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ABSTRACT Computer security is one of the main challenges of today’s technological infrastructures,
whereas intrusion detection systems are one of the most widely used technologies to secure computer
systems. The intrusion detection systems use a variety of information sources, one of the most important
sources are the applications’ system calls. The intrusion detection systems use many different detection
techniques, e.g. system calls sequences, text classification techniques and system calls graphs. However,
existing techniques obtain poor results in the detection of complex attack patterns, so it is necessary to
improve the detection results. This paper presents an intrusion detection system model that integrates
multiple detection techniques into a single system with the goal of modeling the global behavior of the
applications. In addition, the paper proposes a new modified system calls graph to integrate and represent
the information of the different techniques in a single data structure. The system uses a deep neural network
to combine the results of the different detection techniques used in the global model. The result of the study
shows the improvement obtained in the detection results with respect to the use of individual techniques,
the proposedmodel achieves higher detection rates and lower false positives. The proposal has been validated
onto three datasets with different levels of complexity.

INDEX TERMS Anomaly detection, intrusion detection system, neural networks, system calls graph.

I. INTRODUCTION
Although application-level intrusion detection systems (IDS)
based on the use of system calls are relatively old [1], there
has been a significant increase in the number of research
papers using system calls to detect intrusions in recent
times [2]–[4].

There are two main IDS approaches: anomaly detection
and signature detection. The anomaly-based IDS defines the
normal behavior of the application monitoring its system
calls and different behaviors that exceed a certain threshold
are classified as intrusion. The signature-based IDS use a
database with the behavior of all known malware (malware
signatures) and perform the detection monitoring the running
applications and looking for these behaviors or signatures.

Detection systems have used a variety of techniques to
represent application behavior. One of the most widely
used techniques models the application behavior as system
calls sequences. Abnormal sequences of system calls are
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considered an attack to the application [5]. This type of
systems usually uses a set of short sequences of system calls
generated by the program.

A different approach uses frequencies of system calls to
characterize the normal behavior of an application. Different
frequencies of system calls are considered an attack to the
application [6].

Another widely used technique represent the application
behavior as a directed acyclic graph, where the nodes are the
system calls generated by the application [3]. The basic idea
is that an attack will generate a different system calls graph
and, therefore, the attack can be detected.

Based on the system calls graph technique, there are studies
that take into account the importance of the edges of the
graph, which represent transitions between system calls of the
application [2].

Existing techniques obtain poor results in the detection of
complex attack patterns, so it is necessary to improve the
detection results. Existing techniques have a common weak-
ness, these techniques use a partial view of the applications
behavior: sequences of system calls, frequencies of system
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calls and importance of the transitions between different calls.
Therefore, since they model the application behavior only
with partial information, their results can be improved using
global information.

Our proposal integrates different techniques or partial
views in a singlemodel, the integration allows to represent the
global behavior of the application with the aim of improving
the results in the detection of attacks. In addition, the model
uses deep neural networks to combine the different partial
views in a single global view of the application behavior.

The key contributions of our work can be summarized as
follows:
• The design of an IDS model that integrates different
detection techniques to model the global behavior of the
applications.

• The proposal of a new modified system calls graph,
which allows to represent the information of the different
techniques or views in a single data structure.

• An improvement in the detection accuracy compared to
the use of single techniques.

The most important novelty of this study is the integra-
tion of multiple intrusion detection techniques into a single
system, which improves the detection accuracy. In addition,
the work proposes an integrated system calls graph, which
allows to represent all the information from the different
techniques in a single data structure.

The rest of the paper is organized as follows: Section II
presents a review of related studies. Section III analyzes the
proposed IDS model. Section IV shows the results of the
evaluation with different datasets. Finally, Section V provides
some conclusions and future directions.

II. RELATED WORK
IDS are a very active research field, both in network and host
IDS. Network IDS detect attacks based on network traffic [7],
and one of the main issues in this type of IDS is feature
selection [8], [9]. Wireless sensor networks are one of the
most important areas of interest in current network IDS [10],
where techniques such as restricted Boltzmann machine [11],
reinforced learning [12] and a combination of several classi-
fiers [13] have been applied. In recent years, ad hoc vehicular
networks have become another area of growing interest in
network IDS [14], cloud service frameworks have been pro-
posed to enable intrusion detection mechanisms [15], as well
as attack detection fremeworks for the vehicle communi-
cation bus [16]. Host IDS detect attacks based on system
logs, audit data,Windows Registry, file systems, system calls,
and program analysis [17]. Two of the most important areas
of interest in host IDS are embedded systems [18] and the
Android operating system [19], [20].

Regarding the detection techniques used in IDS, three
of the most used techniques are Hidden Markov Models
(HMM), data mining and Bayesian networks. HMM have
been used to predict multistep attacks in real time [21], as well
as to detect anomalies in smart home security [22]. Data min-
ing algorithms have been used to detect intrusions for Smart

grids [23], and the use of Ramdom Forest for intrusion clas-
sification is also extensive [24]. Finally, Bayesian networks
have been used to predict the risk of internal attacks [25],
as well as to detect anomalies for IoT technology [26].

Since our proposal consists of an IDS model that uses the
application’s system calls to carry out the detection process,
in the following paragraphs we have analyzed other directly
related proposals, showing the most used techniques in this
type of systems.

The literature contains a large number of scientific
papers that use system calls of the applications to develop
IDS [27], [28]. However, most papers have in common that
they use a single technique to model the applications behav-
ior. In addition, they often use simple detection methods,
based on distance measurements. Many of these works are
presented in this section because they are directly related to
the proposal of this paper.

The first paper that used system calls of the applications
to detect intrusions, used system calls sequences of length
‘k’ to model the applications behavior [1]. This paper used
Hamming’s distance to measure the distance between two
sequences. In addition, if the distance exceeded a predefined
threshold, it was considered an anomaly. Other works using
system calls sequences are [29], [30].

Another technique, based on text classification methods,
models the applications behavior through a vector, where
each component represents a system call and its value is
the normalized frequency of the system call in the execution
of the program [6]. This work uses the cosine similarity
to measure the similarity between two executions of the
program. If the similarity measure is below a predefined
threshold, it is considered an anomaly. Similar works can be
seen in [31]–[33].

A different approach to the previous ones models the
applications behavior using system calls graphs [2]. This
work uses the PageRank algorithm to calculate the weights
of the graph edges and the Hamming distance weighted by
the weights. Other works that use system calls graphs can be
seen in [3], [4].

There are IDS that have used machine learning techniques
to detect system attacks. In [34], the authors show a review of
several machine learning algorithms that have been used to
develop IDS. Other works have evaluated the performance
of different machine learning algorithms used in intrusion
detection [35], [36].

The multi-layer perceptron (MLP) algorithm with a single
hidden layer has been used as a detection method in IDS [37].
This work has used binary weights and activation functions
for intrusion detection. The same MLP neural network with a
single layer has also been used in an IDS applied to the field of
fog computing [38]. Unsupervised learning algorithms such
as self-organizing map (SOM) or growing neural gas (GNG)
have also offered promising results in the field of IDS [39].

In addition to machine learning, there are recent studies
that employ deep learning in the field of IDS [40]. In this
paper, the authors show a flexible and effective IDS for
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detecting and classifying cyberattacks, that uses a deep MLP
neural network. In addition, the performance of deep neural
network has been compared to classical neural classifiers.
Other deep neural networks used in IDS are convolutional
neural networks and recurrent neural networks [41]–[47].

There are works that introduce the idea of combining two
techniques to achieve better performance [48]. The work
discusses the combination of the probabilisticmodelsMarkov
and Bayes for host-based intrusion detection. The results
improve the use of the two models separately, especially,
the results reduce the false positive rate.

Following the same idea, another paper combines support
vector machine and another technique in a network intrusion
detection system [49], [50]. In [51], a host detection sys-
tem based on system calls combines clustering and Bayes
techniques. Finally, in [52], a network IDS uses two parallel
classifiers to detect and track ransomware. The paper shows
an exhaustive analysis of the behavior of Locky ramsomware.

From the analysis carried out in the previous paragraphs,
we observed that the IDS have used a multitude of differ-
ent techniques in an isolated manner. In addition, in order
to improve performance, the idea of using two techniques
is explored. However, although the use of two techniques
improves performance, it is still far from optimal for real pro-
duction environments. Therefore, existing techniques obtain
poor results in the detection of complex attack patterns, so it
is necessary to improve the detection results.

On the one hand, the main difference between our pro-
posal and those presented in this section is that our proposal
employs multiple techniques and these works use only one
technique. On the other hand, several papers show systems
that use two methods [48]–[52], but our proposal combines
more methods and represents all the information in a single
data structure.

Our proposal combines, in a single system, four of the
techniques analyzed in this section with the goal of modeling
the global behavior of the applications. The system uses a
new modified system calls graph and improves the detection
accuracy. The proposed system has a global vision of the
applications behavior due to the different techniques and
the system is able to improve the ability to detect attacks.
The main difference between our proposal and those ana-
lyzed in this section is that our proposal combines multiple
detection techniques in a single system and improves the
performance obtained.

III. PROPOSED IDS MODEL
Several techniques used in IDS based on system calls have
been described in the previous section. Most of the ana-
lyzed papers use a single technique, but some papers have
explored the idea of using two techniques simultaneously,
improving the results obtained. The purpose of this section
is to describe the IDS model proposed in this paper, which
delves into the idea of integrating multiple detection tech-
niques into a single system, which uses a new modified
system calls graph and improves the detection accuracy.

FIGURE 1. Proposed IDS model.

First, we analyze the architecture of the system, and then we
describe the operation of the different elements.

A. SYSTEM ARCHITECTURE
The architecture of the proposed system has two main char-
acteristics: two stages and modularity. The system has been
divided into two clearly differentiated stages, the first stage
will carry out the detection process and the second will carry
out a process of combination of the results obtained in the first
stage. The main novelty of the detection stage is that it is able
to usemultiple intrusion detection techniques simultaneously.
This feature allows the system to perform the detection from
multiple points of view, getting a global vision of the appli-
cations behavior and increasing the probabilities of detection
of attacks.

The second stage combines the results obtained by the
different techniques used in the detection phase. The inte-
gration stage is able to improve the detection performance,
because it is based on information provided by multiple
detection engines, which provide a more complete view of
the execution of applications.

The second characteristic of the proposed system
architecture is that its design is modular. The main advantage
of modularity is that the detection stage can use as many
modules as desired, where each module can implement a
detection technique. In addition, new modules can be added,
which implement new detection techniques without affecting
the existingmodules. It is even possible to change onemodule
for another without affecting the overall operation of the
system.

Fig. 1 shows a high-level abstraction view of the proposed
IDS model architecture. Although the model allows many
methods, the prototype developed uses three different tech-
niques (bold text) in the detection stage: sequence time-delay
embedding (STIDE), text classification and system calls
graph. These methods use very different analysis techniques,
providing different views of the applications behavior and
allowing to take advantage of each of them. In addition,
the system uses deep learning in the integration stage to
combine the results obtained by the three techniques used in
the detection stage.
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The system input I is a vector that contains the sequence
of all system calls made by the application. All detection
modules use the same input vector I. Using the input vector I,
STIDE generates sequences of system calls of size ‘k’,
the text classification technique calculates the frequency of
the system calls and the system call graph method creates the
graph with weights on the edges.

The output of each detection module is a measure of
distance between 0 and 1. A value close to 0 is interpreted
as the normal behavior of the application and a value close to
1 is considered an attack.

The input to the combination module is a vector that con-
tains all the distances of the different detection modules of
the detection stage. Finally, the system output O is a Boolean
value indicating normal behavior or attack.

B. DETECTION MODULES
The previous architecture shows that the first stage of the
proposed model consists of the following three modules:
STIDE [1], text classification [32] and system calls graphs
with weights on the edges [2]. We chose STIDE because it
is the first technique that used application system calls as
input to the system and because it is one of the most widely
used techniques in many research papers. We selected text
classification and system calls graph because they are two of
the most used techniques in application-based IDS.

The technique called STIDE or system calls sequences
of length ‘k’ provides a view of the sequential execution of
the applications, an application is a sequence of instructions
that invoke system calls. It has the advantage of adjust-
ing very well to the normal execution of the applications
and it generates compact representations of the applications
profiles.

The second method, based on text classification tech-
niques, provides a higher level view, using the frequencies
of system calls made by the application. It would be similar
to representing the application behavior using a histogram,
where the anomalies would be different histograms. It has
the advantage of requiring little calculation for its execution
and the representation of the application behavior is very
compact, basically a vector.

Finally, the system calls graph with weights on the
edges provides a perspective from the point of view of the
importance of transitions between system calls, not the calls
themselves. It has the advantage of offering good results in
isolation, but it is more complex than the previous ones.

The three methods used have their own advantages
and have achieved good results in isolation. However, all
three methods use different and complementary approaches,
so when used together in a single system, they achieve a more
complete model of application behavior and better results in
attack detection.

C. INTEGRATED SYSTEM CALLS GRAPH
One of the novelties of the paper is the proposal of an inte-
grated system calls graph (ISCG), which allows to represent

FIGURE 2. Integrated system call graph with system call numbers, system
call frequencies and edge weights.

the information of the different techniques or views, in a
single data structure.

The proposed IDS model represents the application
behavior via an integrated system calls graph. The normal
system calls graph has been modified in order to include the
information of the three methods.

The graph will have weights on the edges, in order to
represent the importance of transitions between system calls.
In this sense, the graph will be similar to the graph used
in other previous works that use the system calls graph
technique [2].

From the previous graph with weights on the edges, we add
some additional feature that allows us to represent more
information. The additional feature is that the nodes of the
graph will have values, which will represent the frequency of
system calls made by the application. Each node is associated
to a system call and its value will be the frequency of that
system call.

Finally, in order to be able to represent the system calls
sequences of length ‘k’ from a given system call, the IDS
searches in the graph for paths of length ‘k’, from the node
that represents the given system call.

Fig. 2 shows a simple example of an integrated system
calls graph. We can see the weights of the edges that will
be the information source of the technique that evaluates the
transition between system calls. Fig. 2 shows the values of the
graph nodes, which represent the frequencies or percentages
of the system calls associated to each node (blue values),
these values will be used by the detection method based
on text classification. Finally, as an example, two paths of
length 3 are shown from the system call 2. These paths
generate the sequences of system calls 2-5-3 (fork-open-read)
and 2-27-1 (fork-alarm-exit), which can be used by STIDE
method.

The STIDE method saves in a database all the
combinations of system calls sequences of length ‘k’ that
an application generates when running normally, that is,
with the security that the application is not compromised.
This database represents the normal (safe) behavior of
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the application. Then, when the application is running,
STIDE compares the generated system calls sequences of
length ‘k’ with those stored in the database (normal behavior)
and classifies as anomalies the sequences that do not exist in
the database. If the anomalies exceed a predefined threshold,
it is considered an attack to the application and the alert is
activated.

In this case, the global normal behavior of the application is
represented in the integrated system calls graph. But, for the
STIDE algorithm, the normal behavior is formed by all the
k-length paths that exist in the graph. From the graph, STIDE
compares the system calls sequences of length ‘k’ generated
by the application with the k-length paths of the graph. If a
program sequence is not in the graph, it is considered an
anomaly. Observing the previous figure and being k=3, it can
be verified that the sequence 2-5-3 is in the graph and is
correct, while the sequence 2-5-4 is not in the graph and it
is considered an anomaly.

For the detection method based on text classification,
the values of the graph nodes represent the normal behavior
of the application. Each node in the graph is associated with a
system call, and the value of the node is usually the frequency
or percentage of invocation of that system call in the full exe-
cution of the application. In the previous figure, the system
call 3 (read) has been executed 2% of the time and the system
call 5 (open) has been executed 1% of the time.

Each time the application is run, the values of all system
calls are calculated and compared with the values of the
nodes of the normal behavior graph. If the distance exceeds
a previously defined threshold, the application is considered
compromised, that is, it is considered an attack. Asmentioned
above, the most commonly used distance measurements are
the euclidean distance and the cosine distance.

Finally, for the technique that evaluates the importance of
transitions between system calls, the weights of the graph
edges represent the normal behavior of the application. Each
directed edge represents a transition between the two system
calls and the weight represents the importance of the tran-
sition. For example, in Fig. 2 a transition can be observed
from the system call 5 (open) to the system call 3 (read) with
weight 2.

Each time the application is run, theweights of all edges are
calculated and compared with the weights of the edges of the
normal behavior graph. If the distance exceeds a previously
defined threshold, the application is considered compromised
or attacked. As in the previous case, the most commonly
used distance measurements are the euclidean distance and
the cosine distance.

D. COMBINATION MODULE
The second stage of the proposed model consists of a single
component, the combination module. The function of the
combination module is to integrate the results of the different
detection modules used in the first stage. The combination
module determines whether an attack is occurring on the
application.

The input to the combination module consists of the three
distances obtained by the three different methods used in the
detection stage. The combinationmodule determines whether
the application is victim of an attack based on the three input
distances. Of course, the proposed model is general and it
could employ any number of different methods in the first
stage.

Each method of the detection stage returns a distance
measure between 0 and 1, so each method operates in a
one-dimensional space. The combination of three methods
operates in a three-dimensional space, where normal behavior
is close to the point (0, 0, 0) and attacks are close to the
point (1, 1, 1). The combination of three methods works
better due to the supervised learning process of the neural
network, using the distances of the detection modules and
tagged datasets. Because datasets are tagged, the supervised
deep neural network learns from the examples and improves
the results obtained.

The proposed system employs machine learning in the
combination module, specifically deep neural networks due
to its generalization capability and promising results. In addi-
tion, neural networks have been used as a detection method
in IDS many times.

The combination module implements a deep MLP neural
network with three main hidden layers. We have used a deep
MLP neural network for its simplicity, but we will test recur-
rent neural networks in future work to exploit the sequential
nature of system calls.

The aim of the paper is to show that the combination of
multiple detection techniques improves the results compared
to the use of individual techniques. In this sense, the goal
of the combination module is to integrate the results and we
have chosen Deep MLP and SGD because it is the simplest
deep neural network that allows combining the results of the
different techniques. However, a recurrent neural network
such as Long Sort TermMemory (LSTM) or Gated Recurrent
Unit (GRU) with ‘‘Adam’’ optimizer would probably get
better results.

Tests have been conducted to select the architecture that
offered the best performance. From an MLP network with
a single hidden layer, hidden layers have been added to
test the performance improvement. With three hidden layers,
the performance improvement has been significant. However,
from four hidden layers, there is little additional gain from the
new layers. Therefore, the three-layer hidden architecture has
been selected and performance has been improved by incor-
porating regularization functions and advanced optimization
techniques.

The three hidden layers are fully connected and dropout
functions are used to provide regularization and prevent over-
fitting. Each layer of the deep MLP is composed of the
following functions: dense (64), activation (‘relu’), dropout
(0.3). The dense function connects all neurons in one layer
with all neurons in the next layer, in this case 64 neurons. The
activation function is Rectified Linear Unit (relu), which has
better results than the sigmoid function. The dropout function
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FIGURE 3. Deep MLP neural network architecture.

is a well-known form of regularization in machine learning.
Fig. 3 shows the deep MLP neural network architecture and
the functions used in the hidden layers.

In the proposed model, the deep MLP neural network
input will be formed by a three-component feature vector,
which are the three distances obtained by the three detection
methods used in the first stage. In the case of using more
detection methods in the first stage, the features vector would
be formed by more components.

The complexity analysis of the proposed model depends
on the complexity of the two stages of the system [53]. The
complexity of the first stage is a function of the complexity of
the three detection modules. The time complexity of STIDE
is related to the number of sequences of size ‘k’ (n), the com-
plexity of text classification is based on the number of system
calls (m) and the complexity of system calls graph depends
on the number of graph edges (p).

Based on the above, C1 is the complexity of STIDE as
defined in (1), C2 is the complexity of text classification as
shown in (2), and C3 is the complexity of system calls graph
as specified in (3).

C1 = O(n) (1)

C2 = O(m) (2)

C3 = O(p) (3)

Since the modules are executed in parallel, the time com-
plexity of the detection stage will be directly related to the
module with the highest time cost. In our analysis and simu-
lation of the different techniques, we have observed that the
number of STIDE sequences is greater than the number of
system calls and graph edges, being STIDE the technique
with the greatest time complexity. Therefore, the complexity
of the detection stage (CD) will be similar to C1 as defined
in (4).

CD = O(n) (4)

The complexity of the second stage is a function of the
combination module, which is related to the number of

FIGURE 4. Prototype structure.

components of the input vector. In this case, the input vector
has 3 components. Therefore, the general time complexity of
the model (CM) can be formulated as in (5).

CM = O(n+ 3) = O(n) (5)

IV. RESULTS
In this section, we describe the prototype that has been created
with all the components of the model and the tests that have
been carried out to validate the proposed system. In addition,
the tests have been carried out on several data sets, in order
to offer a wider vision of the performance of the proposed
system in different scenarios. The tests compare the proposed
model with three of the existing techniques, specifically with
the three techniques used individually in the detection phase:
STIDE, text classification and system calls graph.

A. PROTOTYPE
To perform the necessary tests to validate the proposedmodel,
a prototype has been created with all the components of the
model. The prototype consists of four main modules, which
implement the four components of the model.

The detection components have been developed using
python scripts and C language modules. The C-language
modules implement the main detection algorithms and other
support functions, e.g. parse input data. The proposal can be
applied to any dataset by adapting the modules that parse
the input, but it is better if each dataset file only contains
traces of a single process. Python scripts have been used to
orchestrate the operation of the detection stage, obtaining the
system inputs and executing the corresponding C modules.
Fig. 4 shows the different components of the implemented
prototype.

Fig. 4 shows that the prototype has two clearly differen-
tiated parts. The objective of the first part is the creation
of integrated system calls graphs, which will be used by
the detection algorithms. The objective of the second part
is the detection of attacks, based on the information stored
in the previous integrated system calls graphs.
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The purpose of the Built_ISCG component is to orchestrate
the execution of the three modules that parse the input and
generate the graphs. Parse_STIDE creates the graph, in which
system calls sequences of any length can be found, by means
of paths of the same length. Parse_TC will add values to the
nodes, which represent the system calls, the values are the
frequency of use of each system call. Finally, Parse_SCGwill
add weights to the graph edges, the weights are the relative
importance of the transitions between the different system
calls.

The Normal_ISCG is the integrated system calls graph that
stores the information that represents the normal behavior of
application execution. It is generated by running secure or
attack-free instances of the application. On the other hand, the
Current_ISCG represents the current application execution.
The different detection algorithms compare the two graphs
to look for important deviations that indicate an anomalous
behavior or attack.

The objective of the Main_IDS component is to
orchestrate the execution of the modules that implement
the two main phases of the proposal. First, Main_IDS
invokes the modules that execute the different detection
algorithms: Detect_STIDE, Detect_TC and Detect_SCG.
Then, Main_IDS executes the module that implements the
integration of the previous results: Deep_MLP.

Detect_STIDE implements the STIDE algorithm and
executes it over the two input graphs, considering the sys-
tem calls sequences of length ‘k’ as k-length paths of
the graph. Detect_TC implements the text classification
algorithm and uses the values of the graphs nodes to cal-
culate the distance measurement between the two execu-
tions. Detect_SCG implements the edge weighting algorithm
and uses the weights of the graphs edges to calculate the
distance.

Finally, Deep_MLP implements the deep MLP neural net-
work architecture discussed in the previous section. The input
to the neural network is a vector of three components with
the three distances obtained by the detection modules and
the output will be the classification of the current application
execution as NORMAL or ATTACK. The neural network
has been implemented in Keras and using TensorFlow as
backend.

The three hidden layers of the deep MLP have been imple-
mented using three Dense layers with 64 neurons. After
each hidden layer, regularization has been added through a
Dropout layer, using a value of 0.3. The activation function
used was rectified linear unit (ReLU), because it gave bet-
ter results than the sigmoid function. The output layer was
Dense with 2 neurons and softmax activation function. The
optimization technique used was Adam, because it includes
the concept of momentum and achieves better results than
stochastic gradient descent (SGD). The number of epochs
used in the network training has been 20.

In addition, other configurations have been tested such as
increasing the number of hidden neurons or increasing the
number of epochs. But, they generated a much more complex

network that needed much more training time and did not
achieve a significant improvement in performance.

B. RESULTS USING THE DARPA DATASET
The following sections analyze the results obtained in the
evaluation tests of the proposed model. The tests performed
compare the proposed system, which combines multiple
detection techniques using neural networks with each of the
techniques separately. It should be noted that these techniques
have been used independently in detection systems proposed
in many research papers [1]–[6].

As mentioned above, the evaluation of the detection model
proposed in this paper has been carried out using several
datasets. We have chosen the DARPA, University of New
Mexio (UNM) andAustralian Defense Force Academy Linux
Dataset (ADFA_LD) datasets because they have different
levels of complexity, the DARPA dataset is the simplest and
ADFA_LD is the most complex, it has the most complex
attack patterns. The objective is to evaluate the behavior of
the proposed system in scenarios with different levels of
complexity. Additionally, there are very few datasets that
include application system calls, and the selected datasets are
the most important.

This section analyses the evaluation results using the
DARPAdataset [54], [55]. This dataset is old and has received
several criticism related to the synthetic nature of the data and
the methodology used [56], [57], but it is still used in modern
papers as a starting point [58].

The DARPA dataset consists of seven weeks of training
data and two weeks of test data. We have used the basic
security module (BSM) audit logs that contain information of
the system calls generated by the running programs, the same
data that was used in [59]. For the training, we have used four
days with about 2000 sessions and, for the test, we have used
one daywith 412 sessions. The data used contains 55 intrusive
sessions with 35 different types of attacks.

We will use the receiver operating characteristic (ROC)
curves to show the comparison between the different meth-
ods. The ROC curves relate the detection rate and the false
positive rate. When analyzing ROC curves to compare the
curves from different techniques, it is important to observe the
space or area under the curve. The curve with the most space
underneath is considered the best. Therefore, the curve closest
to the upper left corner will be the technique that achieves
the best results. The upper left corner represents the perfect
classification, 100% detection with no false positives. We can
interpret the ROC curve as a cost-benefit rate, in the upper left
corner we get the maximum benefit, without any cost.

Fig. 5 shows the comparison of the results obtained by the
different methods using the DARPA dataset.

In Fig. 5, STIDE is the method that obtains the worst
results, it generates 6% of false positives to be able to
detect all the attacks. The methods of text classification and
system calls graph show average and very similar results,
generating 5% false positives to detect 100%. Fig. 5 shows
that the proposed model (ISCG in the figure), based on a
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FIGURE 5. ROC curve for DARPA dataset.

FIGURE 6. ROC curve for lpr application of UNM.

graph that integrates the three previous methods, achieves the
best results. The proposed ISCG model shows the combined
action of all methods. The proposed model detects 100% of
the attacks, generating only 3% of false positives. On the
other hand, the model is capable of detecting 60% of the
attacks without producing false positives.

C. RESULTS USING THE UNM DATASET
In this section, we have evaluated the proposed model using
the dataset provided by the University of New Mexico [60].
This dataset consists mainly of traces of executions of three
main applications: lpr, sendmail and ftpd. Each trace contains
the system calls sequence that the application has generated
in each execution. In addition, the dataset is divided into
synthetic data (controlled synthetic environment) and real
data (live environment).

The first test compares the performance of the proposed
system against the individual techniques for the lpr applica-
tion executed in real environments. In this case, the dataset
contains 2766 different traces. Fig. 6 shows the result
obtained by each of the compared methods. The lpr applica-
tion is very simple, so the results are very similar to the results
obtained with the DARPA dataset.

In Fig. 6, STIDE is the method that obtains the worst
results, it generates 7% of false positives to be able to detect
all the attacks. The methods of text classification and system
calls graph show average results, somewhat better in the

FIGURE 7. ROC curve for sendmail application of UNM.

case of the text classification method, these methods generate
4% and 5% respectively of false positives to detect 100%.
Fig. 6 shows that the proposed ISCG model achieves the
best results, even increasing the distance to the other meth-
ods with respect to the evaluation made with DARPA data.
The proposed model detects 100% of the attacks, generating
only 2% of false positives. On the other hand, the model is
capable of detecting 55% of the attacks without producing
false positives.

The following test uses the sendmail application of the
UNM dataset to compare the different methods. The send-
mail application is more complex than the lpr application,
so the results are worse. The dataset contains 147 traces of
normal sendmail execution and 16 attacks of 5 different types.
Fig. 7 shows the evaluation results of the proposed model
using the sendmail dataset.

In Fig. 7, all methods have worse results than with previous
datasets, they need higher false positive rates to detect
all attacks. This behavior is logical, because the sendmail
application and the types of attacks used are more complex.

Fig. 7 shows that STIDE is the method that obtains the
worst results with quite a difference over the rest of the meth-
ods, it generates 14% of false positives to be able to detect
all the attacks. The methods of text classification and system
calls graph show average results, somewhat better in the case
of the text classification method, these methods generate 7%
and 9% respectively of false positives to detect 100%. As in
previous tests, the proposed ISCG model achieves the best
results. The proposed model detects 100% of the attacks,
generating only 4% of false positives. On the other hand,
the model is capable of detecting 45% of the attacks without
producing false positives.

D. RESULTS USING THE ADFA-LD DATASET
Finally, the last test is performed with the Australian Defense
Force Academy Linux Dataset (ADFA-LD) which is a new
dataset representative of the methodology, structure and com-
plexity of modern attacks [61]–[63]. The ADFA-LD dataset
consists of 833 normal training data traces, 4373 normal
validation data traces and 60 attacks of six different complex
types. Fig. 8 shows the evaluation results obtained by the
different methods, using the ADFA-LD dataset.
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FIGURE 8. ROC curve for ADFA-LD dataset.

TABLE 1. Detection rates without false positives (%).

Fig. 8 shows the evaluation of the different methods with
the ADFA-LD dataset obtains the worst results of all evalu-
ated datasets. It is logical because this dataset contains much
more complex and current attacks, which mimic the normal
execution of applications, making detection more difficult.

Fig. 8 shows that all methods have worse results than
previous datasets, due to the complexity of the attacks present
in the ADFA-LD dataset. In the worst case, the test generates
24% of false positives to detect all the attacks. In addition,
no method achieves a significant detection rate for a false
positive rate of 0%.

The distance between the different methods increases,
STIDE is the method that obtains the worst results. The
methods of text classification and system calls graph show
much better results than STIDE, the distance is greater than in
the datasets previously evaluated. Finally, the proposed ISCG
model achieves the best results and also increases the distance
from TC and SCG.

Fig. 8 shows that STIDE is the method that obtains the
worst results with much difference over the rest of the meth-
ods, STIDE generates 24% of false positives to be able to
detect all the attacks. The methods of text classification and
system calls graph show average results, somewhat better
in the case of the text classification method, these methods
generate 15% and 18% respectively of false positives to
detect 100%. As in previous tests, the proposed ISCG model
achieves the best results. The proposed model detects 100%
of the attacks, generating only 9% of false positives.

In order to compare more clearly the performance
improvement of the proposed system with respect to existing
techniques, Table 1 shows the detection rates obtained by
all the systems evaluated, without generating false positives.
We can see that the proposed ISCG model obtains the best
results in all datasets.

TABLE 2. False positive rates to detect 100% of attacks (%).

TABLE 3. Accuracy rates (%) of STIDE (±1.8), TC (±1.4), SCG (±1.4) and
ISCG (±1.2).

TABLE 4. Processing time performance.

In addition, Table 2 shows the false positive rates obtained
by all the systems evaluated, in order to detect 100% of the
attacks. We can see that the proposed ISCG model achieves
much better false positive rates than the rest of the systems in
all datasets.

Finally, Table 3 presents the accuracy of the results for the
different techniques and datasets compared. Accuracy shows
the ratio of the truly classified instances which are the True
Positive (TP) and True Negative (TN) instances [13].

The proposed system has the disadvantage of requiring
more processing time. Table 4 shows the processing
time (seconds) of the different methods. Tests have been
performed on 100 traces of each dataset. ISCG produces a 4%
overload in processing time. The tests have been performed
on a computer with Intel Core i7-4790 CPUs with four cores
and 16 GB RAM.

V. CONCLUSION
One of the challenges and open issues in the field of IDS
is that attack patterns are increasingly complex and tradi-
tional techniques are becoming obsolete, so it is necessary to
introduce new techniques or methods that are better suited to
complex attack patterns. In this paper, instead of introducing
a new technique, we have used an approach that combines
multiple existing techniques into a single system, achieving
better performance.

This paper has presented the design of an IDS model that
integrates multiple detection techniques or partial views to
model the global behavior of the applications. Due to the
integration of different detection methods and the global
information on the applications behavior, the proposed model
is able to take advantage of each method. The integration
has been carried out by means of artificial intelligence algo-
rithms, specifically a deep MLP neuronal network, which
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has allowed combining the results of the different detection
techniques. The evaluation of the proposed model has shown
the improvement obtained in the detection results with respect
to the use of individual techniques, using both simple datasets
and complex datasets. The overall accuracy of our model can
achieve a success rate of 98.8% for complex datasets and
100% for simple datasets.

In addition, an integrated system calls graph has been
developed, which represents all the information from the
different techniques in a single data structure. The k-length
paths within the graph represent the k-length system call
sequences used in the STIDEmethod. The values of the graph
nodes represent the use frequencies of system calls, used by
the text classification methods. The edge weights show the
importance of the different transitions between system calls,
used in the graph methods.

Future work will analyze the idea of integrating more
detection methods to improve the results obtained and the
ways of representing information in a single data structure.
Data mining and hidden Markov models are two detection
methods that could be used in phase 1, because they are very
powerful techniques that have already been employed in IDS.
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