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A B S T R A C T   

Two sets of modelling tools are used to evaluate the precision of housing-price forecasts: machine learning and 
hedonic regression. Evidences on the prediction capacity of a range of methods points to the superiority of the 
random forest as it can calculate real-estate values with an error of less than 2%. This method also ranks the 
attributes that are most relevant to determining housing prices. Hedonic regression models are less precise but 
more robust as they can identify the housing attributes that most affect the level of housing prices. This empirical 
exercise adds new knowledge to the literature as it investigates the capacity of the random forest to identify the 
three dimensions of non-linearity which, from an economic theoretical point of view, would identify the re-
actions of different market agents. The intention of the robustness test is to check for these non-linear re-
lationships using hedonic regression. The quantile tools also highlight non-linearities, depending on the price 
levels. The results show that a combination of techniques would add information on the unobservable (non- 
linear) relationships between housing prices and housing attributes on the real-estate market.   

1. Introduction 

Analysing housing prices, including their predicted prices, is a matter 
of great interest in the field of the economics, in general, given the 
relevance the evolution of residential prices has at the macroeconomic 
level (ECB, 2010), and for investors and the market itself. Traditionally, 
there has been significant controversy among those who favour using 
conventional models and hedonics or repeat-sales techniques to predict 
housing prices (Goh et al., 2013; Hwang and Quigley, 2006; Clapham 
et al., 2004). Among those are researchers who show that if the spatial 
characteristics of dwellings are taken into account, then the level of 
predictability is low (Hwang and Quigley, 2004). This debate has 
generated the use of multiple techniques that have improved the pre-
dictive capacity of these models and have helped create more precise 
housing-price indices (Coulson, 2012). 

The evolution of technology has allowed for the acquisition and 
storage of higher volumes of information. Of particular note are de-
velopments in data engineering and the use of automatic learning 
techniques for applications in almost all sectors of the economy. A new 
debate is emerging on whether these techniques, which are not based on 

socioeconomic behavioural models, can provide better predictions than 
econometric methodologies. Neural network-based applications for real- 
time housing-price estimations have been available for years; however, 
academics have rejected these methods because they considered them to 
be ‘black boxes’ whose results are not explainable (see Kauko, 2003; 
Zhao and Hastie, 2019 on the debate about causality and machine 
learning). 

Data scientists have developed precise methods for forecasting so-
cioeconomic variables by using large data sets with multiple features. An 
example is the well-known mass valuation technique (Kauko and 
d’Amato, 2009), a system which combines different machine learning 
tools to evaluate housing prices based on a large list of previous obser-
vations. The precision achieved in on-time valuation has lead industry 
and financial institutions to embrace these techniques to address the 
need for specific low-risk valuations in their day-to-day economic and 
fiscal valuations. ‘Mass valuations’ have been largely criticised due to 
their lack on clarity and critical error levels; nonetheless, this method is 
capable of appraising the values of a massive portfolio of houses within a 
short time. 

Data scientists and economist analysts agree that the accuracy of ML 
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models is not what would be desired. Data analysts’ techniques ignore 
the laws of economics (and the explanatory models that show causality) 
as well as the limitations econometrics imposes on the models, leaving 
these systems free to make inferences from a combination of data. 
Nonetheless, ML techniques are capable of identifying non-linear re-
lations between the variables that (from the economic perspective) 
would reflect agents’ behaviour when interacting in the market. The 
lack of explanatory capacity of the results is one of the essential criti-
cisms made for the use of data techniques, particularly given that their 
results are spurious. However, recent advances in the the explainability 
of ML (Lundberg and Lee, 2017) models make them particularly inter-
esting, as their predictions provide greater accuracy and more in-depth 
explanations; they also treat the relationships between the variables 
(whether linear or not) by group or on the totality of the data. 

Both groups of analysts mentioned above also agree that accurate 
residential price estimates require a high number of household attri-
butes. However, according to data analysts, this also generates a high 
number of computations. Econometricians also point to substantial 
problems of collinearity and endogeneity in the models and this can 
either complicate the estimations or make it impossible to derive them. 
Further, there is no agreement on the most efficient number of 
attributes. 

In this article, we brought the two approaches together and con-
ducted an experiment on housing-price estimations. We used the same 
database to assess the accuracy of each of the main attributes and to 
identify the fundamental differences, advantages and disadvantages of 
each method. 

The experiment consists of predicting residential prices based on 
different methodologies. From an economic perspective, a hedonic tool 
is used with different estimation techniques. From a data analyst 
perspective, several models are developed to find the best predictive 
results using the random forest. The explanatory capabilities are eval-
uated showing four error indicators and then both models are compared. 
One of the interesting results of the random forest method is its capacity 
to estimate non-linear relationships and to show, in three dimensions, 
how the housing features relate each other. These results are also 
approached by using hedonic analysis. 

This article presents a comparative study of two hedonic models and 
a selection of machine learning models that include recent explainability 
processes. To this end, this article is structured as follows: in Section 2, 
the theoretical principles are presented; in Section 3, the model and 
methodology are detailed; the experimentation setup evaluates several 
models that are described in Section 4; a discussion and a thorough 
analysis of the results are presented in Section 5 and, finally, the main 
conclusions and some ideas for future work are summarized in Section 6. 

2. Background 

2.1. Theoretical principles 

Housing prices are discussed extensively in the literature. This in-
dicates how fundamental housing is to the economy and society. But this 
product also has considerable heterogeneity in that prices depend 
fundamentally on location, a factor which is not clearly observable. That 
is, the variable ‘price’ is a function of an unobservable number of in-
fluences that make its estimation complex. One part of the literature 
focuses on an analysis of housing prices related to this product’s het-
erogeneity, extracting differences in price that are due to the features, 
location or other characteristics of the houses that are being assessed for 
their price. Analysis that uses hedonic models captures the relationships 
between the prices and the characteristics of the houses being sold in 
differentiated product markets. This literature is well established and 
supports the use of a ‘quality adjusted’ housing price index (Rosen, 
1974; Linneman, 1980; Haurin, 1991; Peek and Wilcox, 1991; Geltner, 
1993; Adair et al., 1996; Clapp, 2003). It also tests the impact of the 
different characteristics that are associated with real east on the level of 

prices and their evolution (Goodman and Thibodeau, 1995; Clapp and 
Giaccotto, 2002; Bourassa et al., 2011), including geographical features 
and their limitations (Saiz, 2010). 

The literature is extensive and is mainly based on Rosen’s (1974) 
work, where he defines the composition of a complex product based on 
its characteristics, allowing them to contribute to the product’s final 
price. In Rosen’s model, the property’s amenities contribute to its final 
price. The idea is that a dwelling is a combined-attribute housing-price 
model in which the bundle of the dwelling’s characteristics and ame-
nities composes an ‘envelope’ of features of a house that is situated at 
any location, z = {z1,z2,…,zn}, with zi measuring the amount of the ith 
characteristic contained in a house and z being the particular bundle of 
attributes that identifies the particular house. The price also represents 
that particular house associated them p(z) = p({z1, z2,…, zn}) and the 
group of attributes guides both the buyers and the sellers in a specific 
location through all of the characteristics that equalize any differences 
in the set of hedonic prices. As Rosen (1974) stated: the market-clearing 
prices p(z) are determined by the distribution of consumer tastes and 
producer costs (Rosen, 1974:35). Consumers continuously choose 
among different combinations of z, which is the function that relates 
houses of similar price and characteristics p(z) in the absence of any 
changes in the envelope. This means that different consumers will 
‘project’ their different tastes onto housing prices so that price differ for 
every house and every housing feature. 

Thus, if the value of one particular characteristic depends on con-
sumer behaviour, then the process of adding value for this characteristic 
is intrinsically determined by the willingness to pay of the buyers whose 
utility curve is modified by that characteristic on their entry into the 
market. This demand behaviour is represented in Fig. 1a, which is based 
on Rosen’s (1974:39) definition. 

On the demand side, ui represents the value function of every con-
sumer at a particular location. This depends on the individual utility 
function and this varies according to the individual’s income (y), bid 
function (Φ), and a combination of the selected housing characteristics 
(U(y − Φ(z1, z2, …, zn)) = u). Thus, p(zi) is a function of the minimum 
price paid in the market for a unit bundle of characteristics with z∗
optimum quantities of each attribute at each implicit price of zi (Pc0). 
Assuming that z1 is the extra attribute that differs one house from 
another, every consumer represents a different value function.3 Hence, a 
consumer whose perception is that the house with greater green attri-
butes z is better increases the value of the green component in the en-
velope (bundle of characteristics). This reveals his/her willingness to 
pay for energy efficiency and shifts the preferred combination from the 
red curve to the blue, thereby determining two different fixed value 
functions (u ∗ i) and increasing the price due to the extra amount of z1 to 
Pc1. 

On the supply side (Fig. 1b), the housing suppliers (sellers) exhibit an 
offer function (φ(z1,z2,…,z;π,β)), which indicates the unit price they are 
willing to accept at a constant profit (π) for various investment designs.4 

The sellers maximize their utility at the maximum profit π, which will 
vary if they make a large investment to increase z1. The increase in the 
latter is projected into a higher asking price (from Pp0 to Pp1), with the 
latter including the expected producer benefits that are derived from the 
extra investment costs. 

Note that Pc0 does not necessarily equal Pp0 and that Pc1 is not equal 
to Pp1 (nor to the attribute prices), and that the Pc’s will be transformed 

3 The Φ are defined as convex functions of every combination of features, 
while the price function is a non-sufficient convex function representing the 
first order condition. If this is sufficiently regular and convex everywhere, then 
higher-income consumers can purchase greater amounts of all of the relevant housing 
characteristics (Rosen, 1974:40).  

4 It is assumed that the characteristics supplied in every design meet the 
market characteristics (the implicit prices) and achieve equilibrium at the 
maximum price at which one unit could be supplied at similar β coefficients. 
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into Pp’s after the negotiation process is complete. In addition, the 
above-mentioned prices (Pc0,Pp0,Pc1,Pp1) reflect the different shadow 
prices of the various attributes when the focus of the analysis shifts from 
the demand or the supply side, although both should meet the market 
hedonic price functions to reach equilibrium5 in the presence of a supply 
that is sufficient enough to meet demand. 

Some authors report having econometric issues with the hedonic 
models, as such they assert that these models provide limited accuracy in 
the estimation of house prices (Goodman and Thibodeau, 1995; 
Goodman and Thibodeau, 2003). In fact, hybrid models have been 
developed in order to avoid price underestimations and other errors 
(Case et al., 2006) but they are nevertheless based in the conceptual 
framework of hedonics. Hedonic methods’ lack of capacity to capture 
the full behaviour of house prices is an indication that these prices play a 
role in internalising this market’s dynamic evolution and also serve as an 
indicator for other purposes (Case et al., 2005). 

Housing prices have been much debated from other perspectives. 
Adding complexity to Rosen’s idea, there is a large consensus that the 
heterogeneous features of houses also change depending not only on 
consumer’s expectations and wealth but also on the time period and 
market shocks. This is why part of the literature tends to take a long- 
term view of housing prices and the rationale behind them, despite 
the fact they are recognized as responses to short-term demand, with 
construction activity or vacancies also affecting how prices respond. All 
of these factors introduce asymmetric adjustments that has been iden-
tified as speculative bubbles (Stiglitz, 1993; Mikhed and Zemčík, 2009; 
Abreu and Brunnermeier, 2002; Kim and Suh, 1993). The conventional 
explanatory models for the behaviour of residential prices in housing 
economics follow either the life-cycle model, in which prices represent 
the long-term market equilibrium component, or they concentrate on 
the explanatory factors related to the price composition on the supply 
side (Meen, 2012; Dougherty and Van Order, 1982; Muellbauer and 
Murphy, 1997), including the process of financial liberalisation that 
promotes the growth of residential prices across most Western countries 
(Ortalo-Magne and Rady, 2006) and increases credit (Allen and Gale, 
1998) until there is a financial crisis. 

In residential markets it is argued that heterogeneity and lack of 

information are typical characteristics that make it more complicated to 
distinguish changes in house prices (Case and Shiller, 2003) when ex-
pectations of future prices rise and cause current prices to become 
temporarily high. Research during the 2000s shows that acceleration 
and temporariness would be considered a normal reaction of the resi-
dential market, adding complexity to the analysis and understanding of 
housing prices. In summary, (Riddel, 1999) we propose three compo-
nents that define market prices for existing homes. These are the con-
ventional component, which is based on economic and demographic 
variables; the feedback component, which considers changes in prices 
that stem from information about relationships with previous appreci-
ations in housing prices and which introduces an error-correction 
mechanism that explains any price changes; and the expected compo-
nent, which is driven by the prices that were observed in the previous 
period and which are then corrected by the forecast error that produces 
a systematic price appreciation beyond that motivated by economic 
fundamentals. This latter component should be one which can be 
captured by changes in shadow prices as defined according to Rosen 
(1974). 

In addition to the above, the literature on housing prices also 
maintains that people’s expectation of an increase in housing prices are 
formed when they see a growth in capital gains (Dougherty and Van 
Order, 1982; Poterba, 1984; Poterba et al., 1991). When capital gains 
grow at normal rates, this guarantees balanced market growth, but the 
evidence confirms that housing prices grow at rates above or below 
normal, depending on the period (for instance, in Black et al., 2006). 
Housing prices to not follow a clear time pattern which could be pre-
dicted as having a permanent effect (Meen and Andrew, 2004) over the 
long term; they also shows periodic reversions back to fundamental 
values, taking decades to recover (Mikhed and Zemčík, 2009). An 
increasing number of empirical papers provide evidence that housing 
prices ripple across regions and this is mostly because the economic 
factors that influence these prices differ (Meen, 1999 and others). 

The last component of housing prices is the spatial influence. Other 
than location (which determines differences in price levels), the litera-
ture demonstrates the existence of spatial autocorrelation among 
housing prices in the local markets (Anselin, 2013; Taltavull de La Paz 
et al., 2017), which also influences the growth of housing prices. 

The above summary of the literature suggests that any analysis of 
housing prices from an economic perspective will miss several non- 
linearities that are not considered in the relationships between the 

Fig. 1. Rosen’s 1974 demand behaviour.  

5 Rosen (1974:44) points out, the p(z) represents a joint envelope of a family of 
value functions and another family of offer functions. 
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characteristics that influence housing heterogeneity. Changes in ex-
pectations are also led by general economic conditions. The current 
literature has not yet dealt with the large number of variabilities which 
could allow us to precisely evaluate and forecast housing prices. Some of 
the research introduces these variabilities by using non-linear hedonic 
models as measurement tools and by controlling for any endogenous 
relationships among these variables (list literature). 

3. The model and methodology 

The hedonic framework we described above is the model that is 
conventionally used in housing economics to evaluate the role of pref-
erences/willingness to pay for a dwelling’s characteristics. The shadow 
prices of the relevant housing characteristics are estimated using a 
conventional hedonic model in which every component will reveal the 
bidders’ preferences for each characteristic, as in Section 4.2.2 

LPhit = αit +
∑T

t=1

∑n

k=1
βktXkit + ∊it, (1)  

where LPh is the log of the housing asking prices (the supplier’s listed 
price); X is a matrix of the housing characteristics, including the number 
of bedrooms, family rooms, and bathrooms, whether there is a garage, 
the type of house, its age, quality, location and other characteristics. α, β 
are the parameters to be estimated and ∊ is an error term. 

Data analyst use a methodology that is quite different from the he-
donic framework. The ML-oriented approach would include the same 
input parameters as those in the model, so it can relate the same input 
features, X, to the variable to be predicted, LPh, as in Eq. 2. These types 
of numerical predictions are known as regression models. Since several 
families of algorithms can be used to perform these calculations, some 
would be tested by measuring the quality of their final prediction and 
then selecting the best one. It should be noted that these algorithms are 
capable of learning both linear and non-linear relationships between X 
and LPh. Once the model is chosen and trained with the data, explain-
ability techniques would be used to obtain, for example, the relevance of 
the features at a global level by group or by sample, as well as the 
relationship between the input variables and their contribution to the 
value of the prediction. 

LPhit = modelpredict(Xit) (2)  

4. Experimentation 

In this section, the dataset and the models are described, as well as 
their results in two steps: first, the machine learning models are 
explained and, second, the conventional quantile and hedonic models 
are used to model housing prices. 

4.1. Dataset 

The dataset in this exercise consists of data on Alicante province 
(Spain) for the period 2004–2012 and is detailed in McGreal and Tal-
tavull de La Paz (2012). Due to the large size of this dataset (1,124,502), 
a random selection from the full database containing 30% of the ob-
servations was chosen to run the exercise. This ensured the efficiency of 
the big-data processes (in terms of the computer time required for pro-
cessing) for a total of 392,412 observations of individual dwellings on 
the market. The database was obtained from a big valuation company 
(Tabimed, which was the fourth largest in Spain before 2012; this 
company is now defunct) and provides information only on the com-
parable characteristics that are used for this exercise. The data are 
geolocalised from 2008 (figure 2), which reduces our dataset to around 
56,000 observations (for five years). The data, then, refers to individual 
dwellings being sold on the market, showing their asking prices. The 
number of characteristics in this database is 52, which includes houses, 

buildings and neighbourhoods; other features are also available ac-
cording to the geolocation and the process used to assign this extra in-
formation in the company’s database. Details are shown in Table 1, 
which provides the main statistical features and in Fig. 3, which shows 
the number of houses and the average price per period.Fig. 4. 

4.2. Machine learning modelling 

Recent publications apply ML algorithms to predict housing prices in 
interesting settings (Park and Bae, 2015 or Yoo et al., 2012). In this 
article, we test a wide range of modern and classical (linear regression) 
ML algorithms in order to predict the house prices that are offered 
during periods when prices show a high variance in the touristic prov-
ince of Alicante, Spain. 

Testing by using a varied number of families of algorithms helps 
obtain the best model(s) with which to make good predictions; it also 
helps to more accurately explain the relationship between the variables 
(input or output). In addition, this study uses ML models with advanced 
explainability so as to perform more accurate analyses. 

4.2.1. Algorithms 
To explore different alternatives that are based on machine learning, 

we chose algorithms that belong to different families of categories 
(neighbourhood, decision trees, neural networks and linear regression) 
in order to find the ones that provide better results for the dataset we are 
studying. 

The algorithms considered are presented as follows, along with their 
brief descriptions:  

• Nearest Neighbours (Cover and Hart, 1967): This algorithm computes 
a prediction value that is based on the k (parameter), which provides 
the closest examples of the training set. This model interpolates the 
final predictions based on the ‘neighbours’ proximity according to 
the Euclidean distance. In our case, the parameter k was fixed to 1, 3, 
5, and 7.  

• Decision tree (Breiman, 2017): This model predicts the value of a 
sample by learning simple decision rules, hierarchically. The tree is 
constructed from the training data and considers only one feature per 
rule.  

• Random Forest (Breiman, 2001): This model builds multiple decision 
trees in order to combine all of the predictions for more robust 
behaviour. Its main parameter is the number of trees used to calcu-
late its predictions. In our case this has been set to 100, 200, 300, 400 
and 500. 

• AdaBoost (Adaptive Boosting) (Freund and Schapire, 1997): This al-
gorithm builds multiple linear regressors. The final decision for a test 
sample is taken into account according to all of the predictions, each 
of which is weighted by a confidence value that is learned during the 
training process. 

Fig. 2. Geolocalized data on individual dwelling sales in the province of Ali-
cante (Spain) during the period 2008–2012. 
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• XGBboost) (Chen and Guestrin, 2016): This is an extension to Ada-
Boost, where optimization is performed using derivable cost func-
tions and a gradient descent (as in neural networks) is used to find 
the best parameters for the problem.  

• CatBoost (Dorogush et al., 2018): This is another implementation of a 
method that is based on gradient boosting over decision trees that are 
similar to the previous ones that had performed well in open 
challenges.  

• Neural Network (Multilayer Perceptron) (Hinton, 1990): This is the 
traditional neural network where all of the layers are fully connected 
to each other.  

• Linear regression (Weisberg, 2005): This is a classic linear regression 
model that is based on linear relationships between the input fea-
tures; it assumes the features are independent and optimized with a 
least squares approach.  

• Linear Ridge (Hoerl and Kennard, 1970): This is a linear regression 
that optimizes a function using both components at the same time: a 
loss based on the least squares and another loss based on regulari-
zation (l2-norm).  

• Linear Lasso (Tibshirani, 1996): This is the acronym for the model 
called least absolute shrinkage and selection operator. This method, 
similarly to the previous one, performs both variable selection and 
regularization in order to enhance the prediction accuracy. 

4.2.2. Results 
The metrics used to evaluate the models are those commonly used for 

this purpose. They are based on the measurement of the prediction er-
rors or the root mean squared error (RMSE) (Eq. 3) is a percentage of 
RMSE with respect to the average of the true values, (Eq. 4) is the mean 
absolute error (MAE), (Eq. 5) is the percentage of MAE with respect to 
the average of the true values, (Eq. 6) is the degree of model’s explan-
atory accuracy (P), (Eq. 7) is the R2 score (Eq. 8). These measures are 
used in other articles on similar topics such as Hu et al. (2019), where y 
and ŷ are vectors with true and predicted values, respectively. 

RMSE(y, ŷ) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑

(yi − ŷi)
2

√

(3)  

%RMSE(y, ŷ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑
(yi − ŷi)

2
√

|y|
(4)  

MAE(y, ŷ) =
1
n

∑
|yi − ŷi| (5)  

Table 1 
Statistical descriptors of the dataset.  

Feature Mean Std 

Log price 11.52 0.61 
Year 2003.14 3.87 
Postal code 3568.50 4004.16 
Age of neighbourhood 15.37 15.42 
Urban type 2.45 0.87 
Population 90467.87 385807.99 
Economic activity 3.18 1.27 
Population growth 1.73 0.47 
Urban Rural 2.99 0.09 
Housing use 1.53 0.86 
Income level 4.28 0.71 
Population density 2.52 0.52 
Population development 3.39 0.83 
Road quality 2.93 0.34 
Water source type 5.53 0.51 
Water quality 2.53 0.50 
Sewer type 6.52 0.63 
Sewer quality 2.55 0.54 
Lighting system type 3.97 0.24 
Lighting system quality 2.93 0.43 
Retail facilities quality 4.20 0.92 
School facilities quality 3.84 0.83 
Religious facilities quality 3.84 0.80 
Leisure facilities quality 3.86 0.76 
Sports facilities quality 3.84 0.80 
Health facilities quality 3.84 0.80 
Bus 4.04 0.83 
Train 1.15 0.98 
Underground 0.01 0.14 
Housing type 1.67 0.91 
Number of dweeling in building 19.50 29.83 
Number of lifts 0.89 0.95 
Age 7.77 10.48 
Retail facilities quality in neighbourhood 4.14 1.19 
Income in building 4.28 0.67 
Population density neighbourhood 2.53 0.52 
Location 2.89 1.61 
Orientation 4.89 2.36 
Views 2.52 0.81 
Construction quality 3.98 0.74 
Housing size (m2) 102.58 35.51 
Outdoor living space 4.18 15.82 
Urbanization quality 0.74 1.31 
Type of housing use 1.24 0.42 
Number of floors 6.71 3.89 
Exterior rooms 3.03 1.45 
Number of rooms 6.62 1.84 
Number of bedrooms 2.78 0.85 
Number of bathrooms 1.66 0.55 
Latitude 38.36 1.41 
Longitude − 0.53 0.61 
Provincial code 3436.64 1735.11 
Month 6.36 3.44  

Fig. 3. This figure shows the number of houses analysed per period and their 
corresponding average price. 

Fig. 4. Average results of 10-CV sorted by the RMSE using different metrics. 
RMSE, %RMSE, MAE and %MAE; the lower value is better, while for accuracy 
(P) and R2 the higher value is better. 
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%MAE(y, ŷ) =
1
n

∑
|yi − ŷi|

|y|
(6)  

P(y, ŷ) =

∑
(

1 −

⃒
⃒
⃒
⃒

yi − ŷ i
yi

⃒
⃒
⃒
⃒

)

|y|
(7)  

R2(y, ŷ) = 1 −
∑

(yi − ŷi)
2

∑
(yi − y)2 (8) 

In spite of the above results, most of the reported values fall into 
narrow ranges; this might mean questioning the statistical significance 
of the differences between the algorithms considered. To verify these 
results, we use the Wilcoxon paired test (Wilcoxon, 1945) to determine 
which results are significantly better with a 95% confidence, which is 
the commonly used value. 

Figure 5 shows a comparison of statistical significance between 
algorithmic pairs according to the different metrics considered in this 
study. It can be observed as in all the metrics that: i) the random forest 
algorithm obtains the best results; and ii) the results for the random 
forest using the parameters of 200, 300, 400 and 500 are significantly 
equivalent. For these reasons the random forest (200) is chosen as the 
best model because it is the least costly in time and space of these four 
best options. 

4.2.3. Machine learning explainability model 
Depending on how predictive models are built in machine learning, 

the most transparent and easy way to interpret algorithms are those 
based on neighbourhood criteria (e.g. kNN) or on the construction of a 
single decision tree (e.g. Decision Tree). Those based on multiple deci-
sion trees (e.g. Random Forest, XGBoost and CatBoost) or on artificial 
neural networks (e.g. Multilayer Perceptron) are more difficult to 
interpret (so-called black boxes) but they also tend to achieve the best 
results. All these models are able to learn non-linear relationships be-
tween incoming and outgoing variables which makes them more accu-
rate in the prediction to solve real problems while classical multiple 
linear regressions (e.g. Linear regression, Rigde and Lasso) are easy to 

calculate and interpret but assume in their models only linear 
relationships. 

In general, the best results are obtained with the models we have 
called ‘black boxes’ and to try to explain their predictions in a coherent 
manner there are two approaches: the first is based on performing per-
mutations (Breiman, 2001) on the value of each individual input vari-
able and comparing the variability in the predictions. This allows us to 
analyse the importance of the input variables in a model that is already 
trained; the second approach is based on building a new linear model 
that explains the complex model. 

The most advanced algorithm in the second approach is based on the 
Shapley (Roth, 1988) values that provide a solution that consists of 
equitably distributing profits and costs among several collaborators. 
This method is usually used in situations where each collaborator con-
tributes in an unequal way. In essence, a Shapley value represents a 
collaborator’s average expected marginal contribution after considering 
all possible combinations. Additionally, this method guarantees accu-
racy and consistency. Although, most ML models use non-linear re-
lationships between the input variables internally, this new model’s 
approach can be used to explain its behaviour (Fig. 6) because it uses a 
locally applied linear approach. 

Recent advances in the approach are explained by Lundberg and Lee 
(2017), Lundberg and Lee (2017), who allow a unified approach to 
explaining the predictions made by any machine learning model. An 
example of this type of tool is SHAP (SHapley Additive exPlanations) 
(Lundberg, 2019), which connects game theory and local or global ex-
planations by uniting several methods. 

4.2.4. Importance of a model’s features 
The model features and their importance directly depend on the 

model used. In our case, we use the random forest (200) method, ac-
cording to the results obtained in Section 4.2.2. 

In this trained model, the Shapley values are computed individually 
and the absolute values for each input variable are accumulated to 
determine its importance. The features are then ranked in order of 
importance. These are presented in Table 2. 

4.3. Hedonic models 

Model (1) is estimated using the variables defined in the previous 
random forest (200), which is the best prediction model obtained. Note 
that some of the variables have no economic meaning. For instance, 
using provincial (municipal) codes, postal codes, and latitudes and 
longitudes as regressors makes no sense from an economic perspective 
even though they capture the spatial differences in housing prices. 
However, we do include these in the first model for comparison 

purposes. 
Table 3 provides the results of the non-linear hedonic model. This 

model includes housing features that are ordered according their rele-
vance to explaining the variations in housing prices (absolute values of 
the standardised estimated coefficients are used for this purpose). The 

Fig. 5. Wilcoxon paired significance test. The green bullets show whether the 
10-CV results of the algorithm in the row are significantly better than the al-
gorithm in the columns for each metric used. 

Fig. 6. General scheme of the explainability of machine learning models.  
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model is estimated both with and without the constant variable, the 
latter in order to approach the machine learning method.6 The con-
ventional hedonic Eq. 1 explains 80.8% of the variations in the depen-
dent variable with an error of 17.05%. The goodness of fit is quite large 
compared to the other hedonic models’ results for housing prices. The 
level of collinearity is very low, with two variables (ROAD QUALITY 
AND LIGHTING SYSTEM) being highly correlated to variables which 
should be deleted as they capture the influence of other components in 
the model, thereby causing a high level of bias in the estimated 
parameter.7,8 

Regarding the results from the machine Learning approaches, the 
non-linearities identified among the various covariates suggest that the 
parameters for each attribute obtained from the hedonic model could 
not be fixed and may have had different effects, depending on the level 
of the housing prices. In contrast with the random forest method’s 
ability to show three-dimensional relationships, the hedonic model that 
is calculated under quantile regression methods provides estimations 
along two dimensions; that is, the hedonic model quantifies the different 
effects of the covariates (the parameter values) on housing prices in 
different ranges of their distribution. This is very relevant in housing 
markets as it can show how an increase, for example, in income in a low- 
income household can cause the housing price to rise but to a lesser 
degree than it would for a high-income household (see Fig. 7 second 

panel). In another example, there would be a low effect of an increase in 
the housing size (m2) among those houses within the low- and medium- 
price ranges, compared to the large effect there would be on houses 
within higher price ranges.9 

In this paper, 10 quantiles have been calculated for each 10% of the 
housing-price distribution; that is, the effect of every covariate is 
calculated for the prices falling in the first 10% of the price distribution, 
and the second corresponds to 20% of the price distribution and so on up 
to 90%. The full regression corresponds with the first estimation. The 
results appear in B. The quantile hedonic regressions show a lower 
predictive power than the least squares hedonic, at around 58–59%; 
however, it has provided richer detail about how the covariates build 
housing prices as well as about the non-linearities in some of the 
attributes. 

As these results demonstrate, the effects of the covariates vary across 
the price distribution, with different impacts. This supports the hy-
pothesis that housing attributes have different effects on housing prices, 
depending on the price level and they indirectly capture several non- 
linearities that are associated to these attributes. The following figures 
represent variations in the covariate effects by quantile as they affect 
housing prices. Some attributes are selected to find evidence that is 
similar to those in the machine learning estimation: 

The sub-figures in Fig. 7 represent how population, income, age and 
size affect housing prices in the different quantiles. In the first case, the 
effect of population remains unchanged for the first price ranges until 
they reach 60% of the price level. Since in the sixth quartile, population 
has an increasing effect on prices, this contributes to the idea that 
housing prices strongly increase in cities with larger populations. 

Table 2 
Ranking features by their importance in the random forest (200) model by accumulating the individual absolute Shapley values.  

Rank Feature Importance  Rank Feature Importance 

1 Year 3564.5  27 Population development 36.7 
2 Housing size (m2) 1464.9  28 Population density 36.6 
3 Income in building 877.0  29 Number of rooms 25.0 
4 Age 700.9  30 Retail facilities quality 25.0 
5 Number of bathrooms 678.3  31 Exterior rooms 24.0 
6 Location 648.8  32 Type of housing use 22.9 
7 Housing type 586.6  33 Latitude 21.7 
8 Number of lifts 514.3  34 Train 17.6 
9 Views 256.5  35 BUS 14.6 
10 Economic activity 230.1  36 Urban_type 10.9 
11 Construction quality 165.7  37 Number of bedrooms 10.0 
12 Population 149.9  38 Number of floors 8.8 
13 Urbanization quality 147.5  39 Health facilities quality 5.5 
14 Number of dwellings in building 106.0  40 Road quality 5.3 
15 Outdoor living space 105.5  41 School facilities quality 4.7 
16 Retail facilities quality neighbourhood 99.5  42 Sports facilities quality 4.7 
17 Orientation 92.2  43 Leisure facilities quality 4.6 
18 Population growth 88.4  44 Lighting system quality 4.0 
19 Housing use 79.9  45 Water quality 3.3 
20 Postal code 78.7  46 Sewer quality 2.4 
21 Provincial code 73.1  47 Religious facilities quality 2.3 
22 Income level 60.1  48 sewer type 1.2 
23 Population density neighbourhood 58.3  49 Lighting system type 0.8 
24 Age of neighbourhood 56.7  50 Water source type 0.7 
25 Longitude 55.9  51 Urban rural 0.3 
26 Month 49.4  52 Underground 0.1  

6 In econometrics, it is accepted that the constant is a key component in 
regression models as it captures the true conditional mean of the dependent 
variable. From a statistical perspective, ignoring the constant means that the 
other parameters are ‘forced to cross the origin’ when they are estimated and 
this results in different values and potential bias. The results from both esti-
mations differ, with the first model showing that the dwelling features have a 
more accurate and widely spread influence on their prices. The estimation 
without a constant is available upon request.  

7 The other variables show soft collinear relationships which should be tested 
before accepting the final functional form of the hedonic model.  

8 A way to improve the forecast capacity in hedonic models would be to 
include the residuals in a second-step estimation which would allow us to 
predict larger parts of the dependent variables. As this method will emphasise 
problems of collinearity (and endogeneity), it has been fully rejected in the 
economic analysis. 

9 In technical terms, this means that the conditional distribution of the 
dependent variables related to the covariates may be asymmetric, either 
exhibiting unusual skewed tails or not having single modes. In the quantile 
regression, the analysis concerns the distribution rather than the conditional 
mean captures the different distributions among the quartiles in the data. The 
quantile regression estimator is an asymptotically normally distributed, semi- 
parametric method and as it is based on a median regression, it is more 
robust to outliers than the least squares regression that is used in conventional 
hedonic models. This technique allows us to consider the impact of a covariate 
on the entire distribution of y, and not merely its conditional mean. 

J.R. Rico-Juan and P. Taltavull de La Paz                                                                                                                                                                                                



Expert Systems With Applications 171 (2021) 114590

8

Similar effects are seen for housing size (last chart in the Fig. 7), with 
almost constant effects on prices between the second and 8th quartiles, 
but large effects for both smaller units and larger units. The different 
effects on prices are shown in the large queues in the distribution. 

The literature notes that income is one of the determinants of 
housing prices. Its effect on price increases is minimal at most price 
levels until quartile 8. This suggests that any increase in the income level 
has less effect on lower-priced housing, with similar effects in a large 
range of prices (4th to 8th quartile of prices) and strong effects on more 
expensive houses. Similar interpretations are shown on Fig. 9. 

Age has a great effect on lower-priced houses, compared to higher- 
priced domiciles. The diminishing prices that are due to age show 
strong effects on lower-priced units and this is possibly associated to 
their quality and location. On the contrary, the negative effect is much 
lower on the other side of the price distribution; that is, for older houses 
in high-priced locations, the effect of an additional year of a house’s age 
is negative. This interpretation is different from the one in Fig. 11, which 
determines that the non-linearity of the age effect by itself is associated 
with the period during which the house is listed on the market. In 
quantile regressions, the negative parameter suggests a similar idea and 
the differences in the ‘negativity’ of the parameters across quantiles 
suggests non-linear effects, depending on the price level, but no 
conclusion can be inferred in relation to the time at which a house is 
placed on the market. 

The random forest method’s ability to find non-linearities in the data 
is superior to that of the hedonic models; however, the latter come closer 
to the economic logic of understanding why housing prices rise. 

In the hedonics, the models identify that the errors contain related 
information (DW  = 0.6), producing inefficient parameters. With these 
results, the estimated hedonic should be re-calculated in order to fit the 
basic assumptions and to obtain results that provide a better goodness of 
fit, so as to explain the higher part of the changes in the dependent 
variable. 

Comparing the hedonic models with the random forest(200),in 
Table4 the ranking of the features that affect housing price changes 
seems to be closer. As can be seen, the first six features in terms of their 
relevance fully coincide with the association between housing prices and 
the economic moment (captured by the variable YEAR), the location, 
size (in m2) and the income earned from the building, which are, for the 
most part, the main determinants of housing prices. The random forest 
also finds a strong relationship between AGE and LOCATION, while the 
hedonic model identifies the relevance of the AGE and NEIGHBOUR-
HOOD independently. Interestingly, the neighbourhood’s features 
appear far from the first level of influence in both models.Table 5. 

While the hedonic method provides a ‘measure’ of the influence on 
housing prices in the form of a parameter, the random forest does not. 
Using the latter for only a few variables allows us to provide a high 
quality prediction, while the hedonic method is not that precise when it 
reduces the number of characteristics. 

5. Discussion 

In general, the three methods discussed in this paper can provide 
precise estimations. The first exercise shows the random forest (200) 
method to be more accurate, followed by the conventional hedonic 
model. The first two methods do not allow us to identify how or why 
some housing-related characteristics influence price increases but they 
do provide precise values in the context of the data. In the third exercise, 
the quantile hedonic model provides less precision in predicting housing 
prices (the errors are larger) but it explains why prices evolve and, with 
a small, precise redesign of the model, it would capable of predicting 
housing prices for the sample and also provide more accurate forecasts. 

Debates over the lack of precision in the hedonic method point to 
changes in expectations or tastes, which are led by other variables. Such 
relationships can be associated with complex non-linearities the hedonic 
method has difficulty identifying and which have not yet been solved. 
Nevertheless, the machine learning method can support the identifica-
tion of non-linearities. As a secondary result of the random forest that 
was adapted for the purpose of this study, a three-dimensional rela-
tionship was defined among the main housing characteristics that 
explain housing prices. The RF method allows us to infer how the 

Table 3 
Hedonic regression (with constant). Ordered housing feature ranking by rele-
vance on price determination. * The order follows the standardized beta from 
the largest to the lowest absolute value, *** p-value < 0.01, ** p-value < 0.05.  

Feature Non- 
standard B 

St 
error  

Collinearity 
test VIF   

(Constante) 130.7274 1.17 *** 0.00   
Housing size M2 0.0071 0.00 *** 2.81   
Location − 0.0680 0.00 *** 2.45   
Year − 0.0601 0.00 *** 1.32   
Income building 0.1022 0.00 *** 2.12   
Income level 0.0936 0.00 *** 2.04   
Number bathrooms 0.0851 0.00 *** 2.17   
Age of neighbourhood − 0.0040 0.00 *** 1.97   
Economic activity 0.0248 0.00 *** 1.64   
Road quality 0.0828 0.02 *** 131.09   
Number of lifts 0.0346 0.00 *** 1.94   
Religious facility − 0.0734 0.00 *** 2.85   
Views 0.0290 0.00 *** 1.67   
Age − 0.0018 0.00 *** 1.41   
Type housing use 0.0333 0.00 *** 3.68   
Month − 0.0066 0.00 *** 1.20   
Housing use 0.0564 0.00 *** 3.94   
Number of dwellings 

in building 
− 0.0006 0.00 *** 1.82   

Population 0.0000 0.00 *** 3.42   
Exterior rooms 0.0121 0.00 *** 1.30   
Health facilities q 0.0375 0.01 *** 7.72   
Outdoor living space 0.0009 0.00 *** 1.11   
Population develop − 0.0183 0.00 *** 1.58   
Sports facilities q 0.0340 0.00 *** 4.12   
Retail facilities q 

neighbour 
0.0124 0.00 *** 1.90   

Housing type t 0.0122 0.00 *** 3.71   
Construction q 0.0131 0.00 *** 1.18   
Urban type − 0.0127 0.00 *** 3.82   
Train 0.0110 0.00 *** 1.91   
School facilities q − 0.0234 0.00 *** 5.60   
Urbanization q − 0.0069 0.00 *** 3.48   
Longitude 0.0143 0.00 *** 1.14   
Lighting system 

quality 
− 0.0220 0.02  130.60   

Population growth − 0.0198 0.00 *** 1.50   
Number of rooms − 0.0046 0.00 *** 2.41   
Population density 0.0139 0.00 *** 2.85   
Orientation 0.0025 0.00 *** 1.10   
Number of floors 0.0015 0.00 *** 1.51   
Postal code 0.0000 0.00 *** 1.18   
Retail facilities q 0.0048 0.00 *** 2.12   
Latitude − 0.0031 0.00 *** 1.03   
Population density 

neighbour 
− 0.0088 0.00 *** 2.84   

Number of bedrooms 0.0053 0.00 *** 2.59   
Urban rural 0.0467 0.02 *** 1.15   
Sewer quality 0.0616 0.03 ** 1.31   
Lighting system type − 0.0185 0.01 ** 1.41   
Bus 0.0014 0.00  1.27   
Underground − 0.0075 0.01  1.00   
Excluded       
Sewer type       
Leisure quality       
Goodness of fit       
Adjusted R2  0.8088      

Standard error 0.1705       
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relationship between two variables evolves to being capable of 
explaining housing prices. The follow figures10 shows four examples: 
HOUSING SIZE and LOCATION (region in the province where the house 
is located) (Fig. 8), INCOME BUILDING and YEAR (Fig. 9), 

CONSTRUCTION QUALITY and AGE (Fig. 10); AGE and YEAR (Fig. 11). 
These are the non-linearities that are traditionally debated in the 
literature. 

Regarding the first relationship in Fig. 8, the ‘x’ value is the housing 
size (m2) and the ‘y’ is the location. The order of the location is from the 
North to the South and from the coast to the interior. The Shapley value 
identifies how the influence on prices rises as with the house size, but in 
a non-linear way (as the literature has identified). The blue and red 
points are together since it is common for the first locations (north of 
Alicante) to have 100 m2 in area in which to assert their influence. 
However, if the house is located in the Southern parts of the province, 
then as the house sizes increase, the influence larger dwellings have on 
housing prices decreases. In the figure, this can be seen in the way the 
blue points differ from the red points at 250–300 m2. The non-linearity 
captures the different effects an extra m2 has on housing prices if these 
dwellings are built in different regions. 

The second non-linearity is related to the influence of income and 
year on housing prices. The Fig. 9 explains how income affects housing 
prices in a range of years. Income presents both positive and negative 
effects on housing prices. The effect is negative when income is low (up 
to level 4) and positive when income is high (from level 5 up). Inter-
estingly, the random forest identifies the negative effect of low income 
on housing prices for 2004, onward. But it only identifies the effects of 
very low income during the period 1996–2000. These findings support 
the idea of that low-income households reduce housing prices while 
higher-income households increase these prices, thus, defining a seg-
mentation of the housing-price dynamics by level of income. 

The third non-linearity relates to the construction quality and in-
come level (Fig. 10). The accumulation of red points on the left-hand 
side of the figure is associated with lower housing prices. This sup-
ports the accepted idea that older buildings are associated with lower 
construction quality. The blue points in the level-3 construction quality 
suggest that newer buildings also present low quality and, thus, nega-
tively affect prices. In this sense, this non-linearity agrees with what is 
commonly thought in the economics literature. 

The last non-linearity (Fig. 11) explains how building age affects 
housing prices, depending on the year (cycle). The red colour identifies 
how newer buildings had null effect on prices from 2004 and onward 
whereas they had positive affects during the previous periods. After 20 
years, the effect on housing prices was mostly negative during the first 
part of the observed period (1996–2000) but this effect was stabilised 
over the next few years. These figures suggest that the impact of building 
age differs depending on the time the house is supplied on the market, 
clearly capturing the changes in owner expectations. 

It is possible to see these results by using the random forest method; 

Fig. 7. Plots of the effects on the different variables. The blue shadow measures the confidence intervals of the estimated parameters (on the black line). The red line 
gives the parameter estimates of the ordinary linear squares regression and the dotted red lines indicate their interval bounds. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Dependence plot with variable INCOME IN BUILDING against impact 
value using YEAR colour scale. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Dependence plot with the variable AGE against the impact value using 
the YEAR colour scale. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

10 The interpretations of these figures are not straight forward. The Shapley 
value measures the influence of the combined variables on prices; the red 
colour identifies the effects on the variables on the ‘x’ axis when the ‘y’ vari-
ables show larger values (in red). 
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as for hedonics, this requires much more complexity. Nevertheless, 
showing the results visually could serve as an economic interpretation if 
there were a way for hedonic models to clearly capture the effects in 
three dimensions. 

The whole empirical exercise shows how the Random forest method 
is capable of capturing and visualizing changes in data patterns (see 
figure 8 or 11) hidden in data and key for producing accurate pre-
dictions. Non-linearities identification has been a way followed by 
economic researchers to capture how the market mechanism is per-
forming in a particular time or space, so any knowledge that could 
develop an algorithm allowing to precisely model non-linearities into 
causal models would be a significant step forward in socio-economic 
analysis. 

For the time being, ML is not capable of explaining why the non- 
linearities happen. In fact, ML methods cannot clarify why the identi-
fied patterns change and the effect of any omitted variable or hidden 
factors in the dataset, for instance. Although RF can categorize the 
variables mainly affecting the prediction, it is still not capable of 
explaining why and how. The accuracy almost depends on the data 

Table 4 
Ranking of main explanatory features related to housing prices.  

Ranking Random forest 
(200) 

Hedonic regression Hedonic through 
origin  

1 Year Housing size m2 Postal code  
2 Housing size m2 Location Age  
3 Income building Year Urban type  
4 Age Income building Population  
5 Number of 

bathrooms 
Income level Economic activity  

6 Location Number of 
bathrooms 

Population growth  

7 Housing type t Age of 
neighbourhood 

Urban/rural  

8 Number lifts Economic activity Type of housing use  
9 Views Road quality Income level  
10 Economic activity Number of lifts Population density  
11 Construction q Religious facility Population develop  
12 Population Views Road quality  
13 Urbanization q Age Sewer type  
14 Number of 

dwellings in 
building 

Type of housing use Sewer quality  

15 Outdoor living 
space 

Month Lighting system 
type  

16 Retail facilities q 
neighbour 

Housing use Lighting system 
quality  

17 Orientation Number of 
dwellings in 
building 

retail facilities q  

18 Population growth Population School facilities q  
19 Housing use Exterior rooms Religious facility  
20 Postal code Health facilities q Sports facilities q  
21 Provincial code Outdoor living 

space 
Health facilities q  

22 Income level Population develop Bus  
23 Population density Sports facilities q Train  
24 Age of 

neighbourhood 
Retail facilities q 
neighbour 

Underground  

25 Longitude Housing type t Housing type t  
26 Month Construction q Number of 

dwellings in 
building  

27 Population 
development 

Urban type Number of lifts  

28 Population density Train Age of 
neighbourhood  

29 Number of rooms School facilities q Retail facilities q 
neighbour  

30 Retail facilities q Urbanization q Income building  
31 Exterior rooms Longitude Population density 

neighbour  
32 Type housing use Lighting system 

quality 
Location   
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managed and how quick the new information is added for the analysis. 
These raise issues related to computation costs and massive datasets to 
be managed as well as the prior beliefs/theories to be accounted for as 
an alternative ingredient of ML method application. 

Another area where machine learning techniques are not developed 
enough is in the capacity to predict the future, as the current methods 
predict the present. From a socio-economic point of view, the ML 
techniques could give good predictions to satisfy the information re-
quirements of particular markets with fast and multiple transactions, 
like the financial markets, but not in the case of others more longer-term 
based. The housing market belongs to the latter, and the interest to 
advance their future price evolution is considerable because of their 
effects on several socio-economic dimensions like social life or the 
macro-economic stability, to mention only two examples. Saying that, 
ML methods are used in the massive valuation tools in the real estate 
market, but the prediction is still a remaining issue. The current treat-
ment of time in ML as an additional variable in the dataset ignores the 
time dimension of the extracted patterns related to the other variables. 
As in the non-linearities case, ML can merge with econometric-time 
series knowledge to develop tools which can make more accurate pre-
dictions for next periods. Predicting the future of data is one of the 
remaining challenges for artificial intelligence. 

6. Conclusion and recommendations for future study 

This research presents the results of several predictive models that 
are based on two different methodologies: machine learning and he-
donic regressions. A total of seven different models were tested for their 
predictive capabilities, using a large micro database of housing (asking) 
prices in Alicante City, Spain, for the period 1996–2012. The first group 
of methods tested a range of machine learning (ML) tools to calculate the 
most relevant components that explain housing prices. ML tools provide 
high predictive capability and show how the random forest (RF) method 
provides superior predictions with higher explanatory power due to the 
manner in which it classifies the components that are used to estimate 
housing prices. However, these methods are somewhat weak in terms of 
explaining the rationale behind price levels. However, the more 
advanced RF method is capable of identify those characteristics that 
contribute to the main part of a house’s value. The findings from using 
RF agree with the literature where it notes that location and time are the 
crucial features for determining prices. A secondary result from the RF 
method is that it allows us to identify and visualise the discontinuities in 
the relationships between the housing characteristics, whereas these 
relationships should normally be non-linear. That is, these relationship 
discontinuities may affect a particular characteristic and the impact it 
might have on housing prices, depending on whether a third charac-
teristic also has affects on the housing price. This is a clear non-linear 
relationship that reflects a hidden causality which can be observed in 
three dimensions by using the RF method but is difficult to capture using 
other methods. The hedonic regression method is estimated using two 
tools: The first is the ordinary least squares hedonic method, which starts 
from the hypothesis that the effects of each characteristic (estimated 
parameter) is constant. The second tool is the quantile hedonic regres-
sion method which considers that each characteristic could present a 
non-linear effect over prices and estimate such an effect by each 10% 
quantile. The results of both methods are fully consistent with the 
literature whose main results rank the more relevant variables that 
determine housing prices. The quantile results identify the non- 
linearities in the way certain characteristics affect housing prices, 
depending on their ranking. Both results are compared and Table A-1 
identifies the relevance of the characteristics as they are measured using 
the two above techniques. In terms of accuracy, the ML methods are 
superior to all of the regression methods, although their capacity to 
explain a socioeconomic variable can be found to be spurious when the 
variables are highly correlated. In terms of the effects on quantification, 
the regression models are superior as they are capable of precisely 
identifying each characteristic’s particular effect and defining the range 
of effects. We find that the RF method is superior in terms of identifying 
the non-linearities. In fact, this method can visualize the changing ef-
fects of three different attributes that show the non-linearities that are 
potentially responsible of an asymmetric effect of a particular charac-
teristic on the price determination. However, the RF does not quantify 
such non-linear relationships. The quantile regression is capable of 
capturing two-dimensional non-linearities; that is, it can capture the 
asymmetry in the housing-price reactions of a particular attribute, 
depending on the price (quantile) levels; it can also provide a precise 
quantification of each of those impacts that are associated to the price 
quantile. The latter explains the observed asymmetric housing-price 
reactions; but, at the moment, it is not possible to capture the three- 
dimensional effects which can be hidden within non-observable causal 
links among the housing attributes. 

Fig. 8. Dependence plot with the variable HOUSING SIZE(M2) against the 
impact value using a colour scale for LOCATION. 

Fig. 10. Dependence plot with variable CONSTRUCTION QUALITY against the 
impact value using a color scale for LOCATION. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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This paper is the first to provide a comparison of the two method-
ologies using real data and it opens this field up for further research. The 
development of emerging tools that can identify the three dimensions 
that have causal hidden relationships on housing prices is crucial to 
understanding how these prices react in each market. 

As a proposal for future work could be raised to apply techniques 
based on deep artificial neural networks (Deep Learning) that are 
currently being applied in complex problems getting very good results. 
For this new approach would be a challenge in terms of explainability of 
the model, since these complex neural networks have more limited 
explanatory techniques than those used in the current article. 
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Appendix A. Machine learning numerical results 

The tables below show the numerical results for each metric obtained from the machine learning algorithms. The algorithms are sorted by name. 
The column that shows the average percentages also presents in parentheses, in the cases of the RMSE and MAE metrics, the relationship between the 
average value and the average value of the PRICE variable defined in Eqs. 4 and 6, respectively. In addition to the averages obtained, the results of each 
experiment are also shown within the 10-fold cross validation technique. 

A.1. Root mean squared error 

.   

Algorithm Average (%) 10-CV 

AdaBoost 0.354 (3.1) [0.36, 0.35, 0.36, 0.35, 0.36, 0.35, 0.35, 0.35, 0.36, 0.35] 
CatBoost 0.161 (1.4) [0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.17, 0.16] 
Decision Tree 0.310 (2.7) [0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31, 0.31] 
Linear Lasso 0.613 (5.3) [0.62, 0.61, 0.61, 0.61, 0.62, 0.61, 0.62, 0.61, 0.61, 0.61] 
Linear Regression 0.259 (2.2) [0.26, 0.26, 0.26, 0.25, 0.26, 0.26, 0.26, 0.26, 0.26, 0.26] 
Linear Ridge 0.259 (2.2) [0.26, 0.26, 0.26, 0.25, 0.26, 0.26, 0.26, 0.26, 0.26, 0.26] 
MLP 0.206 (1.8) [0.20, 0.21, 0.20, 0.20, 0.21, 0.21, 0.22, 0.20, 0.21, 0.20] 
Nearest Neighbours (1) 0.172 (1.5) [0.17, 0.17, 0.17, 0.17, 0.17, 0.17, 0.18, 0.17, 0.18, 0.17] 
Nearest Neighbours (3) 0.163 (1.4) [0.16, 0.17, 0.16, 0.16, 0.16, 0.16, 0.17, 0.16, 0.17, 0.16] 
Nearest Neighbours (5) 0.168 (1.5) [0.17, 0.17, 0.16, 0.17, 0.17, 0.16, 0.17, 0.16, 0.18, 0.17] 
Nearest Neighbours (7) 0.173 (1.5) [0.17, 0.18, 0.17, 0.17, 0.17, 0.17, 0.18, 0.17, 0.18, 0.17] 
Random Forest (100) 0.086 (0.7) [0.08, 0.10, 0.08, 0.08, 0.08, 0.09, 0.09, 0.08, 0.10, 0.08] 
Random Forest (200) 0.078 (0.7) [0.07, 0.09, 0.07, 0.07, 0.07, 0.08, 0.09, 0.08, 0.09, 0.07] 
Random Forest (300) 0.077 (0.7) [0.07, 0.09, 0.07, 0.07, 0.07, 0.08, 0.09, 0.07, 0.09, 0.07] 
Random Forest (400) 0.077 (0.7) [0.07, 0.09, 0.07, 0.07, 0.07, 0.08, 0.09, 0.07, 0.09, 0.07] 
Random Forest (500) 0.077 (0.7) [0.07, 0.09, 0.07, 0.07, 0.07, 0.08, 0.09, 0.07, 0.09, 0.07] 
XGBRegressor 0.200 (1.7) [0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20]  

A.2. Mean absolute error 

.   

Algorithm Average (%) 10-CV 

AdaBoost 0.272 (2.4) [0.28, 0.27, 0.28, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27, 0.27] 
CatBoost 0.120 (1.0) [0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12] 
Decision Tree 0.234 (2.0) [0.23, 0.24, 0.24, 0.23, 0.23, 0.24, 0.24, 0.23, 0.23, 0.23] 
Linear Lasso 0.490 (4.3) [0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49] 
Linear Regression 0.200 (1.7) [0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20] 
Linear Ridge 0.200 (1.7) [0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20] 
MLP 0.155 (1.3) [0.16, 0.15, 0.16, 0.15, 0.16, 0.16, 0.16, 0.15, 0.15, 0.15] 
Nearest Neighbours (1) 0.076 (0.7) [0.08, 0.07, 0.07, 0.08, 0.07, 0.08, 0.08, 0.07, 0.08, 0.08] 
Nearest Neighbours (3) 0.090 (0.8) [0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09] 
Nearest Neighbours (5) 0.100 (0.9) [0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10] 
Nearest Neighbours (7) 0.110 (1.0) [0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11] 
Random Forest (100) 0.040 (0.3) [0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04] 
Random Forest (200) 0.030 (0.3) [0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03] 
Random Forest (300) 0.030 (0.3) [0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03] 
Random Forest (400) 0.030 (0.3) [0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03] 
Random Forest (500) 0.030 (0.3) [0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03] 
XGBRegressor 0.150 (1.3) [0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15]  
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A.3. R square score 

.   

Algorithm Average 10-CV 

AdaBoost 0.667 [0.66, 0.66, 0.66, 0.68, 0.67, 0.67, 0.68, 0.67, 0.66, 0.66] 
CatBoost 0.935 [0.94, 0.93, 0.94, 0.94, 0.94, 0.93, 0.93, 0.93, 0.93, 0.94] 
Decision Tree 0.747 [0.75, 0.74, 0.75, 0.75, 0.75, 0.75, 0.74, 0.75, 0.74, 0.75] 
Linear Lasso 0.423 [0.42, 0.42, 0.43, 0.43, 0.43, 0.42, 0.42, 0.42, 0.42, 0.42] 
Linear Regression 0.823 [0.82, 0.82, 0.83, 0.83, 0.83, 0.82, 0.82, 0.82, 0.82, 0.82] 
Linear Ridge 0.823 [0.82, 0.82, 0.83, 0.83, 0.83, 0.82, 0.82, 0.82, 0.82, 0.82] 
MLP 0.886 [0.89, 0.88, 0.89, 0.89, 0.89, 0.89, 0.87, 0.89, 0.88, 0.89] 
Nearest Neighbours (1) 0.923 [0.93, 0.92, 0.93, 0.92, 0.93, 0.92, 0.92, 0.92, 0.92, 0.92] 
Nearest Neighbours (3) 0.928 [0.93, 0.93, 0.93, 0.93, 0.93, 0.93, 0.92, 0.93, 0.92, 0.93] 
Nearest Neighbours (5) 0.927 [0.93, 0.92, 0.93, 0.93, 0.93, 0.93, 0.92, 0.93, 0.92, 0.93] 
Nearest Neighbours (7) 0.919 [0.92, 0.92, 0.92, 0.92, 0.92, 0.92, 0.92, 0.92, 0.91, 0.92] 
Random Forest (100) 0.978 [0.98, 0.97, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.97, 0.98] 
Random Forest (200) 0.985 [0.99, 0.98, 0.99, 0.99, 0.99, 0.98, 0.98, 0.98, 0.98, 0.99] 
Random Forest (300) 0.986 [0.99, 0.98, 0.99, 0.99, 0.99, 0.98, 0.98, 0.99, 0.98, 0.99] 
Random Forest (400) 0.986 [0.99, 0.98, 0.99, 0.99, 0.99, 0.98, 0.98, 0.99, 0.98, 0.99] 
Random Forest (500) 0.986 [0.99, 0.98, 0.99, 0.99, 0.99, 0.98, 0.98, 0.99, 0.98, 0.99] 
XGBRegressor 0.897 [0.90, 0.89, 0.90, 0.90, 0.90, 0.90, 0.89, 0.90, 0.89, 0.90]  

A.4. Precision 

.   

Algorithm Average 10-CV 

AdaBoost 0.728 [0.72, 0.73, 0.72, 0.73, 0.73, 0.73, 0.73, 0.73, 0.73, 0.73] 
CatBoost 0.880 [0.88, 0.88, 0.88, 0.88, 0.88, 0.88, 0.88, 0.88, 0.88, 0.88] 
Decision Tree 0.766 [0.77, 0.76, 0.76, 0.77, 0.77, 0.76, 0.76, 0.77, 0.77, 0.77] 
Linear Lasso 0.510 [0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51] 
Linear Regression 0.800 [0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80] 
Linear Ridge 0.800 [0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80] 
MLP 0.845 [0.84, 0.85, 0.84, 0.85, 0.84, 0.84, 0.84, 0.85, 0.85, 0.85] 
Nearest Neighbours (1) 0.924 [0.92, 0.93, 0.93, 0.92, 0.93, 0.92, 0.92, 0.93, 0.92, 0.92] 
Nearest Neighbours (3) 0.910 [0.91, 0.91, 0.91, 0.91, 0.91, 0.91, 0.91, 0.91, 0.91, 0.91] 
Nearest Neighbours (5) 0.900 [0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90] 
Nearest Neighbours (7) 0.890 [0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89] 
Random Forest(100) 0.960 [0.96, 0.96, 0.96, 0.96, 0.96, 0.96, 0.96, 0.96, 0.96, 0.96] 
Random Forest (200) 0.970 [0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97] 
Random Forest (300) 0.970 [0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97] 
Random Forest (400) 0.970 [0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97] 
Random Forest (500) 0.970 [0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97] 
XGBRegressor 0.850 [0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85]  

Appendix B. Hedonic estimation model 

Hedonic model estimation. Differences in parameters by quantile (Quantile Regressors) (Table 4. 
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