heavy metals might have been affected by
the presence of other pollutants [67].

With the multielemental solutions, the elimination of Ni by Arlita decreased from
more than 6 to less than 2 mg·g−1. Cu concentration decreased from 18 to 2.5 mg·g−1,
and this decrease was from more than 25 to 0.003 mg·g−1 in the case of Pb. These results
showed that, in the case of contamination with a combination of all elements, the removal
efficiency for Pb was much more affected than others such as Cu or Ni.

Results from the test that evaluated the reversibility process are collected graphically
in Figure 3. The maximum concentrations of contaminants in experiments developed
with contaminated particles and deionized water were 0.055 mg·L−1 and 0.05 mg·L−1 for
bottles containing Arlita contaminated with Cd and Zn solutions, respectively (Figure 3a).
Equilibrium concentrations when employing Filtralite were always lower than when using
Arlita, independently of the aqueous initial solution, revealing that Filtrate is not only
better for metal removal but also for fixing the contaminants, thereby not releasing them
back to the water.
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Figure 3. Final equilibrium concentration (Ce) in batch tests developed with deionized water and contaminated particles
from previous batch tests performed with individual contaminated solutions (a) and multielemental solutions (b) employing
the indicated initial concentration (Ci) for the different contaminants.

When studying the case of the multielemental solution, the equilibrium concentration
in the end of the batch test confirmed that both LWAs mostly removed and stabilized
the contaminants, and only a minimum fraction returned to the solution when the con-
taminated material mixed with clean water. The equilibrium concentration for all the
contaminants was nearly 0 mg·L−1 for all metals in the case of Filtralite. In the case of
Arlita, slightly higher equilibrium concentrations were detected for Ni, Zn, and Pb; nev-
ertheless, the equilibrium concentration remained very low and should be considered
below the error range of equipment. This concentration fraction could be related to the
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sorbed cations on the LWA surface, which were relatively mobile via ion-exchange reac-
tions. These results corroborated that chemical precipitation (preferable to ion-exchange
reactions) removed most of the contaminants, which remained stable (insoluble) in alkaline
conditions. Other potential processes associated with adsorption and/or complexation to
organic matter should not be disregarded in natural soils where organic matter content
may be important. Real-scale processes imply the consideration of the rainfall regime in
the study of the efficiency of these materials. Dry periods between two consecutive rain
events, especially in semiarid environments, biofilm formation onto filter materials when
suitable moist conditions appear, and/or the lifetime of the filter materials [56] are among
the factors that should be considered in future steps.

3.3. Influence of pH on Heavy-Metal Removal

The pH values of the different contaminated initial solutions employed in the batch
tests ranged from 4.2 to 6.4 (Figure 4). The tests developed with multielemental solutions
presented the lowest initial pH values in comparison to the individual contaminated
solutions. The pH values in water after the batch experiments were always higher than pH
values in the initial water for all individually contaminated and multielemental solutions,
and the increase was always higher for Filtralite than for Arlita.
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Results from the latest batch test which used deionized water (designed exclusively to
study the influence of Arlita and Filtralite on the solution pH) confirmed the tendency and
showed a remarkable pH rise, from less than 6 to more than 10, which was higher than
that achieved with any other contaminated solution.

The increase in pH as a consequence of the interaction with LWAs strongly affected
the heavy-metal removal. The batch tests with whatever contaminant presented reductions
in concentration (Figure 2) and increases in pH (Figure 4).

Consequently, results from batch tests not only evaluated the pure adsorption process
of the studied materials but also included the decrease in heavy-metal concentration
because of the metal precipitation due to rises in pH.

The mineralogical characterization revealed that the presence of soluble and basic
minerals (such as calcite or dolomite) was negligible (Table 1). On the contrary, a rise in
pH always occurred simultaneously to an increase in Mg, K, and Ca in the final solution.
Figure 5 shows the concentration of Mg, K, and Ca in the contaminated solutions in the
equilibrium, after the stirring process. Ca concentration in the equilibrium solution with
Arlita (Figure 5a) was substantial with values up to 70 mg·L−1 for batch experiments
with the Zn-contaminated solution. Average values for Mg, K, and Ca concentration
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in contaminated solutions were 15.9, 6.1, and 47.6 mg·L−1 for Arlita and 44.5, 8.2, and
22.6 mg·L−1 for Filtralite, respectively (Figure 5b).

Water 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

shows the concentration of Mg, K, and Ca in the contaminated solutions in the equilib-
rium, after the stirring process. Ca concentration in the equilibrium solution with Arlita (Fig-
ure 5a) was substantial with values up to 70 mg·L−1 for batch experiments with the Zn-
contaminated solution. Average values for Mg, K, and Ca concentration in contaminated 
solutions were 15.9, 6.1, and 47.6 mg·L−1 for Arlita and 44.5, 8.2, and 22.6 mg·L−1 for Filtral-
ite, respectively (Figure 5b). 

 
Figure 5. Final concentration equilibrium (Ce) for Mg, K, and Ca in the batch tests with deionized water and contaminated 
solutions (individual and multiple contaminants) employing Arlita (a) and Filtralite (b). The figure shows average results 
from five batch tests performed with 10 g of material and concentrations ranging from 50 to 500 mg·L−1 (Ni), 2.5 to 25 
mg·L−1 (Cu), 25 to 250 mg·L−1 (Zn), 15 to 150 mg·L−1 (Cd), and 5 to 50 mg·L−1 (Pb). 

Similar results were also found in the case of the additional batch tests that employed 
the contaminated particles and deionized water (Figure 6). Mg, K, and Ca showed a sim-
ilar trend, with final concentrations of 20.5, 2.4, and 12.2 mg·L−1 for Arlita (Figure 6a) and 
23.7, 3.2, and 5.8 mg·L−1 for Filtralite, respectively (Figure 6b). 

 
Figure 6. Final concentration equilibrium (Ce) for Mg, K, and Ca in the batch tests with deionized water and 5 g of con-
taminated particles from previous batch tests with contaminated solutions (individual and multiple contaminants) em-
ploying Arlita (a) and Filtralite (b). 

The interaction of LWAs with water led to pH increases (drop in the H+ concentra-
tion) and major elements released from the solid surface (Figures 5 and 6). These chemical 
variations suggest that the sorbing surface sites of the forming minerals of Arlita and Fil-
tralite may interchange with H+, as well as heavy-metal species. Thus, they were ex-
changed with Ca on anortite, K on K-feldspar, and Mg on wadsleyite. Consequently, the 
final solutions at equilibrium presented higher pH as H+ reacted at the sorbing surface 
sites.  

Figure 5. Final concentration equilibrium (Ce) for Mg, K, and Ca in the batch tests with deionized water and contaminated
solutions (individual and multiple contaminants) employing Arlita (a) and Filtralite (b). The figure shows average results
from five batch tests performed with 10 g of material and concentrations ranging from 50 to 500 mg·L−1 (Ni), 2.5 to
25 mg·L−1 (Cu), 25 to 250 mg·L−1 (Zn), 15 to 150 mg·L−1 (Cd), and 5 to 50 mg·L−1 (Pb).

Similar results were also found in the case of the additional batch tests that employed
the contaminated particles and deionized water (Figure 6). Mg, K, and Ca showed a similar
trend, with final concentrations of 20.5, 2.4, and 12.2 mg·L−1 for Arlita (Figure 6a) and 23.7,
3.2, and 5.8 mg·L−1 for Filtralite, respectively (Figure 6b).
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Figure 6. Final concentration equilibrium (Ce) for Mg, K, and Ca in the batch tests with deionized water and 5 g of
contaminated particles from previous batch tests with contaminated solutions (individual and multiple contaminants)
employing Arlita (a) and Filtralite (b).

The interaction of LWAs with water led to pH increases (drop in the H+ concentration)
and major elements released from the solid surface (Figures 5 and 6). These chemical
variations suggest that the sorbing surface sites of the forming minerals of Arlita and
Filtralite may interchange with H+, as well as heavy-metal species. Thus, they were
exchanged with Ca on anortite, K on K-feldspar, and Mg on wadsleyite. Consequently, the
final solutions at equilibrium presented higher pH as H+ reacted at the sorbing surface sites.

Heavy-metal species underwent ion-exchange reactions with these silicates, as well as
with the amorphous iron oxides, which were detected with XRD and Raman analyses. In
basic conditions, these amorphous iron phases presented a negative surface charge [68]
and contributed to ion-exchange reactions on the surface of LWAs. Consequently, these
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superficial reactions decreased the concentration of the heavy metals in the contaminated
solution and highlighted the removal capabilities of Arlita and Filtralite via adsorption.

The pH influenced the heavy-metal removal by LWAs not only via the sorption
reactions but also via oxide precipitation as a consequence of the pH increase. A final
test was developed to evaluate the chemical precipitation mechanism and the effect of the
precipitation in the contaminated solution; the pH of the multielemental solution (without
the presence of LWA) was increased by adding NaOH (from 4.2 to 11.3), and it was later
decreased by adding HCl (from 11.3 to 3.4). Solution samples were collected at each pH
stage, and contaminant concentrations were evaluated (Figure 7). Results showed that
the final concentration of contaminants directly depended on pH values, reaching the
lowest concentrations with the highest pH. At the maximum pH (11.3), the concentration
of contaminants in the aqueous solution was nearly 0. When the process was reversed and
pH decreased from 11.3 to 3.4, the concentration of contaminants in the aqueous solution
increased to nearly the initial concentration, which highlights the importance of the solution
pH for heavy-metal removal. Within the pH range of stormwater, between 6 and 7 [62], the
concentration of heavy metals achieved the maximum value for all the studied components
(116.1 mg·L−1 for Ni, 8.2 mg·L−1 for Cu, 58.1 mg·L−1 for Zn, 29.7 mg·L−1 for Cd, and
8.8 mg·L−1 for Pb; Figure 7).
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3.4. Geochemical Modeling

The presence of precipitates on the LWA surface was analyzed under FESEM after
the batch test performed with the most concentrated individual and multielemental so-
lutions (Figure 8). FESEM images revealed the presence of precipitated phases of the
contaminants covering Arlita (Figure 8a–e) and Filtralite particles (Figure 8f). Precipitates
presented nonequilibrium and amorphous forms as a consequence of a fast nucleation
and precipitation. The distribution map of the precipitates obtained after the use of the
multielemental solutions also suggested the precipitation and coprecipitation of heavy
metals (Figure 8g–j).
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(mapping) of the different studied elements after batch experiments with the most concentrated
solutions. Images show the forming precipitates on the particles from the batch tests containing
solutions with individual contaminants (Arlita: (a–e); Filtralite: (f)) and with multielemental solutions
(Arlita: (g,h); Filtralite: (i,j)).
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The mineralogical composition of the precipitated phases on the LWA surfaces was
not determined because they were undetected under XRD. In the experiments, the presence
of CO3

2− in the solutions was scarce (only from the atmospheric CO2); thus, the presence
of oxides and/or hydroxides of heavy metals was expected. In particular, Pb precipitated
as lead sulfate in the multielemental solutions due to the presence of SO4 coming from the
use of ZnSO4, CuSO4, and CdSO4 salts in their preparation.

Alternatively, heavy-metal removal via chemical precipitation was simulated with the
PHREEQC code as pH increased. In basic conditions, insoluble phases such as carbonates,
oxides, and/or hydroxides of heavy metals precipitated and coprecipitated, consequently
being removed from the contaminated solutions [68]. The geochemical modeling with
PHREEQC calculated the saturation index of selected metal oxides and hydroxides that
could potentially precipitate on the LWA surface as pH increased (Figure 8). In these
calculations, we used the most concentrated aqueous contaminated solutions, and we
calculated the saturation index of the following minerals, while crystalline and amorphous
(am) metal oxides and hydroxides were also included: for cadmium, Monteponite-CdO,
Cd(OH)2, and Cd(OH)2(am); for copper, Cuprite-Cu2O, Tenorite-CuO, and Cu(OH)2; for
nickel, Bunsenite-NiO and Ni(OH)2; for zinc, Zincite-ZnO, Zn(OH)2, and Zn(OH)2(am);
for lead, Litharge-PbO and Pb(OH)2. For the multielemental solution, Pb removal via
precipitation of the insoluble PbSO4 was corrected by using the resulting water after
anglesite (PbSO4) precipitation.

Results showed that all phases were unsaturated before the batch tests (acidic pHs) and
became supersatured as pH increased after the interaction with LWAs (Figure 9). Because
of a sufficiently high supersaturation of the solution, the amorphous phases suffered from
rapid nucleation that potentially formed nonequilibrium with low crystallinity and/or
amorphous phases. Moreover, according to the Gay–Lussac–Ostwald or Ostwald step
rule [68], the nucleation of the amorphous phases (most soluble phases) was kinetically
favored over less soluble analogues because of the lower interfacial energy (and, thus,
lower nucleation energy) between minerals and solution. This fast precipitation could
explain the nonequilibrium and amorphous forms that presented the precipitates.
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As previously mentioned, the removal efficiencies in the batch tests with multielemen-
tal solutions were lower than in the batch tests developed with individual contaminated
solutions. The differences in the removal efficiencies can be explained by the higher
supersaturation values that the precipitates reached in the solutions with individual con-
taminants (Figure 9a) in comparison to the multielemental solutions (Figure 9b).

This work demonstrates that Arlita and Filtralite present promising properties for
removing heavy metals from urban stormwaters. The lifetime of both materials and the
irreversibility of the decontamination process of Arlita and Filtalite [56] may ensure high
removal capacities over time. However, deeper research may be developed to clearly
establish the longevity of the LWA in relation to the cleaning or replacement of the material,
as well as the occurrence of leakage of matter from the particles of Arlita and Filtralite if
these materials were to be integrated within existing SUDS to improve the treatment of
urban stormwater.

4. Conclusions

The presence of heavy metals in urban stormwaters constitutes a potential risk for
water resources and aquatic life. Results from the present study showed the effectiveness
of two different lightweight aggregates, Arlita and Filtralite, to remove heavy metals (Ni,
Cu, Zn, Cd, and Pb) existent in aqueous solutions. The heavy-metal removal in LWAs can
be attributed to two different mechanisms: first, the rough surface of LWA presents sorbing
surface sites of the forming minerals, resulting in the ion-exchange reactions of metal ions;
second, the increase in the aqueous solution pH via the LWA–water interaction causes the
precipitation and coprecipitation of the metals as metal oxides and hydroxides.

The removal efficiencies in the batch tests developed with multielemental solutions
were lower than in the batch tests performed with individual contaminated solutions, and
the final concentration of heavy metals in the solid phase was considerably higher in the
second case (individual solutions).

The analysis of the adsorption curves, the precipitates, and the geochemical mechan-
ims revealed that, in alkaline conditions, a small quantity of metal is likely retained via ion
exchange with the LWAs, forming minerals and iron amorphous phases. As a result, the
high level of metal removal is possibly due to the formation of metal hydroxide or metal
oxide precipitates.

Filtralite showed a better metal removal effeciency in all tests developed in the present
study compared to Arlita. Filtralite interaction with contaminated solution led to a higher
pH, accelerating the precipitation mechanism. Moreover, the cleaning test with deionized
water highlighted that Filtralite fixed heavy metals more efficiently than Arlita.

The use of Arlita and especially Filtralite presents exceptional properties for removing
heavy metals from urban stormwaters. Further studies are required to study the perfor-
mance of these LWAs when considering their practical application in sustainable urban
drainage systems.
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